Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays
Abstract
:1. Introduction
2. Related Work
2.1. The Team Orienteering Problem
2.2. Using Simheuristics in Routing Problems
3. Modeling the TOP with Probabilistic Delays
4. An Extended Simheuristic with Reliability Concepts
4.1. A Biased-Randomized Algorithm for the Deterministic TOP
Algorithm 1 Computing the efficiency list. | |
1: | input: |
2: | V: list of nodes without origin and end nodes |
3: | o: starting node |
4: | f: destination node |
5: | end input: |
6: | efficiencyList ← Ø |
7: | k ← getLength(V) |
8: | for
do |
9: | node ← getNode(n) |
10: | onEdge ← Edge(o, node) |
11: | nfEdge ← Edge(node, f) |
12: | onEdgeCost ← computeEuclideanDistance(o, node) |
13: | nfEdgeCost ← computeEuclideanDistance(node, f) |
14: | end for |
15: | for
do |
16: | iNode ← getNode(i) |
17: | for do |
18: | jNode ← getNode(j) |
19: | ijEdge ← Edge(iNode, jNode) |
20: | jiEdge ← Edge(jNode, iNode) |
21: | ijEdgeCost ← computeEuclideanDistance(iNode, jNode) |
22: | setCost(ijEdge, ijEdgeCost) |
23: | setCost(jiEdge, ijEdgeCost) |
24: | ijEfficiency ← computeEfficiency(iNode, jNode) |
25: | jiEfficiency ← computeEfficiency(jNode, iNode) |
26: | efficiencyList ← appendEdges(ijEdge, jiEdge) |
27: | sortEfficiencyList |
28: | end for |
29: | end for |
30: | return efficiencyList |
4.2. A Simheuristic for the Stochastic TOP-PD
- The heuristic provides the deterministic solution for a . This is, we allow the routes to have maximum duration.
- If after a short simulation the probability of the solution incurring in a delay is greater than p, we will slightly increase . Therefore, the new deadline taken to construct the solutions will be , with and . Note that when a is found such that , it will be saved (), so the future solutions created by the algorithm will have deadline .
Algorithm 2 Simulating a solution. | |
1: | input: |
2: | numberSimulations: simulations runs |
3: | solutionRoutes: routes of the solution |
4: | deadline: upper time limit for all the routes |
5: | end input |
6: | stochasticProfit ← 0 |
7: | totalProfit ← 0 |
8: | k ← getLength(solutionRoutes) |
9: | for
do |
10: | simProfit ← 0 |
11: | for do |
12: | route ← getRoute(r) |
13: | routeEdges ← getEdges(route) |
14: | profit ← 0 |
15: | routeDuration ← 0 |
16: | n ← getLength(routeEdges) |
17: | for do |
18: | edge ← getEdge(routeEdges, e) |
19: | customer ← getEndNodeInEdge(edge) |
20: | customerProfit ← getCustomerProfit(customer) |
21: | if customerProfit > 0 then |
22: | ← getStochasticValue |
23: | edgeDuration ← getDuration(edge) |
24: | routeStochasticDuration ← edgeDuration + |
25: | routeDuration ← routeDuration + routeStochasticDuration |
26: | profit ← profit + customerProfit |
27: | end if |
28: | end for |
29: | if routeDuration > deadline then |
30: | profit ← 0 |
31: | end if |
32: | simProfit ← simProfit + profit |
33: | end for |
34: | totalProfit ← totalProfit + simProfit |
35: | end for |
36: | totalProfit ← totalProfit/numberSimulations |
37: | stochasticProfit ← totalProfit |
38: | return stochasticProfit |
5. Computational Experiments
6. Analysis of Results
6.1. Impact of Delay Selection
6.2. Probability of Incurring Different Delays
6.3. Reliability of a Solution
7. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bayliss, C.; Juan, A.A.; Currie, C.S.; Panadero, J. A learnheuristic approach for the team orienteering problem with aerial drone motion constraints. Appl. Soft Comput. 2020, 92, 106280. [Google Scholar] [CrossRef]
- Panadero, J.; Ammouriova, M.; Juan, A.A.; Agustin, A.; Nogal, M.; Serrat, C. Combining parallel computing and biased randomization for solving the team orienteering problem in real-time. Appl. Sci. 2021, 11, 12092. [Google Scholar] [CrossRef]
- Chica, M.; Juan, A.A.; Bayliss, C.; Cordón, O.; Kelton, W.D. Why Simheuristics? Benefits, Limitations, and Best Practices when Combining Metaheuristics with Simulation. Stat. Oper. Res. Trans. 2020, 44, 311–334. [Google Scholar] [CrossRef] [Green Version]
- Emmert-Streib, F.; Dehmer, M. Introduction to survival analysis in practice. Mach. Learn. Knowl. Extr. 2019, 1, 1013–1038. [Google Scholar] [CrossRef] [Green Version]
- Meeker, W.Q.; Escobar, L.A.; Pascual, F.G. Statistical Methods for Reliability Data; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Barakat, A.; Mittal, A.; Ricketts, D.; Rogers, B.A. Understanding survival analysis: Actuarial life tables and the Kaplan–Meier plot. Br. J. Hosp. Med. 2019, 80, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Vansteenwegen, P.; Gunawan, A. Orienteering Problems: Models and Algorithms for Vehicle Routing Problems with Profits; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Chao, I.M.; Golden, B.L.; Wasil, E.A. A Fast and Effective Heuristic for the Orienteering Problem. Eur. J. Oper. Res. 1996, 88, 475–489. [Google Scholar] [CrossRef]
- Golden, B.; Levy, L.; Vohra, R. The orienteering problem. Nav. Res. Logist. 1987, 34, 307–318. [Google Scholar] [CrossRef]
- Chao, I.M.; Golden, B.; Wasil, E. The team orienteering problem. Eur. J. Oper. Res. 1996, 88, 464–474. [Google Scholar] [CrossRef]
- Keshtkaran, M.; Ziarati, K.; Bettinelli, A.; Vigo, D. Enhanced exact solution methods for the team orienteering problem. Int. J. Prod. Res. 2016, 54, 591–601. [Google Scholar] [CrossRef]
- Archetti, C.; Hertz, A.; Speranza, M.G. Metaheuristics for the team orienteering problem. J. Heuristics 2007, 13, 49–76. [Google Scholar] [CrossRef]
- Dang, D.C.; Guibadj, R.N.; Moukrim, A. An effective PSO-inspired algorithm for the team orienteering problem. Eur. J. Oper. Res. 2013, 229, 332–344. [Google Scholar] [CrossRef] [Green Version]
- Bianchessi, N.; Mansini, R.; Speranza, M.G. A branch-and-cut algorithm for the Team Orienteering Problem. Int. Trans. Oper. Res. 2018, 25, 627–635. [Google Scholar] [CrossRef]
- Boussier, S.; Feillet, D.; Gendreau, M. An Exact Algorithm for the Team Orienteering Problem. 4OR 2007, 5, 211–230. [Google Scholar] [CrossRef]
- Tae, H.; Kim, B. A branch-and-price approach for the team orienteering problem with time windows. Int. J. Ind. Eng. Theory Appl. Pract. 2015, 22, 243–251. [Google Scholar]
- Sundar, K.; Sanjeevi, S.; Montez, C. A branch-and-price algorithm for a team orienteering problem with fixed-wing drones. EURO J. Transp. Logist. 2022, 11, 100070. [Google Scholar] [CrossRef]
- El-Hajj, R.; Dang, D.C.; Moukrim, A. Solving the team orienteering problem with cutting planes. Comput. Oper. Res. 2016, 74, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.E.; Ryan, D.M. An Optimal Solution Procedure for the Multiple Tour Maximum Collection Problem Using Column Generation. Comput. Oper. Res. 1999, 26, 427–441. [Google Scholar] [CrossRef]
- Tang, H.; Miller-Hooks, E. Algorithms for a stochastic selective travelling salesperson problem. J. Oper. Res. Soc. 2005, 56, 439–452. [Google Scholar] [CrossRef]
- Vansteenwegen, P.; Souffriau, W.; Berghe, G.; Oudheusden, D. A Guided Local Search Metaheuristic for the Team Orienteering Problem. Eur. J. Oper. Res. 2009, 196, 118–127. [Google Scholar]
- Campos, V.; Martí, R.; Sánchez-Oro, J.; Duarte, A. GRASP with path relinking for the orienteering problem. J. Oper. Res. Soc. 2014, 65, 1800–1813. [Google Scholar]
- Ke, L.; Archetti, C.; Feng, Z. Ants Can Solve the Team Orienteering Problem. Comput. Ind. Eng. 2008, 54, 648–665. [Google Scholar] [CrossRef]
- Yassen, E.T.; Jihad, A.A.; Abed, S.H. Lion optimization algorithm for team orienteering problem with time window. Indones. J. Electr. Eng. Comput. Sci. 2021, 21, 538–545. [Google Scholar]
- Lin, S. Solving the team orienteering problem using effective multi-start simulated annealing. Appl. Soft Comput. 2013, 13, 1064–1073. [Google Scholar] [CrossRef]
- Bouly, H.; Dang, D.; Moukrim, A. A Memetic Algorithm for the Team Orienteering Problem. 4OR-Q J. Oper. Res. 2010, 8, 49–70. [Google Scholar] [CrossRef]
- Ke, L.; Zhai, L.; Li, J.; Chan, F.T. Pareto Mimic Algorithm: An Approach to the Team Orienteering Problem. Omega 2016, 61, 155–166. [Google Scholar] [CrossRef]
- Tsakirakis, E.; Marinaki, M.; Marinakis, Y.; Matsatsinis, N. A Similarity Hybrid Harmony Search Algorithm for the Team Orienteering Problem. Appl. Soft Comput. 2019, 80, 776–796. [Google Scholar] [CrossRef]
- Ferreira, J.; Quintas, A.; Oliveira, J.; Pereira, G.A.B.; Dias, L. Solving the team orienteering problem: Developing a solution tool using a genetic algorithm approach. In Soft Computing in Industrial Applications; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2014; Volume 223, pp. 365–375. [Google Scholar]
- Kobeaga, G.; Merino, M.; Lozano, J.A. An efficient evolutionary algorithm for the orienteering problem. Comput. Oper. Res. 2018, 90, 42–59. [Google Scholar] [CrossRef] [Green Version]
- Panadero, J.; Currie, C.; Juan, A.A.; Bayliss, C. Maximizing Reward from a Team of Surveillance Drones under Uncertainty Conditions: A simheuristic approach. Eur. J. Ind. Eng. 2020, 14, 485–516. [Google Scholar] [CrossRef]
- Mei, Y.; Zhang, M. Genetic programming hyper-heuristic for stochastic team orienteering problem with time windows. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Song, Y.; Ulmer, M.W.; Thomas, B.W.; Wallace, S.W. Building Trust in Home Services—Stochastic Team-Orienteering with Consistency Constraints. Transp. Sci. 2020, 54, 823–838. [Google Scholar] [CrossRef]
- Bian, Z.; Liu, X. A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach. Transp. Res. Part E Logist. Transp. Rev. 2018, 115, 246–266. [Google Scholar] [CrossRef]
- Dolinskaya, I.; Shi, Z.E.; Smilowitz, K. Adaptive orienteering problem with stochastic travel times. Transp. Res. Part E Logist. Transp. Rev. 2018, 109, 1–19. [Google Scholar] [CrossRef]
- Quintero-Araujo, C.A.; Gruler, A.; Juan, A.A.; Armas, J.D.; Ramalhinho, H. Using simheuristics to promote horizontal collaboration in stochastic city logistics. Prog. Artif. Intell. 2017, 6, 275–284. [Google Scholar] [CrossRef]
- Gruler, A.; Quintero, C.L.; Calvet, L.; Juan, A.A. Waste Collection Under Uncertainty: A Simheuristic Based on Variable Neighbourhood Search. Eur. J. Ind. Eng. 2017, 11, 228–255. [Google Scholar] [CrossRef]
- Guimarans, D.; Dominguez, O.; Panadero, J.; Juan, A.A. A simheuristic approach for the two-dimensional vehicle routing problem with stochastic travel times. Simul. Model. Pract. Theory 2018, 89, 1–14. [Google Scholar] [CrossRef]
- Reyes-Rubiano, L.; Ferone, D.; Juan, A.A.; Faulin, J. A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times. SORT 2019, 1, 3–24. [Google Scholar]
- Tordecilla, R.D.; Martins, L.d.C.; Panadero, J.; Copado, P.J.; Perez-Bernabeu, E.; Juan, A.A. Fuzzy Simheuristics for Optimizing Transportation Systems: Dealing with Stochastic and Fuzzy Uncertainty. Appl. Sci. 2021, 11, 7950. [Google Scholar] [CrossRef]
- Latorre-Biel, J.I.; Ferone, D.; Juan, A.A.; Faulin, J. Combining simheuristics with Petri nets for solving the stochastic vehicle routing problem with correlated demands. Expert Syst. Appl. 2021, 168, 114240. [Google Scholar] [CrossRef]
- Rabe, M.; Deininger, M.; Juan, A.A. Speeding up computational times in simheuristics combining genetic algorithms with discrete-event simulation. Simul. Model. Pract. Theory 2020, 103, 102089. [Google Scholar] [CrossRef]
- Belloso, J.; Juan, A.A.; Faulin, J. An Iterative Biased-Randomized Heuristic for the Fleet Size and Mix Vehicle-Routing Problem with Backhauls. Int. Trans. Oper. Res. 2019, 26, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Raba, D.; Estrada-Moreno, A.; Panadero, J.; Juan, A.A. A Reactive Simheuristic using Online Data for a Real-Life Inventory Routing Problem with Stochastic Demands. Int. Trans. Oper. Res. 2020, 27, 2785–2816. [Google Scholar] [CrossRef]
- McCool, J.I. Using the Weibull Distribution: Reliability, Modeling, and Inference; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 950. [Google Scholar]
Instance | Deterministic | Stochastic | Gap w.r.t. OBD (%) | ||||
---|---|---|---|---|---|---|---|
OBD | OBD (time) | OBD-S | OBS | OBS (time) | OBD-S | OBS | |
p2.3.h | 160.0 | 2.2 | 53.1 | 140.5 | 30.8 | 66.8 | 13.8 |
p2.3.j | 200.0 | 0.0 | 38.5 | 176.0 | 1.1 | 80.7 | 13.6 |
p2.4.e | 70.0 | 0.0 | 62.6 | 69.6 | 17.0 | 10.6 | 0.6 |
p3.3.g | 250.0 | 8.9 | 130.0 | 240.0 | 30.3 | 48.0 | 4.2 |
p3.3.m | 440.0 | 15.7 | 126.9 | 410.0 | 0.5 | 71.2 | 7.3 |
p3.4.e | 140.0 | 0.0 | 139.1 | 139.2 | 0.0 | 0.7 | 0.6 |
p3.4.m | 370.0 | 0.2 | 191.1 | 360.0 | 126.9 | 48.3 | 2.8 |
p4.3.e | 312.0 | 38.9 | 94.0 | 293.4 | 16.7 | 69.9 | 6.4 |
p4.3.g | 427.0 | 0.1 | 297.0 | 385.6 | 0.0 | 30.4 | 10.7 |
p4.4.f | 253.0 | 0.4 | 198.1 | 237.3 | 22.4 | 21.7 | 6.6 |
p4.4.g | 291.0 | 0.5 | 212.7 | 255.5 | 8.3 | 26.9 | 13.9 |
p4.4.h | 393.0 | 47.5 | 175.0 | 355.2 | 144.1 | 55.5 | 10.6 |
p4.4.m | 625.0 | 0.2 | 527.8 | 535.6 | 0.0 | 15.6 | 16.7 |
p5.3.e | 95.0 | 0.1 | 61.8 | 81.7 | 0.0 | 35.0 | 16.3 |
p5.3.h | 230.0 | 0.8 | 178.9 | 209.1 | 2.0 | 22.2 | 10.0 |
p5.3.m | 590.0 | 172.5 | 170.0 | 495.0 | 6.2 | 71.2 | 19.2 |
p5.3.n | 660.0 | 1.3 | 169.6 | 575.5 | 37.7 | 74.3 | 14.7 |
p5.4.m | 540.0 | 2.1 | 238.9 | 479.7 | 47.6 | 55.8 | 12.6 |
p6.3.m | 612.0 | 1.8 | 450.8 | 577.0 | 3.0 | 26.3 | 6.1 |
p6.3.n | 870.0 | 18.1 | 210.0 | 719.5 | 80.8 | 75.9 | 20.9 |
p6.4.m | 486.0 | 2.5 | 469.1 | 480.0 | 2.1 | 3.5 | 1.3 |
p7.4.t | 876.0 | 56.2 | 420.9 | 834.8 | 114.7 | 52.0 | 4.9 |
Average | 404.1 | 16.8 | 209.8 | 365.9 | 31.5 | 43.7 | 9.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, E.M.; Panadero, J.; Carracedo, P.; Juan, A.A.; Perez-Bernabeu, E. Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays. Mathematics 2022, 10, 3788. https://doi.org/10.3390/math10203788
Herrera EM, Panadero J, Carracedo P, Juan AA, Perez-Bernabeu E. Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays. Mathematics. 2022; 10(20):3788. https://doi.org/10.3390/math10203788
Chicago/Turabian StyleHerrera, Erika M., Javier Panadero, Patricia Carracedo, Angel A. Juan, and Elena Perez-Bernabeu. 2022. "Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays" Mathematics 10, no. 20: 3788. https://doi.org/10.3390/math10203788
APA StyleHerrera, E. M., Panadero, J., Carracedo, P., Juan, A. A., & Perez-Bernabeu, E. (2022). Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays. Mathematics, 10(20), 3788. https://doi.org/10.3390/math10203788