Thermodynamic Definition of Time: Considerations on the EPR Paradox
Abstract
:1. Introduction
2. Materials and Methods
- The atom, without interaction, can be considered an isolated system, and any process inside it is completely reversible.
- The atom, in interaction with a photon, is an open system, where fluxes occur: in this case, a photon can be absorbed, and the atomic electron can have an energy level transition. Then, the electron can jump down in its fundamental energy state, with a related photon emission: the system is subjected to inflow and outflow of photons.
- The atom in interaction is subjected to the irreversible process of the perturbation of its centre of mass: this open atom is irreversible, just because it is in interaction with the environment, and it is subjected to fluxes.
3. Results
- Time is the result of irreversibility, generated by the continuous interaction between electromagnetic waves and matter;
- Locally, entropy can decrease, but the entropy production (due to irreversibility) must always increase, with the consequence that time can only increase.
- Our definition of time is related to the entropy: the entropy variation is extended to any epoch and domain, because any process generates entropy variation.
- Our definition of time is linked to entropy variation and fluxes: this definition satisfies that the physical basis for the time scale might break down in the very early universe due to phase transitions;
- The extrapolation of the present physical scales into the past can be introduced by considering the entropy and the temperature of any epoch of the Universe, its formation included.
- Local time flow rate is different in relation to global Universe time flow rate, because global Universe flow rate is the global effect of the entropy rate generation, while the local time follows the distribution of the local entropy variation and rate [83], in accordance with the Theory of Relativity [93].
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Let be a vector space. Any finite linear combination of vectors , , with , is named convex, if and .
- If is convex, an element is called extreme if it cannot be obtained as , with , .
- Let be a separable Hilbert space. Let be a convex subset of . The extreme elements in are called pure states, while nonextreme states are named mixed states or nonpure states.
- Schmidt’s decomposition theorem [110]. Any pure state can be written as a sum of orthonormal unit vectors and , which span the space of possible state vectors for the system, and i runs up to the smaller of the dimensions of the two subsystem Hilbert spaces:
References
- Kuzemsky, A.L. Temporal evolution, directionality of time and irreversibility. Rivista del Nuovo Cimento 2018, 41, 513–574. [Google Scholar] [CrossRef]
- Franklin, W.S. On entropy. Phys. Rev. 1910, 30, 766–775. [Google Scholar] [CrossRef] [Green Version]
- Beattie, J.A.; Oppenheim, I. Principles of Thermodynamics; Elsevier: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Guggenheim, E.A. Thermodynamics. An Advanced Treatment for Chemists and Physicists; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Landsberg, P.T. Thermodynamics and Statistical Mechanics; Dover Publications: New York, NY, USA, 1990. [Google Scholar]
- Kuzemsky, A.L. Statistical Mechanics and the Physics of Many-Particle Model Systems; World Scientific: Singapore, 2017. [Google Scholar]
- Kuzemsky, A.L. In search of time lost: Asymmetry of time and irreversibility in natural processes. Found. Sci. 2020, 25, 597–645. [Google Scholar] [CrossRef]
- Lin, S.K. Diversity and entropy. Entropy 1999, 1, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Velasco, R.M.; García-Colín, L.S.; Uribe, F.J. Entropy production: Its role in non-equilibrium thermodynamics. Entropy 2011, 13, 82–116. [Google Scholar] [CrossRef]
- Casas, G.A.; Nobre, F.D.; Curado, E.M.F. Generalized entropy production phenomena: A master-equation approach. Phys. Rev. E 2014, 89, 012114. [Google Scholar] [CrossRef]
- Zubarev, D.N. Nonequilibrium Statistical Thermodynamics; Consultant Bureau: New York, NY, USA, 1974. [Google Scholar]
- Kuzemsky, A.L. Theory of transport processes and the method of the nonequilibrium statistical operator. Int. J. Mod. Phys. 2007, 21, 2821–2949. [Google Scholar] [CrossRef]
- Lavenda, B.H. Thermodynamics of Irreversible Processes; Amazon Digital Services LLC, KDP Print US: Seattle, WA, USA, 2019. [Google Scholar]
- de Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; North-Holland: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations; Wiley: New York, NY, USA, 1971. [Google Scholar]
- Haase, R. Thermodynamics of Irreversible Processes; Addison-Wesley: Reading, UK, 1969. [Google Scholar]
- Bejan, A. Why the Days Seem Shorter as We Get Older. Eur. Rev. 2019, 27, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Bejan, A. Why the bigger live longer and travel farther: Animals, vehicles, rivers and the winds. Sci. Rep. 2012, 2, 594. [Google Scholar] [CrossRef]
- Lorenzini, G.; Biserni, C. The constructal law: From design in nature to social dynamics and wealth as physics. Phys. Life Rev. 2011, 8, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Bejan, A. Shape and Structure, from Engineering to Nature; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bejan, A.; Lorente, S. Design with Constructal Theory; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bejan, A.; Lorente, S. The constructal law and the evolution of design in nature. Philos. Trans. B 2010, 1545, 365. [Google Scholar] [CrossRef] [Green Version]
- Reis, A.H. Constructal theory: From engineering to physics, and how flow systems develop shape and structure. Appl. Mech. Rev. 2006, 59, 262–282. [Google Scholar] [CrossRef]
- Miguel, A.F. The physics principle of the generation of flow configuration. Phys. Life Rev. 2011, 8, 243–244. [Google Scholar] [CrossRef]
- Bejan, A.; Lorente, S. The Physics of Life: The Evolution of Everything; St. Martin’s Press: New York, NY, USA, 2016. [Google Scholar]
- Mackey, M.C. The dynamic origin of increasing entropy. Rev. Mod. Phys. 1989, 61, 981–1015. [Google Scholar] [CrossRef]
- Mackey, M.C. Time’s Arrow: The Origin of Thermodynamic Behavior; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Hoover, W.G.; Hoover, C.G. Time-irreversibility is hidden within Newtonian mechanics. Mol. Phys. 2018, 116, 3085–3096. [Google Scholar] [CrossRef] [Green Version]
- Lighthill, J. The recently recognized failure of predictability in Newtonian dynamics. Proc. R. Soc. 1986, 407, 35–50. [Google Scholar] [CrossRef]
- Lucia, U.; Açikkalp, E. Irreversible thermodynamic analysis and application for molecular heat engines. Chem. Phys. 2017, 494, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U.; Grisolia, G. Nonequilibrium Temperature: An Approach from Irreversibility. Materials 2021, 14, 2004. [Google Scholar] [CrossRef]
- Andresen, B.; Berry, R.S.; Ondrechen, M.J.; Salamon, P. Thermodynamics for processes in finite time. Accounts Chem. Res. 1984, 17, 266–271. [Google Scholar] [CrossRef]
- Honig, J. On the entropy of a class of irreversible processes. Entropy 2013, 15, 2975–2988. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U. Thermodynamic paths and stochastic order in open systems. Phys. A Stat. Mech. Its Appl. 2013, 392, 3912–3919. [Google Scholar] [CrossRef] [Green Version]
- Espinoza, M. Théorie du déterminisme causal; L’Harmattan: Paris, France, 2006. [Google Scholar]
- Ben-Yami, H. Causal Order, Temporal Order, and Becoming in Special Relativity. Topoi 2015, 34, 277–281. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley & Sons: New York, NY, USA, 1972. [Google Scholar]
- Penrose, R. The Road to Reality; Vintage Books: London, UK, 2005. [Google Scholar]
- Bohm, D. Causality and Chance in Modern Physics; Taylor and Francis: London, UK, 2005. [Google Scholar]
- Donoghue, J.F.; Menezes, G. Quantum causality and the arrows of time and thermodynamics. Prog. Part. Nucl. Phys. Rev. 2020, 115, 103812. [Google Scholar] [CrossRef]
- Riek, R. Entropy Derived from Causality. Entropy 2020, 22, 647. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C. A critical analysis of the concept of time in physics. Annales de la Fondation Louis de Broglie 2016, 41, 99–130. [Google Scholar]
- Bell, J.S. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Pauli, W. Encyklopaedie der matematischen Wissenschaften, mit Einschluss ihrer Anwendungen, Vol 5, Relativitatstheorie; B. G. Teubner Verlag: Leipzig, Germany, 1921. [Google Scholar]
- Brown, H.R. The Behaviour of rods and clocks in general relativity, and the meaning of the metric field. Einstein Stud. 2018, 14, 51–66. [Google Scholar]
- Berry, R.S.; Smirnov, B.M. Clusters as tools to link macro and micro approaches. Comput. Theor. Chem. 2013, 1021, 2–6. [Google Scholar] [CrossRef]
- Bohr, N. The Quantum Postulate and the Recent Development of Atomic Theory. Nature 1928, 121, 580–590. [Google Scholar] [CrossRef] [Green Version]
- Howard, D. Who invented the Copenhagen Interpretation? A study in mythology. Philos. Sci. 2004, 71, 669–682. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 1935, 23, 807–812. [Google Scholar] [CrossRef]
- Griffiths, D.J. Introduction to Quantum Mechanics; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Lucia, U.; Grisolia, G. Time: A footprint of irreversibility. Atti dell’Accademia Peloritana dei Pericolanti 2019, 97, SC1–SC4. [Google Scholar] [CrossRef]
- Doyle, R.O. Great Problems in Philosophy & Physics—Solved; Information Philosopher: Cambridge, UK, 2016. [Google Scholar]
- Doyle, R.O. The Origin of Irreversibility; Information Philosopher: Cambridge, UK, 2019; Last access; Available online: www.informationphilosopher.org (accessed on 24 April 2022).
- Doyle, R.O. The continuous spectrum of the hydrogen quasi-molecule. J. Quant. Spectrosc. Radiat. Transf. 1968, 492, 1555–1569. [Google Scholar] [CrossRef]
- Lucia, U. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems. Sci. Rep. 2016, 6, 35792. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U. Unreal perpetual motion machine, Rydberg constant and Carnot non-unitary efficiency as a consequence of the atomic irreversibility. Phys. A 2018, 492, 962–968. [Google Scholar] [CrossRef]
- Lucia, U. Considerations on non equilibrium thermodynamics of interactions. Phys. A 2016, 447, 314–319. [Google Scholar] [CrossRef]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Badiali, J.P. The concept of entropy. Relation between action and entropy. Condens. Matter Phys. 2005, 8, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. Autobiographical Notes; Schilpp, P.A., Ed.; Open Court Publishing Company: Chicago, IL, USA, 1982. [Google Scholar]
- Franck, J. Elementary processes of photochemical reactions. Trans. Faraday Soc. 1926, 21, 536–542. [Google Scholar] [CrossRef]
- Condon, E. A theory of intensity distribution in band systems. Phys. Rev. 1926, 28, 1182–1201. [Google Scholar] [CrossRef]
- Born, M.; Oppenheimer, J.R. Zur Quantentheorie der Molekeln. Annalen der Physik 1927, 32, 457–484. [Google Scholar] [CrossRef]
- Alonso, M.; Finn, E.J. Fundamental University Physics. Vol. III. Quantum and Statistical Physics; Addison Wesley: Boston, MA, USA, 1968. [Google Scholar]
- Slater, J.C. Quantum Theory of Matter; McGraw-Hill: New York, NY, USA, 1951. [Google Scholar]
- Lucia, U. Quanta and entropy generation. Phys. A 2015, 419, 115–121. [Google Scholar] [CrossRef]
- Kukk, E.; Ueda, K.; Hergenhahn, U.; Liu, X.J.; Prümper, G.; Yoshida, H.; Tamenori, Y.; Makochekanwa, C.; Tanaka, T.; Kitajima, M.; et al. Violation of the Franck-Condon Principle due to Recoil Effects in High Energy Molecular Core-Level Photoionization. Phys. Rev. Lett. 2005, 95, 133001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condon, E. Nuclear motions associated with electron transitions in diatomic molecules. Phys. Rev. 1928, 32, 858–872. [Google Scholar] [CrossRef]
- Beretta, G.P.; Gyftopoulos, E.P. Electromagnetic Radiation: A Carrier of Energy and Entropy. J. Energy Resour. Technol. 2015, 137, 021005. [Google Scholar] [CrossRef] [Green Version]
- Landau, L.D.; Lifshitz, E.M. Mechanics; Butterworth-Heinemann: Oxford, UK, 1976. [Google Scholar]
- Lucia, U. The Gouy-Stodola Theorem as a Variational Principle For Open Systems. Atti dell’Accademia Peloritana dei Pericolanti 2016, 94, A4. [Google Scholar] [CrossRef]
- Langhaar, H.L. Dimensional Analysis and the Theory of Models; John Wiley: New York, NY, USA, 1951. [Google Scholar]
- Lucia, U.; Grisolia, G. Time: A Constructal viewpoint & its consequences. Sci. Rep. 2019, 9, 10454. [Google Scholar] [CrossRef] [Green Version]
- Adamson, A. A Textbook of Physical Chemistry; Academic Press: Cambridge, UK, 1973. [Google Scholar]
- Vemulapalli, G.K. Physical Chemistry; Prentice-Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Feynman, R.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; Addison Wesley: Boston, MA, USA, 1964; Volume III. [Google Scholar]
- Lucia, U. Electron-photon Interaction and Thermal Disequilibrium Irreversibility. Int. J. Quantum Found. 2017, 3, 24–30. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- Bohm, D. Quantum Theory; Prentice Hall: New York, NY, USA, 1951. [Google Scholar]
- Reid, M.D.; Drummond, P.D.; Bowen, W.P.; Cavalcanti, E.G.; Lam, P.K.; Bachor, H.A.; Andersen, U.L.; Leuchs, G. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications. Rev. Mod. Phys. 2009, 81, 1727. [Google Scholar] [CrossRef] [Green Version]
- Lucia, U.; Grisolia, G. EPR, time, irreversibility and causality. ChemRxiv. 2022. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Time & Clocks: A thermodynamic approach. Results Phys. 2020, 16, 102977. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G.; Kuzemsky, A.L. Irreversibility and Entropy Production in Nonequilibrium Systems. Entropy 2020, 22, 887. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A. Relativity: The Special and General Theory; Routledge Classics: London, UK, 1920. [Google Scholar]
- Rugh, S.E.; Zinkernagel, H. On the physical basis of cosmic time. Sudies Hist. Philos. Sci. Part B Sudies Hist. Philos. Mod. Phys. 2009, 40, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Poincaré, H. The Measure of Time; Dover: New York, NY, USA, 1905. [Google Scholar]
- Eddington, A.S. The Philosophy of Physical Science; Cambridge University Press: Cambridge, UK, 1939. [Google Scholar]
- Whitrow, G.J. The Measure of Time; Claredon Press: Oxford, UK, 1980. [Google Scholar]
- Whitrow, G.J. What Is Time; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Brown, H. Physical Relativity; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Peacock, J.A. Cosmological Physics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Pauli, W. Theory of Relativity; Pergamon Press: London, UK, 1958. [Google Scholar]
- Newton, I. The Principia, 3rd Edition (1726); Cohen, I.B., Whitman, A., Eds.; University of California Press: Berkeley, CA, USA, 1999. [Google Scholar]
- Feynman, R.P. The Feynman Lectures on Physics, 2nd ed.; Addison Wesley: Boston, MA, USA, 2005; Volume 1. [Google Scholar]
- Kafatos, M. Bell’s Theorem, Quantum Theory and Conceptions of the Universe; Springer Netherlands: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Loll, R.; Ambjørn, J.; Jurkiewicz, J. Quantum gravity: The art of building spacetime. In Approaches to Quantum Gravity. Toward a New Understanding of Space, Time and Matter; Oriti, D., Ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Malament, D.B. Topics in the Foundations of General Relativity and Newtonian Gravitation; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
- Lucia, U. Statistical approach of the irreversible entropy variation. Phys. A 2008, 387, 3454–3460. [Google Scholar] [CrossRef]
- Lucia, U. Entropy generation: From outside to inside! Chem. Phys. Lett. 2016, 583, 209–212. [Google Scholar] [CrossRef]
- Bejan, A. Advanced Engineering Thermodynamics; John Wiley: New York, NY, USA, 2006. [Google Scholar]
- Reis, A.H. Design in nature, and the laws of physics. Phys. Life Rev. 2011, 8, 255–256. [Google Scholar] [CrossRef]
- Reis, A.H. Use and validity of principles of extremum of entropy production in the study of complex systems. Ann. Phys. 2014, 346, 22–27. [Google Scholar] [CrossRef]
- Lucia, U. Second law considerations on the third law: From Boltzmann and Loschmidt paradox to non equilibrium temperature. Phys. A 2016, 444, 121–128. [Google Scholar] [CrossRef]
- Giordano, S. Entropy production and Onsager reciprocal relations describing the relaxation to equilibrium in stochastic thermodynamics. Phys. Rev. E 2021, 103, 052116. [Google Scholar] [CrossRef]
- McCulloch, M.E.; Giné, J. The EPR paradox and the uncertainty principle. Mod. Phys. Lett. B 2021, 35, 2150072. [Google Scholar] [CrossRef]
- Einstein, A. Zur Elektrodynamik bewegter Koerper. Annalen der Physik 1905, 17, 891–921. [Google Scholar] [CrossRef]
- Lucia, U. Maximum entropy generation and κ-exponential model. Phys. A 2010, 389, 4558–4563. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Fomin, S.V. Elements of the Theory of Functions and Functional Analysis; Dover Publishing: Mineola, NY, USA, 1999. [Google Scholar]
- Schmidt, E. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann. 1907, 63, 433–476. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucia, U.; Grisolia, G. Thermodynamic Definition of Time: Considerations on the EPR Paradox. Mathematics 2022, 10, 2711. https://doi.org/10.3390/math10152711
Lucia U, Grisolia G. Thermodynamic Definition of Time: Considerations on the EPR Paradox. Mathematics. 2022; 10(15):2711. https://doi.org/10.3390/math10152711
Chicago/Turabian StyleLucia, Umberto, and Giulia Grisolia. 2022. "Thermodynamic Definition of Time: Considerations on the EPR Paradox" Mathematics 10, no. 15: 2711. https://doi.org/10.3390/math10152711
APA StyleLucia, U., & Grisolia, G. (2022). Thermodynamic Definition of Time: Considerations on the EPR Paradox. Mathematics, 10(15), 2711. https://doi.org/10.3390/math10152711