The Dual Characterization of Structured and Skewed Structured Singular Values
Abstract
:1. Introduction
2. Preliminaries
3. The Main Results
3.1. Dual Characterization of and
3.2. Computing Upper Bound of Skewed Structured Singular Value
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doyle, J. Analysis of feedback systems with structured uncertainties. IEE Proc. D-Control Theory Appl. 1982, 129, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Safonov, M.G. Stability margins of diagonally perturbed multivariable feedback systems. IEE Proc. D (Control Theory Appl.) 1982, 129, 251–256. [Google Scholar] [CrossRef]
- Hinrichsen, D.; Pritchard, A.J. Real and complex stability radii: A survey. In Control of Uncertain Systems; Birkhäuser: Basel, Switzerland, 1990; pp. 119–162. [Google Scholar]
- Kharitonov, V.L. Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differ. Uraveniya 1978, 14, 1483–1485. [Google Scholar]
- Barmish, B.R. New tools for robustness analysis. In Proceedings of the 27th IEEE Conference on Decision Control, Austin, TX, USA, 7–9 December 1988. [Google Scholar]
- Polls, M.P.; Olbrot, W.; Fu, M. An overview of recent results on the parametric approach to robust stability. In Proceedings of the 28th IEEE Conference on Decision Control, Tampa, FL, USA, 13–15 December 1989. [Google Scholar]
- Siljak, D.D. Parameter space methods for robust control design: A guided tour. IEEE Trans. Autom. Control 1989, 34, 674–688. [Google Scholar] [CrossRef]
- de Gaston, R.R.E.; Safonov, M.G. Exact calculation of the multiloop stability margin. IEEE Trans. Autom. Control 1988, 33, 156–171. [Google Scholar] [CrossRef]
- Fan, M.K.H.; Tits, A.L.; Doyle, J.C. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans. Autom. Control 1991, 36, 25–38. [Google Scholar] [CrossRef] [Green Version]
- Barmish, B.R.; Khargonekar, P.P. Robust stability of feedback control systems with uncertain parameters and unmodeled dynamics. Math. Control Signals Syst. 1990, 3, 197–210. [Google Scholar] [CrossRef]
- Chapellat, H.; Dahleh, M.; Bhattacharyya, S.P. Robust stability under structured and unstructured perturbations. IEEE Trans. Autom. Control 1990, 35, 1100–1108. [Google Scholar] [CrossRef]
- Hollot, C.V.; Looze, D.P.; Bartlett, A.C. Unmodeled dynamics: Performance and stability via parameter space methods. In Proceedings of the 26th IEEE Conference on Decision and Control, Los Angeles, CA, USA, 9–11 December 1987. [Google Scholar]
- Braatz, R.P.; Young, P.M.; Doyle, J.C.; Morari, M. Computational complexity of μ calculation. IEEE Trans. Autom. Control 1994, 39, 1000–1002. [Google Scholar] [CrossRef] [Green Version]
- Packard, A.; Fan, M.K.; Doyle, J.C. A Power Method for the Structured Singular Value; 1988. [Google Scholar]
- Young, P.M.; Doyle, J.C. Computation of mu with real and complex uncertainties. In Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, HI, USA, 5–7 December 1990; pp. 1230–1235. [Google Scholar]
- Young, P.M.; Newlin, M.P.; Doyle, J.C. Practical computation of the mixed μ problem. In Proceedings of the 1992 American Control Conference, Chicago, IL, USA, 24–26 June 1992. [Google Scholar]
- Fan, M.K.; Tits, A.L.; Doyle, J.C. Robustness in the presence of joint parametric uncertainty and unmodeled dynamics. In Proceedings of the 1988 American Control Conference, Atlanta, GA, USA, 15–17 June 1988. [Google Scholar]
- Osborne, E.E. On pre-conditioning of matrices. J. ACM (JACM) 1960, 7, 338–345. [Google Scholar] [CrossRef]
- Packard, A.; Doyle, J. The complex structured singular value. Automatica 1993, 29, 71–109. [Google Scholar] [CrossRef] [Green Version]
- Young, P.M.; Newlin, M.P.; Doyle, J.C. Let’s get real. In Robust Control Theory; Springer: New York, NY, USA, 1995; pp. 143–173. [Google Scholar]
- Luo, J.; Tian, W.; Zhong, S.; Shi, K.; Chen, H.; Gu, X.M.; Wang, W. Non-fragile asynchronous H∞ control for uncertain stochastic memory systems with Bernoulli distribution. Appl. Math. Comput. 2017, 312, 109–128. [Google Scholar] [CrossRef]
- Kou, G.; Xiao, H.; Cao, M.; Lee, L.H. Optimal computing budget allocation for the vector evaluated genetic algorithm in multi-objective simulation optimization. Automatica 2021, 129, 109599. [Google Scholar] [CrossRef]
- Meinsma, G.; Shrivastava, Y.; Fu, M. A dual formulation of mixed/spl mu/and on the losslessness of (D, G) scaling. IEEE Trans. Autom. Control 1997, 42, 1032–1036. [Google Scholar] [CrossRef]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAMIn: Philadelphia, PA, USA, 1994. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehman, M.-U.; Alzabut, J.; Ateeq, T.; Kongson, J.; Sudsutad, W. The Dual Characterization of Structured and Skewed Structured Singular Values. Mathematics 2022, 10, 2050. https://doi.org/10.3390/math10122050
Rehman M-U, Alzabut J, Ateeq T, Kongson J, Sudsutad W. The Dual Characterization of Structured and Skewed Structured Singular Values. Mathematics. 2022; 10(12):2050. https://doi.org/10.3390/math10122050
Chicago/Turabian StyleRehman, Mutti-Ur, Jehad Alzabut, Taqwa Ateeq, Jutarat Kongson, and Weerawat Sudsutad. 2022. "The Dual Characterization of Structured and Skewed Structured Singular Values" Mathematics 10, no. 12: 2050. https://doi.org/10.3390/math10122050
APA StyleRehman, M.-U., Alzabut, J., Ateeq, T., Kongson, J., & Sudsutad, W. (2022). The Dual Characterization of Structured and Skewed Structured Singular Values. Mathematics, 10(12), 2050. https://doi.org/10.3390/math10122050