Extending Fuzzy Linguistic Logic Programming with Negation †
Abstract
:1. Introduction
2. Literature Review
2.1. Managing Vagueness in Logic Programming
2.2. Normal Logic Programs for Handling Vagueness
3. Preliminaries
3.1. Linguistic Truth Domains
3.2. Truth Functions of Hedge Connectives
3.3. Operations on Linguistic Truth Domains
3.4. Fuzzy Linguistic Logic Programming without Negation
4. Normal Fuzzy Linguistic Logic Programs and Their Semantics
4.1. The Stable Model Semantics of Normal Programs
4.2. The Well-Founded Semantics of Normal Programs
4.3. The Relation between the Stable Semantics and the Well-Founded Semantics
5. Conclusions and Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.J.J.; Hwang, C.L. Fuzzy Multiple Attribute Decision Making: Methods and Applications; Springer Inc.: Secaucus, NJ, USA, 1992. [Google Scholar]
- Levrat, L.; Voisin, A.; Bombardier, S.; Bremont, J. Subjective evaluation of car seat comfort with fuzzy set techniques. Int. J. Intell. Syst. 1997, 12, 891–913. [Google Scholar] [CrossRef]
- Cao, Z.; Kandel, A. Applicability of some fuzzy implication operators. Fuzzy Sets Syst. 1989, 31, 151–186. [Google Scholar] [CrossRef]
- Le, V.H.; Liu, F.; Tran, D.K. Fuzzy linguistic logic programming and its applications. Theory Pract. Log. Program. 2009, 9, 309–341. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Logic. Computer 1988, 21, 83–93. [Google Scholar] [CrossRef]
- Le, V.H.; Tran, D.K. Further Results on Fuzzy Linguistic Logic Programming. J. Comput. Sci. Cybern. 2014, 30, 139–147. [Google Scholar] [CrossRef]
- Le, V.H.; Liu, F. Tabulation proof procedures for fuzzy linguistic logic programming. Int. J. Approx. Reason. 2015, 63, 62–88. [Google Scholar] [CrossRef]
- Le, V.H. Efficient Query Answering for Fuzzy Linguistic Logic Programming. In Proceedings of the 9th International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future, RIVF 2012, Ho Chi Minh City, Vietnam, 27 February 27–1 March 2012; pp. 113–116. [Google Scholar]
- Apt, K.R.; Bol, R.N. Logic programming and negation: A survey. J. Log. Program. 1994, 19–20, 9–71. [Google Scholar] [CrossRef]
- Van Gelder, A.; Ross, K.A.; Schlipf, J.S. The well-founded semantics for general logic programs. J. ACM 1991, 38, 619–649. [Google Scholar] [CrossRef]
- Gelfond, M.; Lifschitz, V. The stable model semantics for logic programming. In Proceedings of the 5th International Conference on Logic Programming, Seattle, WA, USA, 15–19 August 1988; pp. 1070–1080. [Google Scholar]
- Schlipf, J.S. The Expressive Powers of the Logic Programming Semantics. J. Comput. Syst. Sci. 1995, 51, 64–86. [Google Scholar] [CrossRef]
- Truszczynski, M. An introduction to the stable and well-founded semantics of logic programs. In Declarative Logic Programming: Theory, Systems, and Applications; Kifer, M., Liu, Y.A., Eds.; ACM/Morgan & Claypool: San Rafael, CA, USA, 2018. [Google Scholar]
- Cornejo, M.E.; Lobo, D.; Medina, J. Syntax and semantics of multi-adjoint normal logic programming. Fuzzy Sets Syst. 2018, 345, 41–62. [Google Scholar] [CrossRef]
- Madrid, N.; Ojeda-Aciego, M. On the existence and unicity of stable models in normal residuated logic programs. Int. J. Comput. Math. 2012, 89, 310–324. [Google Scholar] [CrossRef]
- Loyer, Y.; Straccia, U. The Well-Founded Semantics in Normal Logic Programs with Uncertainty. In Proceedings of the 6th International Symposium on Functional and Logic Programming, Aizu, Japan, 15–17 September 2002; Springer: London, UK, 2002; pp. 152–166. [Google Scholar]
- Ginsberg, M.L. Multi-valued logics: A uniform approach to reasoning in Artificial Intelligence. Comput. Intell. 1988, 4, 265–316. [Google Scholar] [CrossRef]
- Fitting, M. Bilattices and the semantics of logic programming. J. Log. Program. 1991, 11, 91–116. [Google Scholar] [CrossRef]
- Fitting, M. Fixpoint semantics for logic programming: A survey. Theor. Comput. Sci. 2002, 278, 25–51. [Google Scholar] [CrossRef]
- Fitting, M. The Family of Stable Models. J. Log. Program. 1993, 17, 197–225. [Google Scholar] [CrossRef]
- Loyer, Y.; Straccia, U. Approximate Well-Founded Semantics, Query Answering and Generalized Normal Logic Programs over Lattices. Ann. Math. Artif. Intell. 2009, 55, 389–417. [Google Scholar] [CrossRef]
- Loyer, Y.; Straccia, U. The Approximate Well-Founded Semantics for Logic Programs with Uncertainty. In Proceedings of the 28th International Symposium on Mathematical Foundations of Computer Science, Prague, Czech Republic, 24–28 August 2020; Rovan, B., Vojtáš, P., Eds.; Lecture Notes in Computer Science. Springer: New York, NY, USA, 2003; Volume 2747, pp. 541–550. [Google Scholar]
- Vojtáš, P. Fuzzy logic programming. Fuzzy Sets Syst. 2001, 124, 361–370. [Google Scholar] [CrossRef]
- Straccia, U. Managing Uncertainty and Vagueness in Description Logics, Logic Programs and Description Logic Programs. In Proceedings of the 4th International Summer School on Reasoning Web, Venice, Italy, 7–11 September 2008; Lecture Notes in Computer Science. Springer: New York, NY, USA, 2008; Volume 5224, pp. 54–103. [Google Scholar]
- Lakshmanan, L.V.S.; Shiri, N. A Parametric Approach to Deductive Databases with Uncertainty. IEEE Trans. Knowl. Data Eng. 2001, 13, 554–570. [Google Scholar] [CrossRef]
- Krajči, S.; Lencses, R.; Vojtáš, P. A comparison of fuzzy and annotated logic programming. Fuzzy Sets Syst. 2004, 144, 173–192. [Google Scholar] [CrossRef]
- Damásio, C.V.; Pereira, L.M. Antitonic Logic Programs. In Proceedings of the 6th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2001, Vienna, Austria, 17–19 September 2001; Lecture Notes in Computer Science. Volume 2173, pp. 379–392. [Google Scholar]
- Gallier, J.H. Logic for Computer Science: Foundations of Automatic Theorem Proving; Harper & Row Publishers, Inc.: New York, NY, USA, 1985. [Google Scholar]
- Medina, J.; Ojeda-Aciego, M.; Vojtás, P. Multi-adjoint Logic Programming with Continuous Semantics. In Proceedings of the 6th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2001, Vienna, Austria, 17–19 September 2001; Eiter, T., Faber, W., Truszczynski, M., Eds.; Lecture Notes in Computer Science. Springer: New York, NY, USA, 2001; Volume 2173, pp. 351–364. [Google Scholar]
- Medina, J.; Ojeda-Aciego, M.; Vojtáš, P. Similarity-based unification: A multi-adjoint approach. Fuzzy Sets Syst. 2004, 146, 43–62. [Google Scholar] [CrossRef]
- Le, V.H.; Nguyen, C.H.; Liu, F. Semantics and Aggregation of Linguistic Information Based on Hedge Algebras. In Proceedings of the 3rd International Conference on Knowledge, Information and Creativity Support Systems, KICSS 2008, Hanoi, Vietnam, 22–23 December 2008; pp. 128–135. [Google Scholar]
- Hájek, P. Metamathematics of Fuzzy Logic; Kluwer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Straccia, U.; Madrid, N. A Top-k Query Answering Procedure for Fuzzy Logic Programming. Fuzzy Sets Syst. 2012, 205, 1–29. [Google Scholar] [CrossRef]
- Pan, J.Z.; Stoilos, G.; Stamou, G.B.; Tzouvaras, V.; Horrocks, I. f-SWRL: A Fuzzy Extension of SWRL. J. Data Semant. 2006, 6, 28–46. [Google Scholar]
- Van Emden, M.H. Quantitative Deduction and Its Fixpoint Theory. J. Log. Program. 1986, 3, 37–53. [Google Scholar] [CrossRef]
- Van Gelder, A. The Alternating Fixpoint of Logic Programs with Negation. J. Comput. Syst. Sci. 1993, 47, 185–221. [Google Scholar] [CrossRef]
- Belnap, N.D., Jr. A Useful Four-Valued Logic. In Modern Uses of Multiple-Valued Logic; Dunn, J.M., Epstein, G., Eds.; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1977; pp. 5–37. [Google Scholar]
- Marek, V.W.; Truszczynski, M. Stable Models and an Alternative Logic Programming Paradigm. In The Logic Programming Paradigm—A 25-Year Perspective; Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S., Eds.; Artif. Intell.; Springer: New York, NY, USA, 1999; pp. 375–398. [Google Scholar]
- Niemelä, I. Logic Programs with Stable Model Semantics as a Constraint Programming Paradigm. Ann. Math. Artif. Intell. 1999, 25, 241–273. [Google Scholar] [CrossRef]
- Brewka, G.; Eiter, T.; Truszczynski, M. Answer set programming at a glance. Commun. ACM 2011, 54, 92–103. [Google Scholar] [CrossRef]
- Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T. Answer Set Solving in Practice; Synthesis Lectures on Artificial Intelligence and Machine Learning; Morgan & Claypool Publishers: San Rafael, CA, USA, 2012. [Google Scholar]
- Blondeel, M.; Schockaert, S.; Vermeir, D.; Cock, M.D. Fuzzy Answer Set Programming: An Introduction. In Soft Computing: State of the Art Theory and Novel Applications; Yager, R.R., Abbasov, A.M., Reformat, M.Z., Shahbazova, S.N., Eds.; Studies in Fuzziness and Soft Computing; Springer: New York, NY, USA, 2013; Volume 291, pp. 209–222. [Google Scholar]
- Nieuwenborgh, D.V.; Cock, M.D.; Vermeir, D. An introduction to fuzzy answer set programming. Ann. Math. Artif. Intell. 2007, 50, 363–388. [Google Scholar] [CrossRef]
- Janssen, J.; Vermeir, D.; Schockaert, S.; Cock, M.D. Reducing fuzzy answer set programming to model finding in fuzzy logics. TPLP 2012, 12, 811–842. [Google Scholar] [CrossRef]
- Janssen, J.; Schockaert, S.; Vermeir, D.; Cock, M.D. Aggregated Fuzzy Answer Set Programming. Ann. Math. Artif. Intell. 2011, 63, 103–147. [Google Scholar] [CrossRef]
- Cornejo, M.E.; Lobo, D.; Medina, J. Relating Multi-Adjoint Normal Logic Programs to Core Fuzzy Answer Set Programs from a Semantical Approach. Mathematics 2020, 8, 881. [Google Scholar] [CrossRef]
- Cornejo, M.E.; Lobo, D.; Medina, J. Extended multi-adjoint logic programming. Fuzzy Sets Syst. 2020, 388, 124–145. [Google Scholar] [CrossRef]
- Eiter, T.; Polleres, A. Towards automated integration of guess and check programs in answer set programming: A meta-interpreter and applications. Theory Pract. Log. Program. 2006, 6, 23–60. [Google Scholar] [CrossRef]
- Vienna University of Technology. DLVHEX System. Available online: http://www.kr.tuwien.ac.at/research/systems/dlvhex/ (accessed on 18 August 2022).
- Nguyen, C.H.; Wechler, W. Hedge algebras: An algebraic approach to structure of sets of linguistic truth values. Fuzzy Sets Syst. 1990, 35, 281–293. [Google Scholar]
- Nguyen, C.H.; Wechler, W. Extended hedge algebras and their application to fuzzy logic. Fuzzy Sets Syst. 1992, 52, 259–281. [Google Scholar]
- Le, V.H.; Tran, D.K. Extending fuzzy logics with many hedges. Fuzzy Sets Syst. 2018, 345, 126–138. [Google Scholar] [CrossRef]
- Le, V.H.; Liu, F.; Tran, D.K. Mathematical Fuzzy Logic with Many Dual Hedges. In Proceedings of the 5th Symposium on Information and Communication Technology, SoICT 2014, Hanoi, Vietnam, 4–5 December 2014; pp. 7–13. [Google Scholar]
- Zadeh, L.A. A Theory of Approximate Reasoning. In Machine Intelligence; Hayes, J.E., Michie, D., Mikulich, L.I., Eds.; Halsted Press: Ultimo, Australia, 1979; Volume 9, pp. 149–194. [Google Scholar]
- Bellman, R.E.; Zadeh, L.A. Local and fuzzy logics. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1996; pp. 283–335. [Google Scholar]
- Nguyen, C.H.; Tran, D.K.; Huynh, V.N.; Nguyen, H.C. Hedge algebras, linguistic-value logic and their application to fuzzy reasoning. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 1999, 7, 347–361. [Google Scholar] [CrossRef]
- Novák, V.; Perfilieva, I.; Mockor, J. Mathematical Principles of Fuzzy Logic; Kluwer: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Cintula, P.; Hájek, P.; Noguera, C. (Eds.) Handbook of Mathematical Fuzzy Logic; Studies in Logic, Mathematical Logic and Foundations; College Publications: London, UK, 2011. [Google Scholar]
- Herrera, F.; Verdegay, J.L. Linguistic assessments in group decision. In Proceedings of the 1st European Congress on Fuzzy and Intelligent Technologies, Aachen, Germany, 7–10 September 1993; pp. 941–948. [Google Scholar]
- Yager, R. On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decisionmaking. IEEE Trans. Syst. Man Cyber. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Delgado, M.; Verdegay, J.; Vila, M. On aggregation operations of linguistic labels. Int. J. Intell. Syst. 1993, 8, 351–370. [Google Scholar] [CrossRef]
- Davey, B.A.; Priestley, H.A. Introduction to Lattices and Order; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Le, V.H. The Stable Model Semantics of Normal Fuzzy Linguistic Logic Programs. In Proceedings of the 11th International Conference on Computational Collective Intelligence, ICCCI 2019, Hendaye, France, 4–6 September 2019; Part, I. Nguyen, N.T., Chbeir, R., Exposito, E., Aniorté, P., Trawinski, B., Eds.; Lecture Notes in Computer Science. Springer: New York, NY, USA, 2019; Volume 11683, pp. 53–65. [Google Scholar]
- Tarski, A. A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 1955, 5, 285–309. [Google Scholar] [CrossRef] [Green Version]
- Fitting, M. Bilattices Are Nice Things. In Self-Reference; Bolander, T., Hendricks, V., Pedersen, S.A., Eds.; CSLI Publications: Stanford, CA, USA, 2006; pp. 53–77. [Google Scholar]
0 | 0 | 0 | 0 | 0 |
W | W | W | W | W |
1 | 1 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, V.H.
Extending Fuzzy Linguistic Logic Programming with Negation
Le VH.
Extending Fuzzy Linguistic Logic Programming with Negation
Le, Van Hung.
2022. "Extending Fuzzy Linguistic Logic Programming with Negation
Le, V. H.
(2022). Extending Fuzzy Linguistic Logic Programming with Negation