A New Dynamic and Perspective Parsimonious AHP Model for Improving Industrial Frameworks
Abstract
:1. Introduction
- Dynamic approaches that consider the temporal variable as a source of information for learning from the past. In these models, historical data is aggregated with current data;
- Prospective approaches that consider the time variable oriented to the future in order to create new knowledge for DMs. These models involve the use of forecasting techniques.
2. Literature Overview: Dynamic and Perspective MCDM
3. Materials and Methods
3.1. P-AHP Method
- is a representative point. The —where identify the number of representative points considered in the analysis—are points distributed by equal parts in the observed data for each criterion and allow to analyze a large number of alternatives [28];
- represents the priority of representative point obtained with the use of PCMs and so with the use of the eigenvalue method [29];
- is the weighted difference between two representative points;
- is the difference between two representative points.
3.2. Dynamic and Perspective P-AHP
4. Results
4.1. Description of Case Study
4.2. Solution Analysis
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
2019 | 2020 | 2021 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | |
4 | 1.25 | 6.25 | 1.25 | 50 | 1.25 | 6.25 | 1.25 | 4 | 1.25 | 6.25 | 1.25 | |
8 | 2.5 | 12.5 | 2.5 | 100 | 2.5 | 12.5 | 2.5 | 8 | 2.5 | 12.5 | 2.5 | |
12 | 3.75 | 18.75 | 3.75 | 150 | 3.75 | 18.75 | 3.75 | 12 | 3.75 | 18.75 | 3.75 | |
16 | 5 | 25 | 5 | 200 | 5 | 25 | 5 | 16 | 5 | 25 | 5 |
0.039 | 0.041 | 0.039 | 0.035 | |
0.053 | 0.058 | 0.055 | 0.052 | |
0.108 | 0.091 | 0.089 | 0.078 | |
0.244 | 0.238 | 0.233 | 0.18 | |
0.557 | 0.572 | 0.589 | 0.655 |
2019 | 2020 | 2021 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.039 | 0.572 | 0.589 | 0.655 | 0.039 | 0.046 | 0.031 | 0.275 | 0.039 | 0.572 | 0.589 | 0.655 | |
0.039 | 0.572 | 0.589 | 0.275 | 0.039 | 0.046 | 0.031 | 0.119 | 0.048 | 0.572 | 0.304 | 0.655 | |
0.039 | 0.572 | 0.589 | 0.275 | 0.039 | 0.046 | 0.031 | 0.119 | 0.044 | 0.572 | 0.304 | 0.655 | |
0.039 | 0.572 | 0.003 | 0.655 | 0.084 | 0.046 | 0.042 | 0.088 | 0.053 | 0.572 | 0.589 | 0.119 | |
0.039 | 0.046 | 0.589 | 0.655 | 0.039 | 0.572 | 0.589 | 0.655 | 0.048 | 0.046 | 0.589 | 0.655 | |
0.039 | 0.046 | 0.589 | 0.119 | 0.039 | 0.046 | 0.589 | 0.275 | 0.039 | 0.046 | 0.147 | 0.655 | |
0.108 | 0.111 | 0.589 | 0.119 | 0.039 | 0.305 | 0.589 | 0.655 | 0.094 | 0.111 | 0.147 | 0.655 | |
0.048 | 0.111 | 0.031 | 0.119 | 0.039 | 0.046 | 0.147 | 0.655 | 0.048 | 0.111 | 0.147 | 0.068 | |
0.039 | 0.094 | 0.031 | 0.119 | 0.039 | 0.572 | 0.031 | 0.119 | 0.044 | 0.046 | 0.147 | 0.068 | |
0.039 | 0.094 | 0.031 | 0.119 | 0.039 | 0.046 | 0.031 | 0.119 | 0.039 | 0.046 | 0.147 | 0.068 | |
0.039 | 0.094 | 0.031 | 0.119 | 0.039 | 0.046 | 0.031 | 0.119 | 0.039 | 0.046 | 0.147 | 0.068 | |
0.039 | 0.094 | 0.031 | 0.119 | 0.039 | 0.046 | 0.042 | 0.119 | 0.044 | 0.046 | 0.147 | 0.068 | |
0.039 | 0.094 | 0.031 | 0.119 | 0.039 | 0.046 | 0.031 | 0.119 | 0.039 | 0.046 | 0.147 | 0.068 | |
0.039 | 0.094 | 0.031 | 0.119 | 0.039 | 0.046 | 0.042 | 0.119 | 0.039 | 0.046 | 0.147 | 0.068 | |
0.039 | 0.094 | 0.031 | 0.119 | 0.039 | 0.046 | 0.031 | 0.119 | 0.557 | 0.046 | 0.147 | 0.076 | |
0.557 | 0.046 | 0.086 | 0.119 | 0.039 | 0.046 | 0.031 | 0.275 | 0.044 | 0.046 | 0.147 | 0.068 | |
0.039 | 0.046 | 0.031 | 0.119 | 0.039 | 0.046 | 0.031 | 0.119 | 0.039 | 0.046 | 0.147 | 0.068 | |
0.039 | 0.046 | 0.031 | 0.119 | 0.039 | 0.046 | 0.042 | 0.119 | 0.048 | 0.046 | 0.147 | 0.068 | |
0.039 | 0.046 | 0.031 | 0.119 | 0.041 | 0.046 | 0.042 | 0.119 | 0.044 | 0.046 | 0.147 | 0.068 | |
0.044 | 0.046 | 0.031 | 0.119 | 0.039 | 0.046 | 0.031 | 0.119 | 0.039 | 0.046 | 0.147 | 0.068 | |
0.039 | 0.046 | 0.031 | 0.119 | 0.039 | 0.046 | 0.066 | 0.119 | 0.044 | 0.046 | 0.304 | 0.03 | |
0.039 | 0.094 | 0.039 | 0.275 | 0.047 | 0.046 | 0.042 | 0.119 | 0.039 | 0.046 | 0.147 | 0.035 | |
0.142 | 0.046 | 0.032 | 0.119 | 0.108 | 0.046 | 0.039 | 0.088 | 0.053 | 0.046 | 0.147 | 0.035 | |
0.039 | 0.046 | 0.039 | 0.119 | 0.039 | 0.046 | 0.031 | 0.119 | 0.039 | 0.046 | 0.075 | 0.035 | |
0.039 | 0.046 | 0.039 | 0.068 | 0.557 | 0.046 | 0.039 | 0.088 | 0.048 | 0.046 | 0.075 | 0.035 | |
0.039 | 0.046 | 0.039 | 0.068 | 0.039 | 0.305 | 0.589 | 0.655 | 0.039 | 0.046 | 0.048 | 0.035 |
2020 | 0.6 | 0.4 | ||
2021 | 0.5 | 0.3 | 0.2 | |
0.4 | 0.3 | 0.2 | 0.1 |
References
- Greco, S.; Figueira, J.; Ehrgott, M. Multiple Criteria Decision Analysis; Springer: New York, NY, USA, 2016; Volume 37. [Google Scholar]
- Ishizaka, A.; Nemery, P. Multi-Criteria Decision Analysis: Methods and Software; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Ishizaka, A.; Siraj, S. Are multi-criteria decision-making tools useful? An experimental comparative study of three methods. Eur. J. Oper. Res. 2018, 264, 462–471. [Google Scholar] [CrossRef]
- Toloie-Eshlaghy, A.; Homayonfar, M. MCDM methodologies and applications: A literature review from 1999 to 2009. Res. J. Int. Stud. 2011, 21, 86–137. [Google Scholar]
- Zavadskas, E.K.; Zenonas, T. Multiple criteria decision making (MCDM) methods in economics: An overview. Technol. Econ. Dev. Econ. 2011, 17, 397–427. [Google Scholar] [CrossRef]
- Basílio, M.P.; Pereira, V.; Costa, H.G.; Santos, M.; Ghosh, A. A Systematic Review of the Applications of Multi-Criteria Decision Aid Methods (1977–2022). Electronics 2022, 11, 1720. [Google Scholar] [CrossRef]
- Ziemba, P.; Jarosław, J.; Jarosław, W. Dynamic decision support in the internet marketing management. In Transactions on Computational Collective Intelligence; Springer: Cham, Switzerland, 2018; Volume XXIX, pp. 39–68. [Google Scholar]
- Canonico, P.; De Nito, E.; Esposito, V.; Fattoruso, G.; Iacono, M.P.; Mangia, G. Visualizing knowledge for decision-making in Lean Production Development settings. Insights from the automotive industry. Manag. Decis. 2021, 60, 1076–1094. [Google Scholar] [CrossRef]
- Fattoruso, G.; Barbati, M. The usefulness of Multi-criteria sorting methods: A case study in the automotive sector. Electron. J. Appl. Stat. Anal. 2021, 14, 277–297. [Google Scholar]
- Fattoruso, G.; Barbati, M.; Ishizaka, A.; Squillante, M. A hybrid AHPSort II and multi-objective portfolio selection method to support quality control in the automotive industry. J. Oper. Res. Soc. 2022, 1–16. [Google Scholar] [CrossRef]
- Ammirato, S.; Fattoruso, G.; Violi, A. Parsimonious AHP-DEA Integrated Approach for Efficiency Evaluation of Production Processes. J. Risk Financ. Manag. 2022, 15, 293. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Ammirato, S.; Sofo, F.; Felicetti, A.M.; Raso, C. A methodology to support the adoption of IoT innovation and its application to the Italian bank branch security context. Eur. J. Innov. Manag. 2019, 22, 146–174. [Google Scholar] [CrossRef]
- Guzman, L.M. Multi-Criteria Decision Making Methods: A comparative study. In Applied Optimization; Triantaphyllou, E., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; 288p. [Google Scholar]
- Figueira, J.; Greco, S.; Ehrgott, M. State of the art surveys. In Multiple Criteria Decision Analysis; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Doumpos, M.; Figueira, J.R.; Greco, S.; Zopounidis, C. New Perspectives in Multiple Criteria Decision Making; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Jassbi, J.; Ribeiro, R.; Varela, M.L. Dynamic MCDM with future knowledge for supplier selection. J. Decis. Syst. 2014, 23, 232–248. [Google Scholar] [CrossRef]
- Vo, H.V.; Chae, B.; Olson, D.L. Dynamic MCDM: The case of urban infrastructure decision making. Int. J. Inf. Technol. Decis. Mak. 2002, 1, 269–292. [Google Scholar] [CrossRef] [Green Version]
- Campanella, G.; Ribeiro, R.A. A framework for dynamic multiple-criteria decision making. Decis. Support Syst. 2011, 52, 52–60. [Google Scholar] [CrossRef]
- Tao, R.; Liu, Z.; Cai, R.; Cheong, K.H. A dynamic group MCDM model with intuitionistic fuzzy set: Perspective of alternative queuing method. Inf. Sci. 2021, 555, 85–103. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Gölcük, İ. A dynamic multiple attribute decision making model with learning of fuzzy cognitive maps. Comput. Ind. Eng. 2019, 135, 1063–1076. [Google Scholar] [CrossRef]
- Wang, C.-N.; Dang, T.-T.; Nguyen, N.-A.; Wang, J.-W. A combined Data Envelopment Analysis (DEA) and Grey Based Multiple Criteria Decision Making (G-MCDM) for solar PV power plants site selection: A case study in Vietnam. Energy Rep. 2022, 8, 1124–1142. [Google Scholar] [CrossRef]
- Zhou, F.; Xu, W.; Avinash, S. Quality improvement pilot program selection based on dynamic hybrid MCDM approach. Ind. Manag. Data Syst. 2018, 118, 144–163. [Google Scholar] [CrossRef]
- Jassbi, J.J.; Ribeiro, R.A.; Dargam, F. Dynamic MCDM for multi group decision making. In Joint International Conference on Group Decision and Negotiation; Springer: Cham, Switzerland, 2014; pp. 90–99. [Google Scholar]
- Zolfani, S.H.; Maknoon, R.; Zavadskas, E.K. An introduction to prospective multiple attribute decision making (PMADM). Technol. Econ. Dev. Econ. 2016, 22, 309–326. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Masaeli, R. From Past to Present and into the Sustainable Future: PMADM Approach in Shaping Regulatory Policies of Medical Device Industry in the New Sanction Period. In Sustainability Modeling in Engineering: A Multi-Criteria Perspective; World Scientific: Singapore, 2020; pp. 73–95. [Google Scholar]
- Arrais-Castro, A.; Varela, M.L.R.; Putnik, G.D.; Ribeiro, R.A.; Machado, J.; Ferreira, L. Collaborative framework for virtual organization synthesis based on a dynamic multi-criteria decision model. Int. J. Comput. Integr. Manuf. 2018, 31, 857–868. [Google Scholar] [CrossRef]
- Abastante, F.; Corrente, S.; Greco, S.; Ishizaka, A.; Lami, I.M. Choice architecture for architecture choices: Evaluating social housing initiatives putting together a parsimonious AHP methodology and the Choquet integral. Land Use Policy 2018, 78, 748–762. [Google Scholar] [CrossRef]
- Abastante, F.; Corrente, S.; Greco, S.; Ishizaka, A.; Lami, I.M. A new parsimonious AHP methodology: Assigning priorities to many objects by comparing pairwise few reference objects. Expert Syst. Appl. 2019, 127, 109–120. [Google Scholar] [CrossRef]
- Kannan, D.; Moazzeni, S.; Darmian, S.M.; Afrasiabi, A. A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainable evaluation of potential solar sites in east of Iran. J. Clean. Prod. 2021, 279, 122368. [Google Scholar] [CrossRef]
- Baudry, G.; Macharis, C.; Vallée, T. Range-based Multi-Actor Multi-Criteria Analysis: A combined method of Multi-Actor Multi-Criteria Analysis and Monte Carlo simulation to support participatory decision making under uncertainty. Eur. J. Oper. Res. 2018, 264, 257–269. [Google Scholar] [CrossRef]
- Balezentis, T.; Streimikiene, D. Multi-criteria ranking of energy generation scenarios with Monte Carlo simulation. Appl. Energy 2017, 185, 862–871. [Google Scholar] [CrossRef]
- Cavallo, B.; Brunelli, M. A general unified framework for interval pairwise comparison matrices. Int. J. Approx. Reason. 2018, 93, 178–198. [Google Scholar] [CrossRef]
- Cavallo, B.; Ishizaka, A.; Olivieri, M.G.; Squillante, M. Comparing inconsistency of pairwise comparison matrices depending on entries. J. Oper. Res. Soc. 2019, 70, 842–850. [Google Scholar] [CrossRef]
- Cavallo, B.; D’Apuzzo, L. A general unified framework for pairwise comparison matrices in multicriterial methods. Int. J. Intell. Syst. 2009, 24, 377–398. [Google Scholar] [CrossRef]
- Beliakov, G.; Pradera, A.; Calvo, T. Aggregation Functions: A Guide for Practitioners; Springer: Berlin/Heidelberg, Germany, 2007; Volume 221. [Google Scholar]
- Greco, S.; Pereira, R.A.M.; Squillante, M.; Yager, R.R. (Eds.) Preferences and Decisions: Models and Applications; Springer: Berlin/Heidelberg, Germany, 2010; Volume 257. [Google Scholar]
- Merigó, J.M.; Casanovas, M. Decision-making with distance measures and induced aggregation operators. Comput. Ind. Eng. 2011, 60, 66–76. [Google Scholar] [CrossRef]
- Ashraf, S.; Abdullah, S. Spherical aggregation operators and their application in multiattribute group decision-making. Int. J. Intell. Syst. 2019, 34, 493–523. [Google Scholar] [CrossRef]
- D’Apuzzo, L.; Squillante, M.; Ventre, A.G. Extending aggregation operators for Multicriteria Decision Making. In Multiperson Decision Making Models Using Fuzzy Sets and Possibility Theory; Springer: Dordrecht, The Netherlands, 1990; pp. 98–104. [Google Scholar]
- Zhuang, Y.; Chen, L.; Wang, X.S.; Lian, J. A weighted moving average-based approach for cleaning sensor data. In Proceedings of the 27th International Conference on Distributed Computing Systems (ICDCS’07), Toronto, ON, Canada, 25–27 June 2007; p. 38. [Google Scholar]
- Beraldi, P.; Violi, A.; De Simone, F. A decision support system for strategic asset allocation. Decis. Support Syst. 2011, 51, 549–561. [Google Scholar] [CrossRef]
- Saaty, T.L. Deriving the AHP 1-9 scale from first principles. In Proceedings of the ISAHP 2001, Bern, Switzerland, 2–4 August 2001; pp. 397–402. [Google Scholar]
- Saaty, T.L. Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 2003, 145, 85–91. [Google Scholar] [CrossRef]
2019 | 2020 | 2021 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 25 | 5 | 1 | 1 | 10 | 4 | 1 | 5 | 5 | 25 | |
1 | 5 | 25 | 4 | 1 | 1 | 10 | 3 | 3 | 5 | 4 | 25 | |
1 | 5 | 25 | 4 | 1 | 1 | 10 | 3 | 2 | 5 | 4 | 25 | |
1 | 5 | 15 | 5 | 141 | 1 | 2 | 2 | 4 | 5 | 5 | 15 | |
1 | 1 | 25 | 5 | 1 | 5 | 25 | 5 | 3 | 1 | 5 | 25 | |
1 | 1 | 25 | 3 | 1 | 1 | 25 | 4 | 1 | 1 | 3 | 25 | |
8 | 2 | 25 | 3 | 1 | 4 | 25 | 5 | 7 | 2 | 3 | 25 | |
3 | 2 | 10 | 3 | 1 | 1 | 15 | 5 | 3 | 2 | 3 | 10 | |
1 | 2 | 10 | 3 | 1 | 5 | 10 | 3 | 2 | 1 | 3 | 10 | |
1 | 2 | 10 | 3 | 1 | 1 | 10 | 3 | 1 | 1 | 3 | 10 | |
1 | 2 | 10 | 3 | 1 | 1 | 10 | 3 | 1 | 1 | 3 | 10 | |
1 | 2 | 10 | 3 | 1 | 1 | 2 | 3 | 2 | 1 | 3 | 10 | |
1 | 2 | 10 | 3 | 1 | 1 | 10 | 3 | 1 | 1 | 3 | 10 | |
1 | 2 | 10 | 3 | 1 | 1 | 2 | 3 | 1 | 1 | 3 | 10 | |
16 | 1 | 12 | 3 | 1 | 1 | 10 | 3 | 16 | 1 | 3 | 12 | |
1 | 1 | 10 | 3 | 1 | 1 | 10 | 4 | 2 | 1 | 3 | 10 | |
1 | 1 | 10 | 3 | 1 | 1 | 10 | 3 | 1 | 1 | 3 | 10 | |
1 | 1 | 10 | 3 | 1 | 1 | 2 | 3 | 3 | 1 | 3 | 10 | |
2 | 1 | 10 | 3 | 8 | 1 | 2 | 3 | 2 | 1 | 3 | 10 | |
1 | 1 | 10 | 3 | 1 | 1 | 10 | 3 | 1 | 1 | 3 | 10 | |
1 | 2 | 1 | 4 | 2 | 1 | 2 | 3 | 2 | 1 | 4 | 1 | |
1 | 1 | 1 | 3 | 30 | 1 | 1 | 3 | 1 | 1 | 3 | 1 | |
1 | 1 | 1 | 2 | 100 | 1 | 1 | 2 | 4 | 1 | 3 | 1 | |
1 | 1 | 1 | 2 | 1 | 1 | 10 | 3 | 1 | 1 | 2 | 1 | |
1 | 1 | 1 | 2 | 200 | 1 | 1 | 2 | 3 | 1 | 2 | 1 | |
1 | 1 | 1 | 1 | 1 | 4 | 25 | 5 | 1 | 1 | 1 | 1 |
1 | 1/2 | 1/4 | 1/9 | 0.049 | |
2 | 1 | 1/2 | 1/9 | 0.077 | |
4 | 2 | 1 | 1/9 | 0.135 | |
9 | 9 | 9 | 1 | 0.739 | |
Consistency Index | 0.07 |
2019 | 2020 | 2021 | |
---|---|---|---|
0.039 | 0.572 | 0.589 | |
0.039 | 0.572 | 0.589 | |
0.039 | 0.572 | 0.589 | |
0.039 | 0.572 | 0.003 | |
0.039 | 0.046 | 0.589 | |
0.039 | 0.046 | 0.589 | |
0.108 | 0.111 | 0.589 | |
0.048 | 0.111 | 0.031 | |
0.039 | 0.094 | 0.031 | |
0.039 | 0.094 | 0.031 | |
0.039 | 0.094 | 0.031 | |
0.039 | 0.094 | 0.031 | |
0.039 | 0.094 | 0.031 | |
0.039 | 0.094 | 0.031 | |
0.039 | 0.094 | 0.031 | |
0.557 | 0.046 | 0.086 | |
0.039 | 0.046 | 0.031 | |
0.039 | 0.046 | 0.031 | |
0.039 | 0.046 | 0.031 | |
0.044 | 0.046 | 0.031 | |
0.039 | 0.046 | 0.031 | |
0.039 | 0.094 | 0.039 | |
0.142 | 0.046 | 0.032 | |
0.039 | 0.046 | 0.039 | |
0.039 | 0.046 | 0.039 | |
0.039 | 0.046 | 0.039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattoruso, G.; Scognamiglio, S.; Violi, A. A New Dynamic and Perspective Parsimonious AHP Model for Improving Industrial Frameworks. Mathematics 2022, 10, 3138. https://doi.org/10.3390/math10173138
Fattoruso G, Scognamiglio S, Violi A. A New Dynamic and Perspective Parsimonious AHP Model for Improving Industrial Frameworks. Mathematics. 2022; 10(17):3138. https://doi.org/10.3390/math10173138
Chicago/Turabian StyleFattoruso, Gerarda, Salvatore Scognamiglio, and Antonio Violi. 2022. "A New Dynamic and Perspective Parsimonious AHP Model for Improving Industrial Frameworks" Mathematics 10, no. 17: 3138. https://doi.org/10.3390/math10173138
APA StyleFattoruso, G., Scognamiglio, S., & Violi, A. (2022). A New Dynamic and Perspective Parsimonious AHP Model for Improving Industrial Frameworks. Mathematics, 10(17), 3138. https://doi.org/10.3390/math10173138