Vehicle and UAV Collaborative Delivery Path Optimization Model
Abstract
:1. Introduction
2. Problem Description and Model Construction
2.1. Problem Description
2.2. Model Construction
2.2.1. Model Notation
2.2.2. Objective Function
2.2.3. Binding Conditions
3. Algorithm Solution
4. Analysis of Examples
4.1. Parameter Setting
4.2. Analysis of Results
4.2.1. Discussion of Algorithm Solutions
4.2.2. Discussion of Simulation Results
4.2.3. Comparison of Different Models
4.2.4. Analysis of Different Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.C.; Chu, A.G. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transp. Res. Part C Emerg. Technol. 2015, 54, 86–109. [Google Scholar] [CrossRef]
- Agatz, N.; Bouman, P. Schmidt M. Optimization approaches for the traveling salesman problem with drone. Transp. Sci. 2018, 52, 965–981. [Google Scholar] [CrossRef]
- Marinelli, M.; Caggiani, L.; Ottomanelli, M.; Dell’Orco, M. En route truck–drone parcel delivery for optimal vehicle routing strategies. IET Intell. Transp. Syst. 2018, 12, 253–261. [Google Scholar] [CrossRef]
- Bouman, P.; Agatz, N.; Schmidt, M. Dynamic programming approaches for the traveling salesman problem with drone. Networks 2018, 72, 528–542. [Google Scholar] [CrossRef] [Green Version]
- de Freitas, J.C.; Penna, P.H.V. A randomized variable neighborhood descent heuristic to solve the flying sidekick traveling salesman problem. Electron. Notes Discret. Math. 2018, 66, 95–102. [Google Scholar] [CrossRef]
- Wang, X.; Poikonen, S.; Golden, B. The vehicle routing problem with drones: Several worst-case results. Optim. Lett. 2017, 11, 679–697. [Google Scholar] [CrossRef]
- Poikonen, S.; Wang, X.; Golden, B. The vehicle routing problem with drones: Extended models and connections. Networks 2017, 70, 34–43. [Google Scholar] [CrossRef]
- Carlsson, J.G.; Song, S. Coordinated logistics with a truck and a drone. Manag. Sci. 2018, 64, 4052–4069. [Google Scholar] [CrossRef] [Green Version]
- Schermer, D.; Moeini, M.; Wendt, O.; A Variable Neighborhood Search Algorithm for Solving the Vehicle Routing Problem with Drones. Technical Report. BISOR-02/2018. Available online: https://www.researchgate.net/publication/326478770 (accessed on 1 July 2018).
- Wang, G.; Bai, X. Comparation of UAV Path Planning for Logistics Distribution. In International Conference on Intelligent Transportation Engineering; Springer: Singapore, 2022; pp. 223–238. [Google Scholar]
- Ren, X.H.; Yue, Y.D.; Yin, X.L. Exploration of path planning for combined logistics distribution of unmanned vehicles. Flight Mech. 2020, 38, 88–94. [Google Scholar]
- Hu, J.L.; Yang, H.; Zhang, T.H. Study on the optimization of cooperative distribution between drones and trucks. J. Zhejiang Univ. Technol. (Soc. Sci. Ed.) 2020, 44, 489–497. [Google Scholar]
- Crişan, G.C.; Nechita, E. On a cooperative truck-and-drone delivery system. Procedia Comput. Sci. 2019, 159, 38–47. [Google Scholar] [CrossRef]
- Wang, D.; Hu, P.; Du, J.; Zhou, P.; Deng, T.; Hu, M. Routing and scheduling for hybrid truck-drone collaborative parcel delivery with independent and truck-carried drones. IEEE Internet Things J. 2019, 6, 10483–10495. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, S.; Hu, X. Cooperative path planning of UAVs & UGVs for a persistent surveillance task in urban environments. IEEE Internet Things J. 2020, 8, 4906–4919. [Google Scholar]
- Peng, K.; Du, J.; Lu, F.; Sun, Q.; Dong, Y.; Zhou, P.; Hu, M. A hybrid genetic algorithm on routing and scheduling for vehicle-assisted multi-drone parcel delivery. IEEE Access 2019, 7, 49191–49200. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, B.; Zhao, M.; Lu, Y. Cooperative route planning for the drone and truck in delivery services: A bi-objective optimisation approach. J. Oper. Res. Soc. 2020, 71, 1657–1674. [Google Scholar] [CrossRef]
- Gao, W.; Luo, J.; Zhang, W.; Yuan, W.; Liao, Z. Commanding cooperative ugv-uav with nested vehicle routing for emergency resource delivery. IEEE Access 2020, 8, 215691–215704. [Google Scholar] [CrossRef]
- Li, J.; Sun, T.; Huang, X.; Ma, L.; Lin, Q.; Chen, J.; Leung, V.C. A memetic path planning algorithm for unmanned air/ground vehicle cooperative detection systems. IEEE Trans. Autom. Sci. Eng. 2021, 1–14. [Google Scholar] [CrossRef]
- Manyam, S.G.; Casbeer, D.W.; Sundar, K. Path planning for cooperative routing of air-ground vehicles. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 4630–4635. [Google Scholar]
- Hu, M.; Liu, W.; Peng, K.; Ma, X.; Cheng, W.; Liu, J.; Li, B. Joint routing and scheduling for vehicle-assisted multidrone surveillance. IEEE Internet Things J. 2018, 6, 1781–1790. [Google Scholar] [CrossRef]
- Arbanas, B.; Ivanovic, A.; Car, M.; Orsag, M.; Petrovic, T.; Bogdan, S. Decentralized planning and control for UAV–UGV cooperative teams. Auton. Robot. 2018, 42, 1601–1618. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, Z.; Liu, Z.; Shi, J.; Cheng, G. Cooperative routing problem for ground vehicle and unmanned aerial vehicle: The application on intelligence, surveillance, and reconnaissance missions. IEEE Access 2019, 7, 63504–63518. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Hu, X. Cooperative transmission tower inspection with a vehicle and a UAV in urban areas. Energies 2020, 13, 326. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Xin, B.; Chen, J. A review of recent advances in coordination between unmanned aerial and ground vehicles. Unmanned Syst. 2021, 9, 97–117. [Google Scholar] [CrossRef]
- Bansal, S.; Goel, R.; Maini, R. Ground vehicle and UAV collaborative routing and scheduling for humanitarian logistics using random walk based ant colony optimization. Sci. Iran. 2022, 29, 632–644. [Google Scholar]
- Guo, F.; Wei, M.; Ye, M.; Li, J.; Mechali, O.; Cao, Y. An unmanned aerial vehicles collaborative searching and tracking scheme in three-dimension space. In Proceedings of the 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 29 July–2 August 2019; pp. 1262–1266. [Google Scholar]
- Salama, M.R.; Srinivas, S. Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites. Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102788. [Google Scholar] [CrossRef]
- Peng, X.; Peng, S.; Zhang, L. Optimization of a truck-UAVs delivery based on FSTSP model with multipath genetic algorithm. International Conference on Electronic Information Technology (EIT 2022). SPIE 2022, 12254, 830–836. [Google Scholar]
- Lin, M.; Chen, Y.; Han, R.; Chen, Y. Discrete optimization on truck-drone collaborative transportation system for delivering medical resources. Discret. Dyn. Nat. Soc. 2022, 2022, 1811288. [Google Scholar] [CrossRef]
- Song, B.D.; Park, K.; Kim, J. Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput. Ind. Eng. 2018, 120, 418–428. [Google Scholar] [CrossRef]
- Kuo, R.J.; Lu, S.H.; Lai, P.Y.; Mara, S.T.W. Vehicle routing problem with drones considering time windows. Expert Syst. Appl. 2022, 191, 116264. [Google Scholar] [CrossRef]
- Khoufi, I.; Laouiti, A.; Adjih, C.; Hadded, M. UAVs trajectory optimization for data pick up and delivery with time window. Drones 2021, 5, 27. [Google Scholar] [CrossRef]
- Yan, R.; Tian, H.; Gao, K.; Liu, B. A two-stage UAV routing problem with time window considering rescheduling with random delivery reliability. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2022, 1748006X221105395. [Google Scholar] [CrossRef]
- Sawadsitang, S.; Niyato., D.; Tan, P.S.; Wang, P.; Nutanong, S. Multi-objective optimization for drone delivery. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar]
- Ham, A.M. Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit using constraint programming. Transp. Res. Part C Emerg. Technol. 2018, 91, 1–14. [Google Scholar] [CrossRef]
- Sajid, M.; Mittal, H.; Pare, S.; Prasad, M. Routing and scheduling optimization for UAV assisted delivery system: A hybrid approach. Appl. Soft Comput. 2022, 126, 109225. [Google Scholar] [CrossRef]
- Shavarani, S.M.; Golabi, M.; Izbirak, G. A capacitated biobjective location problem with uniformly distributed demands in the UAV-supported delivery operation. Int. Trans. Oper. Res. 2021, 28, 3220–3243. [Google Scholar] [CrossRef]
- van Steenbergen, R.; Mes, M. A simulation framework for UAV-aided humanitarian logistics. In Proceedings of the 2020 Winter Simulation Conference (WSC), Orlando, FL, USA, 14–18 December 2020; pp. 1372–1383. [Google Scholar]
- Chiang, W.C.; Li, Y.; Shang, J.; Urban, T.L. Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization. Appl. Energy 2019, 242, 1164–1175. [Google Scholar] [CrossRef]
- Kim, S.; Kwak, J.H.; Oh, B.; Lee, D.H.; Lee, D. An Optimal Routing Algorithm for Unmanned Aerial Vehicles. Sensors 2021, 21, 1219. [Google Scholar] [CrossRef]
- Wang, C.; Lan, H.; Saldanha-da-Gama, F.; Chen, Y. On Optimizing a Multi-Mode Last-Mile Parcel Delivery System with Vans, Truck and Drone. Electronics 2021, 10, 2510. [Google Scholar] [CrossRef]
- Baloch, G.; Gzara, F. Strategic network design for parcel delivery with drones under competition. Transp. Sci. 2020, 54, 204–228. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, T.; Wang, W.; Jiang, X.; Ku, W.S.; Sun, M.T.; Chiang, Y.Y. A VLOS compliance solution to ground/aerial parcel delivery problem. In Proceedings of the 2019 20th IEEE International Conference on Mobile Data Management (MDM), Hong Kong, China, 10–13 June 2019; pp. 201–209. [Google Scholar]
- Sabo, C.; Kumar, M.; Cohen, K.; Kingston, D. VRP with minimum delivery latency using linear programming. In Proceedings of the Infotech@Aerospace 2012, Garden Grove, CA, USA, 19–21 June 2012. [Google Scholar]
- Triche, R.M.; Greve, A.E.; Dubin, S.J. UAVs and their role in the health supply chain: A case study from Malawi. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 1241–1248. [Google Scholar]
- Bahrainwala, L.; Knoblauch, A.M.; Andriamiadanarivo, A.; Diab, M.M.; McKinney, J.; Small, P.M.; Grandjean Lapierre, S. Drones and digital adherence monitoring for community-based tuberculosis control in remote Madagascar: A cost-effectiveness analysis. PLoS ONE 2020, 15, e0235572. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, X.; Ren, X. Path Optimization of Joint Delivery Mode of Trucks and UAVs. Math. Probl. Eng. 2021, 2021, 4670997. [Google Scholar] [CrossRef]
- Berninzon, A.; Vongasemjit, O. Potential Benefits of Drones for Vaccine Last-Mile Delivery in Nepal. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2021. [Google Scholar]
- Li, X.; Gong, L.; Liu, X.; Jiang, F.; Shi, W.; Fan, L.; Xu, J. Solving the last mile problem in logistics: A mobile edge computing and blockchain-based unmanned aerial vehicle delivery system. Concurr. Comput. Pract. Exp. 2022, 34, e6068. [Google Scholar] [CrossRef]
- Tang, B.; Huang, J.; Jiang, C. Study of Intelligent Unmanned Aerial Vehicle Delivery System. IOP Conf. Ser. Earth Environ. Sci. 2021, 784, 012009. [Google Scholar] [CrossRef]
- Elsayed, M.; Mohamed, M. The impact of airspace regulations on unmanned aerial vehicles in last-mile operation. Transp. Res. Part D: Transp. Environ. 2020, 87, 102480. [Google Scholar] [CrossRef]
- Sawadsitang, S.; Niyato, D.; Tan, P.S.; Wang, P. Joint ground and aerial package delivery services: A stochastic optimization approach. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2241–2254. [Google Scholar] [CrossRef] [Green Version]
- Das, D.N.; Sewani, R.; Wang, J.; Tiwari, M.K. Synchronized truck and drone routing in package delivery logistics. IEEE Trans. Intell. Transp. Syst. 2020, 22, 5772–5782. [Google Scholar] [CrossRef]
- Li, X.; Yan, P.; Yu, K.; Li, P. Parcel Consolidation Approach and Routing Algorithm for Last-Mile Delivery by Unmanned Aerial Vehicles. SSRN 2022, 28. [Google Scholar] [CrossRef]
- Lin, I.; Lin, T.H.; Chang, S.H. A decision system for routing problems and rescheduling issues using unmanned aerial vehicles. Appl. Sci. 2022, 12, 6140. [Google Scholar] [CrossRef]
- Liu, B.; Ni, W.; Liu, R.P.; Zhu, Q.; Guo, Y.J.; Zhu, H. Novel Integrated Framework of Unmanned Aerial Vehicle and Road Traffic for Energy-Efficient Delay-Sensitive Delivery. IEEE Trans. Intell. Transp. Syst. 2021, 23, 10692–10707. [Google Scholar] [CrossRef]
- Moshref-Javadi, M.; Hemmati, A.; Winkenbach, M. A comparative analysis of synchronized truck-and-drone delivery models. Comput. Ind. Eng. 2021, 162, 107648. [Google Scholar] [CrossRef]
- Khamidehi, B.; Raeis, M.; Sousa, E.S. Dynamic resource management for providing qos in drone delivery systems. arXiv 2021, arXiv:2103.04015. [Google Scholar]
- Boyles, S.D.; Zhu, T. Assessment of Parcel Delivery Systems Using Unmanned Aerial Vehicles; University of North Carolina at Charlotte: Charlotte, NC, USA, 2020. [Google Scholar]
- Moshref-Javadi, M.; Lee, S.; Winkenbach, M. Design and evaluation of a multi-trip delivery model with truck and drones. Transportation Res. Part E Logist. Transp. Rev. 2020, 136, 101887. [Google Scholar] [CrossRef]
- Lemardelé, C.; Estrada, M.; Pagès, L.; Bachofner, M. Potentialities of drones and ground autonomous delivery devices for last-mile logistics. Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102325. [Google Scholar] [CrossRef]
- Gharib, Z.; Yazdani, M.; Bozorgi-Amiri, A.; Tavakkoli-Moghaddam, R.; Taghipourian, M.J. Developing an integrated model for planning the delivery of construction materials to post-disaster reconstruction projects. J. Comput. Des. Eng. 2022, 9, 1135–1156. [Google Scholar] [CrossRef]
- Gharib, Z.; Tavakkoli-Moghaddam, R.; Bozorgi-Amiri, A.; Yazdani, M. Post-Disaster Temporary Shelters Distribution after a Large-Scale Disaster: An Integrated Model. Buildings 2022, 12, 414. [Google Scholar] [CrossRef]
- Gu, Q.; Fan, T.; Pan, F.; Zhang, C. A vehicle-UAV operation scheme for instant delivery. Comput. Ind. Eng. 2020, 149, 106809. [Google Scholar] [CrossRef]
- Hwang, M.; Cha, H.R.; Jung, S.Y. Practical endurance estimation for minimizing energy consumption of multirotor unmanned aerial vehicles. Energies 2018, 11, 2221. [Google Scholar] [CrossRef] [Green Version]
- She, R.; Ouyang, Y. Efficiency of UAV-based last-mile delivery under congestion in low-altitude air. Transp. Res. Part C Emerg. Technol. 2021, 122, 102878. [Google Scholar] [CrossRef]
- Li, Y.; Yang, W.; Huang, B. Impact of UAV delivery on sustainability and costs under traffic restrictions. Math. Probl. Eng. 2020, 2020, 9437605. [Google Scholar] [CrossRef]
- Deng, X.; Guan, M.; Ma, Y.; Yang, X.; Xiang, T. Vehicle-Assisted UAV Delivery Scheme Considering Energy Consumption for Instant Delivery. Sensors 2022, 22, 2045. [Google Scholar] [CrossRef]
- Eun, J.; Song, B.D.; Lee, S.; Lim, D.E. Mathematical investigation on the sustainability of UAV logistics. Sustainability 2019, 11, 5932. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Hansen, M.; Zou, B. Traffic management and resource allocation for UAV-based parcel delivery in low-altitude urban space. Transp. Res. Part C Emerg. Technol. 2022, 143, 103808. [Google Scholar] [CrossRef]
- Feillet, D.; Dejax, P.; Gendreau, M.; Gueguen, C. An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Netw. Int. J. 2004, 44, 216–229. [Google Scholar] [CrossRef]
Model Parameters | Meaning |
---|---|
Set of all nodes, where and denote the same distribution left. | |
Set of customer points. | |
Set of the number of vehicles or UAVs, both of which are equal in number. | |
Set of customer nodes delivered by the vehicle. | |
Set of nodes from which the vehicle leaves, and also the set of nodes from which the UAV can take off. | |
Set of reachable nodes for vehicles and also the set of landable nodes for UAVs. | |
, | Maximum load weight of the material loaded in the vehicle and the UAV. |
, | Maximum endurance and maximum flight distance of the UAV for a single takeoff. |
, | The farthest distance traveled by the vehicle and the order of passing node in the travel path. |
, | The load weight of demand and the service time window for each customer point. |
, | Distance traveled from node to node by the vehicle and the UAV. |
, | Average flight speed of the vehicle and the UAV, respectively, throughout the delivery process. |
, | Penalty cost factors for early arrival and late arrival at the distribution node per unit of time. |
, | Waiting cost factors per unit time for vehicles and UAVs. |
, | Cost per unit distance traveled for vehicles and UAVs. |
, | Fixed costs of the vehicle and the UAV . |
, | Length of time from node to node for vehicle and UAV . |
, | Time of arrival of vehicle and UAV at node . |
, | Time at which the vehicle and the UAV leave node . |
, | Unit start-up costs of vehicles and UAVs in the distribution process. |
, | Time required for the UAV to take off and land. |
Set of paths of the UAV, where is the launch node, the distribution node and the recovery node, | |
Decision variable. If vehicle passes through the node to reach the node , then there exists , otherwise . | |
Decision variable. If the UAV takes off from the node to serve the customer point and lands at the node , then there exists ; otherwise, . | |
Decision variable. If the vehicle passes through the node before passing through the node , then there exists ; otherwise, . |
0 | - | 108.884, 34.234 | - | - | 26 | 10 | 108.951, 34.270 | 15:00 | 16:00 |
1 | 10 | 108.887, 34.236 | 08:00 | 09:30 | 27 | 4 | 108.984, 34.242 | 08:00 | 10:00 |
2 | 4 | 109.076, 34.270 | 11:00 | 12:00 | 28 | 6 | 109.019, 34.266 | 13:00 | 14:00 |
3 | 5 | 109.005, 34.172 | 13:00 | 14:00 | 29 | 5 | 108.885, 34.165 | 08:00 | 09:00 |
4 | 8 | 108.946, 34.328 | 16:00 | 18:00 | 30 | 20 | 108.968, 34.277 | 09:00 | 11:00 |
5 | 9 | 108.961, 34.173 | 08:00 | 09:00 | 31 | 6 | 108.919, 34.252 | 09:00 | 10:00 |
6 | 6 | 109.010, 34.275 | 09:00 | 10:00 | 32 | 4 | 108.902, 34.270 | 14:00 | 16:00 |
7 | 3 | 108.955, 34.277 | 10:00 | 12:00 | 33 | 5 | 108.934, 34.248 | 15:00 | 16:00 |
8 | 8 | 108.946, 34.329 | 15:00 | 17:00 | 34 | 5 | 108.911, 34.258 | 11:30 | 13:00 |
9 | 10 | 108.643, 34.115 | 17:00 | 18:00 | 35 | 4 | 108.959, 34.279 | 11:30 | 13:00 |
10 | 6 | 108.951, 34.261 | 10:00 | 11:30 | 36 | 6 | 108.965, 34.349 | 11:30 | 12:30 |
11 | 5 | 108.995, 34.277 | 11:00 | 12:30 | 37 | 4 | 108.970, 34.327 | 09:30 | 10:30 |
12 | 4 | 108.967, 34.241 | 09:00 | 11:00 | 38 | 5 | 108.893, 34.265 | 08:00 | 09:00 |
13 | 6 | 109.069, 34.290 | 09:00 | 10:30 | 39 | 8 | 108.939, 34.263 | 10:00 | 11:00 |
14 | 5 | 108.992, 34.243 | 08:30 | 09:30 | 40 | 10 | 108.912, 34.224 | 10:00 | 12:00 |
15 | 4 | 108.979, 34.303 | 12:00 | 13:00 | 41 | 6 | 108.937, 34.369 | 09:00 | 10:00 |
16 | 4 | 108.880, 34.274 | 11:00 | 12:00 | 42 | 18 | 108.969, 34.244 | 15:00 | 16:00 |
17 | 8 | 108.930, 34.203 | 13:00 | 14:00 | 43 | 5 | 109.019, 34.290 | 17:00 | 18:00 |
18 | 25 | 108.957, 34.277 | 15:00 | 16:00 | 44 | 6 | 108.973, 34.248 | 09:00 | 11:00 |
19 | 3 | 108.918, 34.294 | 11:00 | 13:00 | 45 | 4 | 109.008, 34.195 | 16:00 | 18:00 |
20 | 15 | 108.925, 34.264 | 14:00 | 16:00 | 46 | 6 | 108.996, 34.235 | 17:00 | 18:00 |
21 | 5 | 109.000, 34.246 | 12:00 | 14:00 | 47 | 4 | 108.930, 34.205 | 15:00 | 16:30 |
22 | 7 | 108.974, 34.249 | 12:00 | 13:30 | 48 | 7 | 108.949, 34.254 | 08:00 | 10:00 |
23 | 6 | 108.927, 34.252 | 13:30 | 14:30 | 49 | 5 | 108.957, 34.267 | 13:30 | 14:30 |
24 | 20 | 108.934, 34.176 | 17:00 | 18:00 | 50 | 25 | 108.969, 34.244 | 13:00 | 14:00 |
25 | 3 | 108.955, 34.248 | 14:00 | 16:00 |
Driving Route Number | Vehicle and UAV Collaborative Delivery Path |
---|---|
1 | |
2 | |
3 | |
4 |
Property | IVD | IUD | VUR | VUCD |
---|---|---|---|---|
number of vehicles | 8 | - | 4 | 4 |
number of UAVs | - | 8 | 4 | 4 |
fixed cost | 160.0 | 40.0 | 100.0 | 100.0 |
start-up cost | 100.4 | 128.6 | 99.3 | 72.8 |
delivery cost | 190.5 | 130.2 | 104.2 | 115.6 |
waiting cost | - | 35.8 | 16.8 | 14.0 |
penalty cost | 95.6 | 63.6 | 56.6 | 30.0 |
total cost | 546.5 | 398.2 | 376.9 | 332.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, H.; Lai, K.K.; Ram, B. Vehicle and UAV Collaborative Delivery Path Optimization Model. Mathematics 2022, 10, 3744. https://doi.org/10.3390/math10203744
Li J, Liu H, Lai KK, Ram B. Vehicle and UAV Collaborative Delivery Path Optimization Model. Mathematics. 2022; 10(20):3744. https://doi.org/10.3390/math10203744
Chicago/Turabian StyleLi, Jianxun, Hao Liu, Kin Keung Lai, and Bhagwat Ram. 2022. "Vehicle and UAV Collaborative Delivery Path Optimization Model" Mathematics 10, no. 20: 3744. https://doi.org/10.3390/math10203744
APA StyleLi, J., Liu, H., Lai, K. K., & Ram, B. (2022). Vehicle and UAV Collaborative Delivery Path Optimization Model. Mathematics, 10(20), 3744. https://doi.org/10.3390/math10203744