Next Article in Journal
Optimal Control of PC-PLC Virus-Mutation and Multi-Delay Propagation Model in Distribution Network CPS
Next Article in Special Issue
Positive Radially Symmetric Entire Solutions of p-k-Hessian Equations and Systems
Previous Article in Journal
Analytical Solution for Wave Scattering by a Surface Obstacle above a Muddy Seabed
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Parabolic Hessian Equations Outside a Cylinder

1
School of Mathematics and Information Science, Weifang University, Weifang 261061, China
2
College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao 266590, China
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(16), 2839; https://doi.org/10.3390/math10162839
Submission received: 9 July 2022 / Revised: 8 August 2022 / Accepted: 8 August 2022 / Published: 9 August 2022
(This article belongs to the Special Issue Modern Analysis and Partial Differential Equations, 2nd Edition)

Abstract

:
In this article, we mainly review the parabolic Hessian equation on the exterior region. The existence and uniqueness of solutions with asymptotic properties to the exterior problem of the parabolic Hessian equation were obtained by using the Perron method.

1. Introduction

Let Ω be a smooth bounded domain within R n , Ψ be a constant. Let R Ψ n + 1 = R n × ( 0 , Ψ ] , the cylinder domain U = Ω × ( 0 , Ψ ] , S U = Ω × ( 0 , Ψ ) represents the lateral boundary of U, S U ¯ = Ω × [ 0 , Ψ ] , B U = Ω ¯ × { 0 } represents the bottom boundary of U, p U = S U B U represents the parabolic boundary of U. Let θ = θ ( x , ψ ) , for 0 ψ Ψ , θ ( . , ψ ) C 2 ( Ω ) , D 2 θ represents the Hessian matrix of the function θ about the variable x, λ = λ ( D 2 θ ) = ( λ 1 , λ 2 , , λ n ) represents the characteristic root of the matrix D 2 θ .
σ k ( λ ) = 1 j 1 < j 2 < < j k n λ j 1 λ j 2 λ j k .
σ k ( λ ) represents the k-th elementary symmetric function of λ . Define S k ( D 2 θ ) = σ k ( λ ( D 2 θ ) ) .
At present, we discuss the exterior problem of the parabolic Hessian equation
θ ψ + μ ( S k ( D 2 θ ) ) = f , ( x , ψ ) R Ψ n + 1 \ U ¯ ,
θ ( x , ψ ) = φ ( x , ψ ) , ( x , ψ ) S U ,
θ ( x , 0 ) = θ 0 ( x ) , x R n \ Ω ,
where the function θ ψ = θ / ψ , μ C 2 ( 0 , + ) , f is positive, φ and θ 0 satisfy the compatibility condition—that is, for x Ω , then we have θ 0 ( x ) = φ ( x , 0 ) .
The parabolic Hessian Equation (1) is fully nonlinear. In [1], Equation (1) plays a very important role in the existence of solutions of elliptic Hessian equations by the estimation of solutions of parabolic Hessian equations. For research on boundary value problems in the parabolic Hessian Equation (1) on the interior domain, please refer to [2,3,4], and other references can also verify it. For the study of the exterior problem of the elliptic Hessian equation, one can refer to [5,6,7], etc. Li-Dai [6] researched the existence of the solution to the exterior problem
S k ( D 2 θ ) = f , x R n \ Ω ¯ , θ = φ , x Ω
for the elliptic Hessian equation with asymptotic property
lim sup | x | | x | α + min { n , β } α k 2 | θ ( x ) g 0 ( | x | ) b 0 · x m | <
at infinity and uniqueness, where Ω is a bounded convex domain, f = O ( | x | α ) + O ( | x | β ) , | x | , g 0 x is the radially symmetric solution of S k ( D 2 θ ) = f 0 , g 0 ( 0 ) = 0 , g 0 ( 0 ) = 0 , and b 0 , m are constants, | x | = ( x 1 2 + x 2 2 + + x n 2 ) 1 2 . The recent study related to Hessian equations can be found in [8,9,10,11].
For the study of the parabolic equations on the exterior problem, please refer to [12,13,14,15,16], where Dai [14] studied the existence and uniqueness of the solution of the exterior problem
θ ψ + μ ( S k ( D 2 θ ) ) = 1 , ( x , ψ ) R Ψ 1.2 n + 1 \ U 1 ¯ , θ ( x , ψ ) = φ ( x , ψ ) , ( x , ψ ) S U 1 , θ x , Ψ 1 = θ 1 ( x ) , x R n \ Ω
of the parabolic Hessian equation with the asymptotic property at infinity,
lim sup | x | | x | ρ ( n 2 ) θ ( x , ψ ) ψ + 1 2 x T A x + b · x + c < ,
where U 1 = Ω × ( Ψ 1 , Ψ 2 ] , Ψ 1 , Ψ 2 are positive constants, ρ depends only on n , k , A A , x T represents the transpose of x, and
A = { A : A is a real n × n symmetric positive definite matrix and satisfies S k ( A ) = 1 } .
Dai-Cheng [17] studied the parabolic Monge–Ampère equations
θ ψ det D 2 θ = g
outside of the bowl-shaped domain with g being the perturbation of g 0 ( | x | ) at infinity. For studies on the parabolic equations, refer to [18,19,20,21,22].
Assume that
Γ k = λ R n σ j ( λ ) > 0 , j = 1 , 2 , , k .
The function θ is said to be k-admissible for x Ω if λ D 2 θ ( x , ψ ) Γ k . The function θ C 2 k , k ( R Ψ n + 1 \ U ¯ ) indicates the continuity of the derivative D x i D ψ j θ ( i + 2 j 2 k ) of θ in R ψ n + 1 \ U ¯ . If the function θ C x , ψ 2 , 1 ( U ) is convex-correlated with x and non-increased correlated with ψ , then we can say that θ is a parabolically convex function in U. Take into account the initial boundary value problem
θ ψ + μ ( S k ( D 2 θ ) ) = f ( x , ψ ) , ( x , ψ ) U ,
θ = φ ( x , ψ ) , ( x , ψ ) p U .
Definition 1.
A function θ C 0 ( U ¯ ) is known as a viscosity subsolution (respectively, supersolution) to (4), if for ϕ C 2 , 1 ( U ) , ( x ¯ , ψ ¯ ) U satisfies
ϕ ( x ¯ , ψ ¯ ) = θ ( x ¯ , ψ ¯ ) , ϕ ( x , ψ ) ( ) θ ( x , ψ ) , ( x , ψ ) U { ψ ψ ¯ } ,
we can reach
ϕ ψ ( x ¯ , ψ ¯ ) + μ S k D 2 ϕ ( x ¯ , ψ ¯ ) ( ) f ( x ¯ , ψ ¯ ) .
For the supersolution, ϕ is required to be k-admissible.
If the function θ C 0 ( U ¯ ) is both a viscosity supersolution and viscosity subsolution at the same time, then it is said to be the viscosity solution of (4).
Definition 2.
The function θ C 0 ( U ¯ ) is called the viscosity subsolution (supersolution) of the initial boundary value problem (4) and (5), if θ is the viscosity subsolution (supersolution) of (4), and there is θ ( ) φ ( x , ψ ) on the boundary p U .
The function θ C 0 ( U ¯ ) is said to be a viscosity solution of (4) and (5), if θ is a viscosity solution of (4) and satisfies θ ( x , ψ ) = φ ( x , ψ ) on the boundary p U .
Suppose Ω is a bounded strictly convex region in R n and the following conditions hold:
H 1 f = f ( x ) C 0 R n satisfies
inf x R n f ( x ) = f 1 > 0 ,
and for constants τ > 0 ( τ also satisfies the following (12)) and β > 2 ,
μ 1 ( f ( x ) τ ) = μ 1 ( f 0 ( | x | ) τ ) + O ( | x | β ) , | x | + ,
where f 0 C 0 ( [ 0 , + ) ) is positive and radially symmetric in x,
μ 1 f 0 ( | x | ) τ = O | x | α , | x | + ,
and for the constant α ,
k ( 2 min { n , β } ) k 1 < α < , n + α > 0 , α + β > 0 .
We remark that F ( x ) = O ( G ( x ) ) , | x | + means that there exists some constant L, such that | F ( x ) / G ( x ) | L , as | x | + .
( H 2 ) The function μ C 2 ( 0 , + ) satisfies
μ > 0 , μ < 0 ,
and for y > 0 ,
μ ( y k ) < f 1 + y .
A function that satisfies (10) and (11) is μ ( y ) = f 1 + 1 k ln y . An example of f satisfying (6)–(8) may be chosen as f ( x ) = τ + f 1 + 1 k ln ( | x | α + | x | β ) and f 0 satisfying (8) may be chosen as f 0 = τ + f 1 + α k ln | x | .
( H 3 ) φ C 2 , 1 ( U ¯ ) is k-admissible, and
sup x Ω ¯ 0 ψ Ψ φ ψ ( x , ψ ) τ .
An example of φ may be φ ( x , ψ ) = ψ + 1 2 | x | 2 .
( H 4 ) The function θ 0 C 0 ( R n \ Ω ¯ ) (see [6]) satisfies
S k ( D 2 θ 0 ) = μ 1 ( f ( x ) τ ) , x R n \ Ω ¯ ,
θ 0 = φ ( x , 0 ) , x Ω ,
and for some constant vector d R n and a sufficiently large constant c,
lim sup | x | | x | min { n , β } + α α k 2 θ 0 ( x ) g 0 ( | x | ) + d · x + c < , β n , lim sup | x | | x | n + α α k 2 ( ln | x | ) 1 θ 0 ( x ) g 0 ( | x | ) + d · x + c < , β = n ,
where
g 0 ( | x | ) = 0 z b s 1 n k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s , x R n \ { 0 }
satisfies S k ( D 2 g 0 ) = μ 1 ( f 0 τ ) , g 0 ( 0 ) = 0 , g 0 ( 0 ) = 0 with b = ( 1 / c n k ) 1 k .
This paper mainly uses the Perron method to obtain the following results:
Theorem 1.
Let n 3 , the conditions ( H 1 ) ( H 4 ) hold, then for the d R n and sufficiently large constant c in (15), the problem (1)–(3) possesses a unique viscosity solution θ C 0 ( R Ψ n + 1 \ U ¯ ) satisfying
lim sup | x | | x | min { n , β } + α α k 2 θ ( x , ψ ) τ ψ + g 0 ( | x | ) + d · x + c < , β n , lim sup | x | | x | n + α α k 2 ( ln | x | ) 1 θ ( x , ψ ) τ ψ + g 0 ( | x | ) + d · x + c < , β = n .
This article is organized as follows. In the next section, we provide some useful lemmas and a radially symmetric solution. In the last section, we will prove Theorem 1 by the Perron method.

2. Several Lemmas

Lemma 1.
Set Φ x , ψ C 2 , 1 U ¯ , then there is a constant C that depends only on n , Φ , U , so that for ξ Ω , 0 ψ Ψ , there are x ¯ ( ξ , ψ ) R n , satisfying C | x ¯ ( ξ , ψ ) | , and
Φ ( x , ψ ) > w ξ ( x , ψ ) , ( x , ψ ) U ¯ \ { ( ξ , ψ ) } ,
where w ξ ( x , ψ ) = Φ ( ξ , ψ ) + c ¯ 2 | x x ¯ ( ξ , ψ ) | 2 | ξ x ¯ ( ξ , ψ ) | 2 , ( x , ψ ) R n × [ 0 , Ψ ] ,   c ¯ is any bounded constant.
Proof. 
This lemma has been proved in reference [12]. □
Set V R n \ Ω ¯ is a convex region, D = V × ( 0 , Ψ ] , then D R Ψ n + 1 \ U ¯ . Let S ¯ D = V × [ 0 , Ψ ] .
Lemma 2.
Let g C 0 ( D ¯ ) . Assume that the function v C 0 ( D ¯ ) , θ C 0 ( R Ψ n + 1 \ U ¯ ) satisfies, respectively,
v ψ + μ ( S k ( D 2 v ) ) g ( x , ψ ) , ( x , ψ ) D ,
θ ψ + μ ( S k ( D 2 θ ) ) g ( x , ψ ) , ( x , ψ ) R Ψ n + 1 \ U ¯ ,
in the viscosity sense, and
θ v , ( x , ψ ) D , θ = v , ( x , ψ ) S ¯ D .
Define
w ( x , ψ ) = v ( x , ψ ) , ( x , ψ ) D , θ ( x , ψ ) , ( x , ψ ) ( R Ψ n + 1 \ U ¯ ) \ D .
Then w C 0 ( R Ψ n + 1 \ U ¯ ) satisfies in the viscosity sense
w ψ + μ ( S k ( D 2 w ) ) g ( x , ψ ) , ( x , ψ ) R Ψ n + 1 \ U ¯ .
Proof. 
Set ( x ¯ , ψ ¯ ) R Ψ n + 1 \ U ¯ , and ϕ C 2 , 1 ( R Ψ n + 1 \ U ¯ ) , which satisfy
ϕ ( x ¯ , ψ ¯ ) = w ( x ¯ , ψ ¯ ) , w ( x , ψ ) ϕ ( x , ψ ) , ( x , ψ ) ( R Ψ n + 1 \ U ¯ ) { ψ ψ ¯ } .
If ( x ¯ , ψ ¯ ) D , then
ϕ ( x ¯ , ψ ¯ ) = v ( x ¯ , ψ ¯ ) , ϕ ( x , ψ ) v ( x , ψ ) , ( x , ψ ) D .
So
ϕ ψ ( x ¯ , ψ ¯ ) + μ ( S k ( D 2 ϕ ( x ¯ , ψ ¯ ) ) ) g ( x ¯ , ψ ¯ ) .
If ( x ¯ , ψ ¯ ) ( R Ψ n + 1 \ U ¯ ) \ D , then
ϕ ( x ¯ , ψ ¯ ) = θ ( x ¯ , ψ ¯ ) , ϕ ( x , ψ ) u ( x , ψ ) , ( x , ψ ) ( R Ψ n + 1 \ U ¯ ) \ D .
Due to (19), we have
ϕ ( x ¯ , ψ ¯ ) = θ ( x ¯ , ψ ¯ ) , θ ( x , ψ ) ϕ ( x , ψ ) , ( x , ψ ) R Ψ n + 1 \ U ¯ .
Since θ is a viscosity subsolution, thus,
ϕ ψ ( x ¯ , ψ ¯ ) + μ ( S k ( D 2 ϕ ( x ¯ , ψ ¯ ) ) ) g ( x ¯ , ψ ¯ ) .
Thus, w is a viscosity subsolution. The lemma proof is completed. □
Lemma 3.
If θ C 0 ( U ) satisfies
θ ψ + μ ( S k ( D 2 θ ) ) f ( x , ψ )
in the viscosity sense. Then,
θ ψ + Δ θ > 0
in the viscosity sense.
Proof. 
For any function h C 2 , 1 ( U ) , any point ( x ¯ , ψ ¯ ) U satisfies
h ( x ¯ , ψ ¯ ) = θ ( x ¯ , ψ ¯ ) , h ( x , ψ ) θ ( x , ψ ) , ( x , ψ ) U { ψ ψ ¯ } .
Since θ is a viscosity subsolution, then
h ψ ( x ¯ , ψ ¯ ) + μ ( S k ( D 2 h ( x ¯ , ψ ¯ ) ) ) f ( x ¯ , ψ ¯ ) .
Thus, by (11),
S k ( D 2 h ( x ¯ , ψ ¯ ) ) μ 1 ( f 1 + h ψ ( x ¯ , ψ ¯ ) ) h ψ k ( x ¯ , ψ ¯ ) .
Then according to the Newton–Maclaurin inequality, at ( x ¯ , ψ ¯ ) , there are
Δ h ( x ¯ , ψ ¯ ) n S k D 2 h ( x ¯ , ψ ¯ ) C n k 1 k n k C n k 1 k h ψ ( x ¯ , ψ ¯ ) > h ψ ( x ¯ , ψ ¯ ) .
Thus,
h ψ ( x ¯ , ψ ¯ ) + Δ h ( x ¯ , ψ ¯ ) > 0 ,
and then (21) is established. □
The proof of Lemma 4 below can be directly obtained from Proposition 3 in Appendix A of Reference [23].
Lemma 4.
Suppose θ ̲ , θ ¯ C 0 ( D ¯ ) are the viscosity subsolution and the viscosity supersolution of θ ψ + μ S k D 2 θ = f , respectively, and θ ̲ p D = θ ¯ p D = ϕ C 0 p D , then the problem
θ ψ + μ S k D 2 θ = f ( x , ψ ) , ( x , ψ ) D , θ = ϕ ( x , ψ ) , ( x , ψ ) p D
possesses a unique viscosity solution θ C 0 ( D ¯ ) .
Lemma 5.
Set θ ̲ C 0 ( D ¯ ) , satisfying
θ ̲ ψ + μ ( S k ( D 2 θ ̲ ) ) f ( x , ψ ) , ( x , ψ ) D
in the viscosity sense, then the problem
θ ψ + μ ( S k ( D 2 θ ̲ ) ) = f ( x , ψ ) , ( x , ψ ) D , θ = θ ̲ ( x , ψ ) , ( x , ψ ) p D
possesses a unique viscosity solution θ C 0 ( D ¯ ) .
Proof. 
Apparently, θ ̲ is a viscosity subsolution of (22). According to Lemma 4, we just have to prove that (22) has a viscosity supersolution θ ¯ , which satisfies θ ¯ = θ ̲ on p D .
Suppose v C 2 , 1 ( D ) C 0 ( D ¯ ) satisfy
v ψ + Δ v = 0 , ( x , ψ ) D , v = θ ̲ , ( x , ψ ) p D .
Then we claim that v is a viscosity supersolution of (22).
In fact, if we assume that v is not a viscosity solution to (22), then there exists some point ( x ¯ , ψ ¯ ) D and x—convex function ϕ C 2 , 1 ( D ) , such that there are
v ( x ¯ , ψ ¯ ) = ϕ ( x ¯ , ψ ¯ ) , ϕ ( x , ψ ) v ( x , ψ ) , ( x , ψ ) D { ψ ψ ¯ } ,
but
ϕ ψ ( x ¯ , ψ ¯ ) + μ ( S k ( D 2 ϕ ( x ¯ , ψ ¯ ) ) > f ( x ¯ , ψ ¯ ) .
Thus, in light of Lemma 3, we know
ϕ ψ ( x ¯ , ψ ¯ ) + Δ ϕ ( x ¯ , ψ ¯ ) > 0 .
However, by (23), we have
v ψ ( x ¯ , ψ ¯ ) = ϕ ψ ( x ¯ , ψ ¯ ) , S k ( D 2 v ( x ¯ , ψ ¯ ) ) S k ( D 2 ϕ ( x ¯ , ψ ¯ ) ) , k = 1 , , n .
Thus, we have
ϕ ψ ( x ¯ , ψ ¯ ) + Δ ϕ ( x ¯ , ψ ¯ ) v ψ ( x ¯ , ψ ¯ ) + Δ v ( x ¯ , ψ ¯ ) = 0 ,
which is a contradiction.
Lemma 5 is proved. □
The following is the process of finding the radial symmetric solution of S k ( D 2 g 0 ) = μ 1 ( f 0 τ ) .
Suppose g 0 ( x ) = g 0 ( p ) = g 0 ( | x | ) is radial symmetric, where p = | x | = ( x 1 2 + x 2 2 + + x n 2 ) 1 2 , then
p x i = x i p , g 0 x i = g 0 p · x i p .
After calculating,
D i j g 0 ( x ) = p g 0 ( p ) g 0 ( p ) x i x j p 3 + g 0 ( p ) γ i j p , i , j = 1 , , n ,
among them
γ i j = 1 , i = j , 0 , i j .
Let x = ( p , 0 , , 0 ) T , then
D 2 g 0 = g 0 ( p ) 0 0 0 0 g 0 ( p ) p 0 0 0 0 g 0 ( p ) p 0 0 0 0 g 0 ( p ) p ,
so we have,
S k ( λ ( D 2 g 0 ) ) = C n 1 k 1 g 0 ( p ) g 0 ( p ) k 1 p 1 k + C n 1 k g 0 ( p ) k p k = μ 1 f 0 τ .
According to (24), we can know
p n k g 0 ( p ) k = n p n 1 C n k μ 1 f 0 τ .
By the integration from 1 to p,
p n k g 0 ( p ) k = 1 p n y n 1 C n k μ 1 f 0 τ d y + g 0 ( 1 ) k .
Thus,
g 0 ( p ) = 1 p n k 1 p n y n 1 C n k μ 1 f 0 τ d y + g 0 ( 1 ) k 1 k .
For some R 1 > 0 , by the integration from 2 R 1 to p again,
g 0 ( p ) = 2 R 1 p 1 C n k 1 k s 1 n k 1 s n y n 1 μ 1 f 0 τ d y + C n k g 0 ( 1 ) k 1 k d s + g 0 2 R 1 .
Assume that d ˜ = g 0 2 R 1 , b = ( 1 / C n k ) 1 k , a ˜ = C n k g 0 ( 1 ) k , then
g 0 ( p ) = 2 R 1 p b s 1 n k 1 s n y n 1 μ 1 f 0 τ d y + a ˜ 1 k d s + d ˜ .
When g 0 ( 0 ) = 0 , g 0 ( 0 ) = 0 , the radial symmetry solution of S k ( D 2 g 0 ) = μ 1 ( f 0 τ ) is
g 0 ( | x | ) = 0 p b s 1 n k 0 s n y n 1 μ 1 f 0 τ d y 1 k d s .

3. Proof of Theorem 1

Proof of Theorem 1.
We might as well fix z > 2 , such that
B 2 ( 0 ) Ω B z ( 0 ) : = { x R n : | x | < z } .
By subtracting a linear function from θ , we just have to prove that the theorem holds for d equals 0. The following proof can be divided into six parts.
Step 1. Construct a viscosity subsolution of (1)–(3).
According to Lemma 1, for any ξ Ω , there is x ¯ ( ξ , ψ ) R n , 0 ψ Ψ , | x ¯ ( ξ , ψ ) | < , such that
φ ( x , ψ ) > w ξ ( x , ψ ) , ( x , ψ ) U ¯ \ { ( ξ , ψ ) } ,
where
w ξ ( x , ψ ) = φ ( ξ , ψ ) + c * 2 | x x ¯ ( ξ , ψ ) | 2 | ξ x ¯ ( ξ , ψ ) | 2 , ( x , ψ ) R n × [ 0 , Ψ ] ,
μ ( C n k c * k ) sup B 3 z ( 0 ) f τ .
Let B 3 z = B 3 z ( 0 ) . Then φ ( ξ , ψ ) = w ξ ( ξ , ψ ) , and according to condition ( H 2 ) ,
( w ξ ) ψ + μ ( S k ( D 2 w ξ ) ) f ( x ) , ( x , ψ ) B 3 z × ( 0 , Ψ ] ,
and
S k ( D 2 w ξ ( x , 0 ) ) μ 1 ( f ( x ) τ ) , x B 3 z .
Let
w ( x , ψ ) = sup ξ Ω w ξ ( x , ψ ) , ( x , ψ ) R n × [ 0 , Ψ ] .
Then
φ ( x , ψ ) w ( x , ψ ) , ( x , ψ ) U ¯ ,
φ ( x , ψ ) = w ( x , ψ ) , ( x , ψ ) S U ,
and
w ψ + μ ( S k ( D 2 w ) ) f ( x ) , ( x , ψ ) B 3 z × ( 0 , Ψ ] .
Set
W ( x , ψ ) = φ ( x , ψ ) , ( x , ψ ) U , w ( x , ψ ) , ( x , ψ ) R n × [ 0 , Ψ ] \ U .
According to Lemma 2 and (26), there are W C 0 ( R n × [ 0 , Ψ ] ) , and
φ ( x , ψ ) = W ( x , ψ ) , ( x , ψ ) Ω × [ 0 , Ψ ] ,
W ψ + μ ( S k ( D 2 W ) ) f ( x ) , ( x , ψ ) ( B 3 z \ Ω ¯ ) × ( 0 , Ψ ] ,
S k ( D 2 W ( x , 0 ) ) μ 1 ( f ( x ) τ ) , x B 3 z \ Ω ¯ .
Let f ¯ ( | x | ) , f ̲ ( | x | ) be smooth functions satisfying the conditions
f ¯ = μ 1 f 0 ( | x | ) τ + C 1 | x | β , | x | + ,
f ̲ = μ 1 f 0 ( | x | ) τ C 2 | x | β , | x | + ,
where C 1 and C 2 are positive constants, and
f ¯ ( | x | ) μ 1 ( f ( x ) τ ) f ̲ ( | x | ) > 0 .
For a > 0 , let
θ 1 ( x , ψ ) = τ ψ + inf B z × [ 0 , Ψ ] W + 2 z | x | b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k d s , ( x , ψ ) R n × [ 0 , Ψ ] ,
θ 2 ( x , ψ ) = τ ψ + sup B z × [ 0 , Ψ ] W + 2 | x | b s 1 n k 1 s n y n 1 f ̲ ( y ) d y + a 1 k d s , ( x , ψ ) R n × [ 0 , Ψ ] .
Therefore, θ 1 , θ 2 are parabolically convex, and
θ 2 ( x , ψ ) θ 1 ( x , ψ ) , ( x , ψ ) B 2 × [ 0 , Ψ ] ,
( θ 1 ) ψ + μ ( S k ( D 2 θ 1 ) ) = τ + μ ( f ¯ ) f ( x ) , ( x , ψ ) ( R n \ B 2 ) × ( 0 , Ψ ] ,
( θ 2 ) ψ + μ ( S k ( D 2 θ 2 ) ) = τ + μ ( f ̲ ) f ( x ) , ( x , ψ ) ( R n \ B 2 ) × ( 0 , Ψ ] ,
S k ( D 2 θ 1 ( x , ψ ) ) = f ¯ μ 1 ( f ( x ) τ ) , ( x , ψ ) ( R n \ B 2 ) × [ 0 , Ψ ] ,
S k ( D 2 θ 2 ( x , ψ ) ) = f ̲ μ 1 ( f ( x ) τ ) , ( x , ψ ) ( R n \ B 2 ) × [ 0 , Ψ ] .
Take a 0 0 , so that for any a a 0 , the following three inequalities hold simultaneously
θ 1 ( x , ψ ) = τ ψ + inf B z × [ 0 , Ψ ] W + 2 z 3 z b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k d s W ( x , ψ ) , | x | = 3 z , 0 ψ Ψ ,
θ 2 ( x , ψ ) = τ ψ + sup B z × [ 0 , Ψ ] W + 2 3 z b s 1 n k 1 s n y n 1 f ̲ ( y ) d y + a 1 k d s W ( x , ψ ) , | x | = 3 z , 0 ψ Ψ ,
θ 2 ( x , ψ ) φ ( x , ψ ) , x Ω , 0 ψ Ψ .
Further, it can be found that for ( x , ψ ) R n \ B 2 × [ 0 , Ψ ] ,
θ 1 ( x , ψ ) = τ ψ + inf B z × [ 0 , Ψ ] W + 2 z b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k d s | x | b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k d s = τ ψ + inf B z × [ 0 , Ψ ] W + 2 z b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k d s 2 z b s 1 n k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s + 2 z b s 1 n k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s | x | b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k d s = τ ψ + inf B z × [ 0 , Ψ ] W
+ 2 z b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s 0 2 z b s 1 n k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s + 0 | x | b s 1 n k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s + | x | b s 1 n k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s | x | b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k d s = τ ψ + inf B z × [ 0 , Ψ ] W + 2 z b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s | x | b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s 0 2 z b s 1 n k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s + 0 | x | b s 1 n k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s .
That is,
θ 1 ( x , ψ ) = τ ψ + μ 1 ( a ) + g 0 ( | x | ) | x | b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s ,
where
μ 1 ( a ) = inf B z × [ 0 , Ψ ] W + 2 z b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s g 0 ( 2 z ) .
Likewise,
θ 2 ( x , ψ ) = τ ψ + μ 2 ( a ) + g 0 ( | x | ) | x | b s 1 n k 1 s n y n 1 f ̲ ( y ) d y + a 1 k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s ,
where
μ 2 ( a ) = sup B z × [ 0 , Ψ ] W + 2 b s 1 n k 1 s n y n 1 f ̲ ( y ) d y + a 1 k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s g 0 ( 2 ) .
Then μ 1 ( a ) , μ 2 ( a ) are strictly monotone increasing on ( 0 , + ) , and
lim a + μ 1 ( a ) = + , lim a + μ 2 ( a ) = + .
In light of (7) and (8), we can assume that for C 3 > 0 and the sufficiently large constant s 0 ,
μ 1 ( f 0 ( y ) τ ) = C 3 | y | α , y > s 0 ,
and
f ¯ ( y ) = C 3 | y | α + C 1 | y | β , y > s 0 .
If β n , then according to (9), we have
| x | b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s = | x | b s 1 n k 1 s 0 n y n 1 f ¯ ( y ) d y + s 0 s n y n 1 f ¯ ( y ) d y + a 1 k 0 s 0 n y n 1 μ 1 f 0 ( y ) τ d y + s 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s = | x | b s 1 n k s 0 s n y n 1 f ¯ ( y ) d y + d 1 1 k s 0 s n y n 1 μ 1 f 0 ( y ) τ d y + d 2 1 k d s
= | x | b s 1 n k s 0 s n y n 1 C 3 y α + C 1 y β d y + d 1 1 k s 0 s n y n 1 C 3 y α d y + d 2 1 k d s = | x | b d 3 1 k s 1 + α k 1 + d 4 d 3 s α β + d 5 d 3 s n α 1 k 1 + d 6 d 3 s n α 1 k d s = | x | O s 1 n α + α k + O s 1 β α + α k d s = O | x | min { n , β } + α k + 2 α , | x | + ,
where d i , i = 1 , , 6 are constants.
If β = n , by (37),
| x | b s 1 n k 1 s n y n 1 f ¯ ( y ) d y + a 1 k 0 s n y n 1 μ 1 f 0 ( y ) τ d y 1 k d s = | x | b d 3 ˜ 1 k s 1 + α k 1 + d 4 ˜ d 3 ˜ s n α ln s + d 5 ˜ d 3 ˜ s n α 1 k 1 + d 6 ˜ d 3 ˜ s n α 1 k d s = O | x | α k + 2 α n ln | x | , | x | + ,
where d i ˜ , i = 1 , , 6 are constants.
Thus, when | x | ,
θ 1 ( x , ψ ) = g 0 ( | x | ) τ ψ + μ 1 ( a ) + O | x | min { n , β } + α k + 2 α , β n , θ 1 ( x , ψ ) = g 0 ( | x | ) τ ψ + μ 1 ( a ) + O | x | n + α k + 2 α ln | x | , β = n .
In a similar way, when | x | ,
θ 2 ( x , ψ ) = g 0 ( | x | ) τ ψ + μ 2 ( a ) + O | x | min { n , β } + α k + 2 α , β n θ 2 ( x , ψ ) = g 0 ( | x | ) τ ψ + μ 2 ( a ) + O | x | n + α k + 2 α ln | x | , β = n .
In addition, it can be seen that for a sufficiently large c in (15), there are a 1 c , a 2 ( c ) > a 0 , such that μ 1 ( a 1 ( c ) ) = μ 2 ( a 2 ( c ) ) = c . Then when x ,
θ 1 ( x , ψ ) = g 0 ( | x | ) τ ψ + c + O | x | min { n , β } + α k + 2 α , β n θ 1 ( x , ψ ) = g 0 ( | x | ) τ ψ + c + O | x | n + α k + 2 α ln | x | , β = n ,
and
θ 2 ( x , ψ ) = g 0 ( | x | ) τ ψ + c + O | x | min { n , β } + α k + 2 α , β n θ 2 ( x , ψ ) = g 0 ( | x | ) τ ψ + c + O | x | n + α k + 2 α ln | x | , β = n .
Thus, we know
lim | x | θ 1 ( x , ψ ) θ 2 ( x , ψ ) = 0 , 0 ψ Ψ .
According to (30), (33), (34), and (38), and the comparison principle, we have
θ 2 ( x , 0 ) θ 1 ( x , 0 ) , x R n \ B 2 ,
θ 2 ( x , Ψ ) θ 1 ( x , Ψ ) , x R n \ B 2 .
Likewise, by (31), (32), and (38)–(40), and the comparison principle, we can have
θ 2 ( x , ψ ) θ 1 ( x , ψ ) , ( x , ψ ) R n \ B 2 × [ 0 , Ψ ] ,
and by (29) and (34)–(36), and the comparison principle,
θ 2 ( x , 0 ) W ( x , 0 ) , x B 3 z \ Ω .
Moreover, for U 3 z = B 3 z × ( 0 , Ψ ] ,
( θ 2 ) ψ + μ ( S k ( D 2 θ 2 ) ) f , ( x , ψ ) U 3 z \ U ¯ ,
θ 2 ( x , ψ ) W ( x , ψ ) , ( x , ψ ) p U 3 z .
Then according to (35) and (36) and the principle of comparison,
θ 2 ( x , ψ ) W ( x , ψ ) , ( x , ψ ) U ¯ 3 z \ U .
In addition, when | x | z , 0 ψ Ψ , obviously there are
θ 1 ( x , ψ ) inf B z × [ 0 , Ψ ] W W ( x , ψ ) .
Define for a a 0 ,
θ ̲ a ( x , ψ ) = max { W ( x , ψ ) , θ 1 ( x , ψ ) } , x B 3 z \ Ω , 0 ψ Ψ θ 1 ( x , ψ ) , x R n \ B 3 z , 0 ψ Ψ .
Then θ 2 ( x , ψ ) θ ̲ a ( x , ψ ) , x R n \ Ω , 0 ψ Ψ , and according to Lemma 2, we know that
( θ ̲ a ) ψ + μ ( S k ( D 2 θ ̲ a ) ) f , ( x , ψ ) R Ψ n + 1 \ U ¯ .
According to (26), (25), and (42), and the definition of W, we can know
θ ̲ a ( x , ψ ) = φ ( x , ψ ) , ( x , ψ ) S U .
Moreover, when | x | ,
θ ̲ a ( x , ψ ) = g 0 ( | x | ) τ ψ + c + O | x | min { n , β } + α k + 2 α , β n , θ ̲ a ( x , ψ ) = g 0 ( | x | ) τ ψ + c + O | x | n + α k + 2 α ln | x | , β = n .
So according to the condition ( H 3 ) ,
lim | x | θ ̲ a ( x , 0 ) θ 0 ( x ) = 0 .
In addition, θ ̲ a ( x , 0 ) = φ ( x , 0 ) = W ( x , 0 ) = θ 0 ( x ) , x Ω ,
S k ( D 2 θ ̲ a ( x , 0 ) ) μ 1 ( f ( x ) τ ) , x R n \ Ω ¯ .
Therefore, according to the comparison principle, for x R n \ Ω ,
θ ̲ a ( x , 0 ) θ 0 ( x ) .
Thus, θ ̲ a is a viscosity subsolution of (1)–(3).
Step 2. Define the Perron solution of (1)–(3).
For X = ( x , ψ ) R Ψ n + 1 \ U , let S c , X denote the set of viscosity subsolutions v C 0 R Ψ n + 1 \ U ¯ of (1)–(3) that satisfy v ( x , ψ ) θ 2 ( x , ψ ) . Then θ ̲ a S c , X . So S c , X is not empty, let
θ c ( x , ψ ) = sup v ( x , ψ ) : v S c , X , ( x , ψ ) R Ψ n + 1 \ U .
Step 3. Show that θ c at infinity satisfies asymptotic behavior.
First, according to the definition of θ c ,
θ c ( x , ψ ) θ 2 ( x , ψ ) .
So, as | x | + ,
θ c ( x , ψ ) + τ ψ g 0 ( | x | ) c O | x | min { n , β } + α k + 2 α , β n ,
and
θ c ( x , ψ ) + τ ψ g 0 ( | x | ) c O | x | n + α k + 2 α ln | x | , β = n .
Because θ ̲ a S c , X , by (44), when | x | , we have
θ c ( x , ψ ) + τ ψ g 0 ( | x | ) c O | x | min { n , β } + α k + 2 α , β n ,
and
θ c ( x , ψ ) + τ ψ g 0 ( | x | ) c O | x | n + α k + 2 α ln | x | , β = n .
As a result,
lim sup | x | | x | min { n , β } + α α k 2 θ c ( x , ψ ) τ ψ + g 0 ( | x | ) + c < , β n ,
and
lim sup | x | | x | n + α α k 2 ( ln | x | ) 1 θ c ( x , ψ ) τ ψ + g 0 ( | x | ) + c < , β = n .
Step 4. Prove that θ c = φ , ( x , ψ ) S U , and θ c ( x , 0 ) = θ 0 ( x ) , x R n \ Ω .
First prove θ c ( x , 0 ) = θ 0 ( x ) , x R n \ Ω . Since φ C 2 , 1 ( U ¯ ) , then according to (12), select the constants m 1 , m 2 , which satisfy m 2 τ φ ψ ( x , ψ ) m 1 . Let
A ( x , ψ ) = m 1 ψ + θ 0 ( x ) , ( x , ψ ) R Ψ n + 1 \ U ,
B ( x , ψ ) = m 2 ψ + θ 0 ( x ) , ( x , ψ ) R Ψ n + 1 \ U .
Then
A ψ + μ ( S k ( D 2 A ) ) = f ( x ) + m 1 τ f ( x ) , ( x , ψ ) R Ψ n + 1 \ U ¯ ,
B ψ + μ ( S k ( D 2 B ) ) = f ( x ) + m 2 τ f ( x ) , ( x , ψ ) R Ψ n + 1 \ U ¯ .
Moreover, on S U ,
A ( x , ψ ) = m 1 ψ + θ 0 ( x ) = φ ( x , 0 ) m 1 ψ φ ( x , ψ ) ,
B ( x , ψ ) = m 2 ψ + θ 0 ( x ) = φ ( x , 0 ) m 2 ψ φ ( x , ψ ) .
When | x | ,
lim | x | A ( x , ψ ) θ c ( x , ψ ) 0 ,
lim | x | B ( x , ψ ) θ c ( x , ψ ) 0 .
Obviously, when x R n \ Ω , θ 0 ( x ) = A ( x , 0 ) = B ( x , 0 ) , then A ( x , ψ ) , B ( x , ψ ) are the viscosity subsolution and viscosity supersolution of (1)–(3), respectively, so there are
B ( x , ψ ) θ c A ( x , ψ ) , ( x , ψ ) R Ψ n + 1 \ U ¯ .
Therefore,
θ c ( x , 0 ) = θ 0 ( x ) , x R n \ Ω .
The following is to prove that θ c = φ , ( x , ψ ) S U . For any ξ ¯ Ω , 0 < τ ¯ Ψ , for one thing, due to θ ̲ a S c , X , according to (43), we have
lim inf ( x , ψ ) ( ξ ¯ , τ ¯ ) θ c ( x , ψ ) lim ( x , ψ ) ( ξ ¯ , τ ¯ ) θ ̲ a ( x , ψ ) = φ ( ξ ¯ , τ ¯ ) .
For another, we claim that
lim sup ( x , ψ ) ( ξ ¯ , τ ¯ ) θ c ( x , ψ ) φ ( ξ ¯ , τ ¯ ) .
In fact, we take B R = { x : | x | R } , so that Ω B R R n , and let B R Ψ = B R \ Ω ¯ × ( 0 , Ψ ] .
Then p B R Ψ S U , and for every v S c , X , there are
v ψ + Δ v 0 , ( x , ψ ) B R Ψ , v φ , ( x , ψ ) S U , v B , ( x , ψ ) p B R Ψ \ S U .
Select the barrier function w + satisfying
w ψ + + Δ w + = 0 , ( x , ψ ) B R Ψ , w + = φ , ( x , ψ ) S U , w + = B , ( x , ψ ) p B R Ψ \ S U .
According to the comparison principle, there are v w + , ( x , ψ ) B R Ψ ¯ ; therefore, θ c w + , ( x , ψ ) B R Ψ ¯ , and so
lim sup ( x , ψ ) ( ξ ¯ , τ ¯ ) θ c ( x , ψ ) lim ( x , ψ ) ( ξ ¯ , τ ¯ ) w + ( x , ψ ) = φ ( ξ ¯ , τ ¯ ) .
Step 5. Show that θ c is a viscosity solution of (1).
According to the definition of θ c , it is obvious that θ c is the viscosity subsolution of (1), so we have to prove that θ c is the viscosity supersolution of (1). For any ( x ¯ , ψ ¯ ) R Ψ n + 1 \ U ¯ , fix ϵ to make B ϵ ( x ¯ ) R n \ Ω ¯ , then for 0 τ < ψ ¯ , U ϵ = B ε ( x ¯ ) × ( τ , Ψ ] R Ψ n + 1 \ U ¯ . According to the Lemma 5,
θ ˜ ψ + μ ( S k ( D 2 θ ˜ ) ) = f , ( x , ψ ) U ϵ , θ ˜ = θ c , ( x , ψ ) p U ϵ
has a unique viscosity solution θ ˜ C 0 U ε ¯ . According to the comparison principle, θ c θ ˜ , ( x , ψ ) U ϵ . Let
w ˜ ( x , ψ ) = θ ˜ ( x , ψ ) , ( x , ψ ) U ϵ , θ c ( x , ψ ) , ( x , ψ ) R Ψ n + 1 \ U U ϵ .
Since θ 2 ( x , ψ ) θ ˜ ( x , ψ ) , ( x , ψ ) U ¯ ϵ , so w ˜ S c , X . According to the definition of θ c ,
θ c w ˜ , ( x , ψ ) R Ψ n + 1 \ U ,
so θ c θ ˜ , ( x , ψ ) U ϵ , and then θ c is the viscosity solution of (1).
Step 6. Prove the uniqueness.
Let θ and v satisfy (1)–(3) and (17), then
lim | x | ( θ ( x , ψ ) v ( x , ψ ) ) = 0 .
According to the comparison principle, there is θ v , ( x , ψ ) R Ψ n + 1 \ U .
Theorem 1 has been proven. □

4. Conclusions

This paper employed the Perron method to prove the existence and uniqueness of viscosity solutions with asymptotic behavior for the first initial boundary value problem of a parabolic Hessian equation outside a cylindrical domain. The proof is divided into six steps and the main ingredient is the first step in which the viscosity subsolutions are constructed. Lemma 1 plays a crucial role in constructing the viscosity subsolutions. Our method is also suitable for the exterior problem of other parabolic equations.

Author Contributions

L.D. conceived the idea of the paper and reviewed the paper. X.G. wrote the paper. The authors read and approved the final draft. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the Shandong Provincial Natural Science Foundation (ZR2021MA054).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors claim no conflict of interest.

References

  1. Chou, K.S.; Wang, X.J. A variational theory of the Hessian equation. Comm. Pure Appl. Math. 2001, 54, 1029–1064. [Google Scholar] [CrossRef]
  2. Ivochkina, N.; Ladyzhenskaya, O. On parabolic problems generated by some symmetric functions of the eigenvalues of the Hessian. Topol. Methods Nonlinear Anal. 1994, 4, 19–29. [Google Scholar] [CrossRef]
  3. Lieberman, G.M. Second Order Parabolic Differential Equations; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 1996. [Google Scholar]
  4. Ren, C. The first initial-boundary value problem for fully nonlinear parabolic equations generated by functions of the eigenvalues of the Hessian. J. Math. Anal. Appl. 2008, 339, 1362–1373. [Google Scholar] [CrossRef]
  5. Bao, J.; Li, H.; Li, Y. On the exterior Dirichlet problem for Hessian equations. Trans. Am. Math. Soc. 2014, 366, 6183–6200. [Google Scholar] [CrossRef]
  6. Li, H.; Dai, L. The Dirichlet Problem of Hessian Equation in Exterior Domains. Mathematics 2020, 8, 666. [Google Scholar] [CrossRef]
  7. Li, H.; Bao, J. The exterior Dirichlet problem for fully nonlinear elliptic equations related to the eigenvalues of the Hessian. J. Differ. Equ. 2014, 256, 2480–2501. [Google Scholar] [CrossRef]
  8. Li, Y.; Nguyen, L.; Wang, B. The axisymmetric σk-Nirenberg problem. J. Funct. Anal. 2021, 281, 60. [Google Scholar] [CrossRef]
  9. Li, Y.; Wang, B. Strong comparison principles for some nonlinear degenerate elliptic equations. Acta Math. Sci. Ser. B 2018, 38, 1583–1590. [Google Scholar] [CrossRef]
  10. Li, Y.; Nguyen, L.; Wang, B. Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations. Calc. Var. Partial Differ. Equ. 2018, 57, 96. [Google Scholar] [CrossRef]
  11. Wang, B. A Liouville-type theorem for fully nonlinear CR invariant equations on the Heisenberg group. Commun. Contemp. Math. 2021, 2150060. [Google Scholar] [CrossRef]
  12. Dai, L. Exterior problems for a parabolic Monge–Ampère equation. Nonlinear Anal. 2014, 100, 99–110. [Google Scholar] [CrossRef]
  13. Dai, L. Exterior problems of parabolic Monge–Ampère equations for n = 2. Comput. Math. Appl. 2014, 67, 1497–1506. [Google Scholar] [CrossRef]
  14. Dai, L. Exterior problems for parabolic Hessian equations (Chinese). Adv. Math. 2016, 45, 561–571. [Google Scholar]
  15. Gong, S.; Zhou, Z.; Bao, J. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Commun. Pure Appl. Anal. 2020, 19, 4921–4936. [Google Scholar] [CrossRef]
  16. Dai, L. Parabolic Monge-Ampère equations on exterior domains (Chinese). Acta Math. Sin. (Chin. Ser.) 2015, 58, 447–456. [Google Scholar]
  17. Dai, L.; Cheng, H. The first initial-boundary value problem of parabolic Monge–Ampère equations outside a bowl-shaped domain. Bound. Value Probl. 2021, 2021, 29. [Google Scholar] [CrossRef]
  18. Az-Zobi, E.; Al-Khaled, K.; Darweesh, A. Numeric-analytic solutions for nonlinear oscillators via the modified multi-stage decomposition method. Mathematics 2019, 7, 550. [Google Scholar] [CrossRef]
  19. Nisar, K.; Sabir, Z.; Asif Zahoor Raja, M.E. Evolutionary Integrated Heuristic with Gudermannian Neural Networks for Second Kind of Lane–Emden Nonlinear Singular Models. Appl. Sci. 2021, 11, 4725. [Google Scholar] [CrossRef]
  20. Wang, B.; Bao, J. Asymptotic behavior on a kind of parabolic Monge–Ampère equation. J. Differ. Equ. 2015, 259, 344–370. [Google Scholar] [CrossRef]
  21. Zhang, W.; Bao, J.; Wang, B. An extension of Jörgens–Calabi–Pogorelov theorem to parabolic Monge–Ampère equation. Calc. Var. Partial. Differ. Equ. 2018, 57, 90. [Google Scholar] [CrossRef]
  22. Zhou, Z.; Bao, J.; Wang, B. A Liouville theorem of parabolic Monge–Ampère equations in half-space. Discret. Contin. Dyn. Syst. 2021, 41, 1561–1578. [Google Scholar] [CrossRef]
  23. Zhan, Y. Viscosity Solutions of Nonlinear Degenerate Parabolic Equations and Several Applications. Ph.D. Thesis, ProQuest LLC, Ann Arbor, MI, USA, 2000. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Dai, L.; Guo, X. Parabolic Hessian Equations Outside a Cylinder. Mathematics 2022, 10, 2839. https://doi.org/10.3390/math10162839

AMA Style

Dai L, Guo X. Parabolic Hessian Equations Outside a Cylinder. Mathematics. 2022; 10(16):2839. https://doi.org/10.3390/math10162839

Chicago/Turabian Style

Dai, Limei, and Xuewen Guo. 2022. "Parabolic Hessian Equations Outside a Cylinder" Mathematics 10, no. 16: 2839. https://doi.org/10.3390/math10162839

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop