Economies of Scope between Research and Teaching in European Universities
Abstract
:1. Introduction
2. Economies of Scope between Teaching and Research: Background Literature
3. Data
3.1. Input Variables
3.1.1. Staff
3.1.2. Students
3.2. Output Variables
3.2.1. Teaching Output: Number of Graduates
3.2.2. Research Output: Number of Publications and Citations
4. Methodology and Modeling Strategies
4.1. A SUR Approach to the Estimation of Economies of Scope
4.2. Control Variables
4.2.1. Size at University Level
4.2.2. Total Publications
4.2.3. International Co-Authorship
4.2.4. Governance of University
4.2.5. Generalist vs. Specialist Model of University
5. Findings
5.1. Results Organization and Presentation
5.2. Estimation Results: Total Publication (TOT_PUB)
5.3. Estimation Results: Total Citations (TOT_CIT)
6. Discussion, Limitations and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohn, E.; Cooper, S.T. Multi-product Cost Functions for Universities: Economies of Scale and Scope. In International Handbook on the Economics of Education; Edward Elgar Publishing: Cheltenham, UK, 2004. [Google Scholar]
- Daraio, C.; Bonaccorsi, A.; Simar, L. Rankings and university performance: A conditional multidimensional approach. Eur. J. Oper. Res. 2015, 244, 918–930. [Google Scholar] [CrossRef]
- Bianchini, S.; Lissoni, F.; Pezzoni, M.; Zirulia, L. The economics of research, consulting, and teaching quality: Theory and evidence from a technical university. Econ. Innov. New Technol. 2016, 25, 668–691. [Google Scholar] [CrossRef] [Green Version]
- De Witte, K.; López-Torres, L. Efficiency in education: A review of literature and a way forward. J. Oper. Res. Soc. 2017, 68, 339–363. [Google Scholar] [CrossRef]
- Papadimitriou, M.; Johnes, J. Does merging improve efficiency? A study of English universities. Stud. High. Educ. 2019, 44, 1454–1474. [Google Scholar] [CrossRef] [Green Version]
- Del Rey, E. Teaching versus Research: A Model of State University Competition. J. Urban Econ. 2001, 49, 356–373. [Google Scholar] [CrossRef]
- Agasisti, T.; Johnes, G. Efficiency, costs, rankings and heterogeneity: The case of US higher education. Stud. High. Educ. 2013, 40, 60–82. [Google Scholar] [CrossRef]
- Morris, D. Economies of scale and scope in e-learning. Stud. High. Educ. 2008, 33, 331–343. [Google Scholar] [CrossRef]
- Zhang, L.-C.; Worthington, A.C. Scale and scope economies of distance education in Australian universities. Stud. High. Educ. 2017, 42, 1785–1799. [Google Scholar] [CrossRef] [Green Version]
- Triebs, T.P.; Saal, D.S.; Arocena, P.; Kumbhakar, S.C. Estimating economies of scale and scope with flexible technology. J. Prod. Anal. 2016, 45, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Johnes, G. The Management of Universities; Scottish Economic Society/Royal Bank of Scotland Annual Lecture, 1999. Scott. J. Political Econ. 1999, 46, 505–522. [Google Scholar] [CrossRef]
- Bonaccorsi, A.; Daraio, C. Econometric approaches to the analysis of productivity of R & D systems. Production functions and production frontiers. In Handbook on Science and Technology Indicators; Moed, S., Glanzel, K., Eds.; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Dundar, H.; Lewis, D.R. Departmental productivity in American universities: Economies of scale and scope. Econ. Educ. Rev. 1995, 14, 119–144. [Google Scholar] [CrossRef]
- Koshal, R.K.; Koshal, M. Economies of scale and scope in higher education: A case of comprehensive universities. Econ. Educ. Rev. 1999, 18, 269–277. [Google Scholar] [CrossRef]
- Duch Brown, N.; Parellada-Sabata, M.; Polo-Otero, J. Economies of scale and scope of university research and technology transfer. A flexible multi-product approach. In IEB Working Paper 2010/51; Institut d’Economia de Barcelona: Dhaka, Bangladesh, 2010. [Google Scholar]
- Cherchie, L.; de Rock, B.; Vermeulen, F. Analyzing cost-efficient production behaviors under economies of scope: A non-parametric methodology. Oper. Res. 2008, 56, 204–221. [Google Scholar] [CrossRef] [Green Version]
- Worthington, A.C.; Higgs, H. Economies of scale and scope in Australian higher education. High. Educ. 2010, 61, 387–414. [Google Scholar] [CrossRef]
- Chavas, J.-P.; Barham, B.; Foltz, J.; Kim, K. Analysis and decomposition of scope economies: R & D at US research universities. Appl. Econ. 2012, 44, 1387–1404. [Google Scholar] [CrossRef]
- De Witte, K.; Rogge, N.; Cherchye, L.; van Puyenbroeck, T. Economies of scope in research and teaching: A non-parametric investigation. Omega 2012, 41, 305–314. [Google Scholar] [CrossRef]
- De Witte, K.; Rogge, N.; Cherchye, L.; van Puyenbroeck, T. Accounting for economies of scope in performance evaluations of university professors. J. Oper. Res. Soc. 2013, 64, 1595–1606. [Google Scholar] [CrossRef]
- Hernandez-Villafuerte, K.; Sussex, J.; Robin, E.; Guthrie, S.; Wooding, S. Economies of scale and scope in publicly funded biomedical and health research: Evidence from the literature. Heal. Res. Policy Syst. 2017, 15, 3. [Google Scholar] [CrossRef] [Green Version]
- Cohn, E.; Rhine, S.L.W.; Santos, M.C. Institutions of Higher Education as Multi-Product Firms: Economies of Scale and Scope. Rev. Econ. Stat. 1989, 71, 284. [Google Scholar] [CrossRef]
- Laband, D.N.; Lentz, B.F. New Estimates of Economies of Scale and Scope in Higher Education. South. Econ. J. 2003, 70, 172. [Google Scholar] [CrossRef]
- Johnes, G.; Salas-Velasco, M. The determinants of costs and efficiencies where producers are heterogeneous. The case of Spanish universities. Econo. Bull. 2007, 4, 1–9. [Google Scholar]
- Olivares, M.; Weztel, H. Competing in the Higher Education Market: Empirical Evidence for Economies of Scale and Scope in German Higher Education Institutions. Leading House Working Paper No. 70. 2011. Available online: http://repec.business.uzh.ch/RePEc/iso/leadinghouse/0070_lhwpaper.pdf (accessed on 11 October 2021).
- Johnes, G.; Schwarzenberger, A. Differences in cost structure and the evaluation of efficiency: The case of German universities. Educ. Econ. 2011, 19, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Johnes, G.; Johnes, J.; Thanassoulis, E. An analysis of costs in institutions of higher education in England. Stud. High. Educ. 2008, 33, 527–549. [Google Scholar] [CrossRef] [Green Version]
- De Fraja, G.; Iossa, E. Competition Among Universities and the Emergence of the Elite Institution. Bull. Econ. Res. 2002, 54, 275–293. [Google Scholar] [CrossRef]
- Gautier, A.; Wauthy, X. Teaching versus research: A multi-tasking approach to multi-department universities. Eur. Econ. Rev. 2007, 51, 273–295. [Google Scholar] [CrossRef] [Green Version]
- De Fraja, G.; Valbonesi, P. The design of the university system. J. Public Econ. 2012, 96, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Besancenot, D.; Faria, J.R.; Vranceanu, R. Why business schools do so much research: A signaling explanation. Res. Policy 2009, 38, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Kooli, C. Governing and managing higher education institutions: The quality audit contributions. Eval. Progr. Plan. 2019, 77, 101713. [Google Scholar] [CrossRef]
- Haddawy, P.; Ul-Hassan, S.; Abbey, C.W.; Beng, L.I. Uncovering fine-grained research excellence: The global research benchmarking system. J. Informetr. 2017, 11, 389–406. [Google Scholar] [CrossRef]
- Zhu, J.; Hassan, S.-U.; Mirza, H.T.; Xie, Q. Measuring recent research performance for Chinese universities using bibliometric methods. Scientometrics 2014, 101, 429–443. [Google Scholar] [CrossRef]
- Bonaccorsi, A.; Haddawy, P.; Cicero, T. Explaining the transatlantic gap in research excellence. Scientometrics 2016, 110, 217–241. [Google Scholar] [CrossRef]
- Bonaccorsi, A.; Haddawy, P.; Cicero, T.; Hassan, S.U. The solitude of stars. An analysis of the distributed excellence model of European universities. J. Informetr. 2017, 11, 435–454. [Google Scholar] [CrossRef]
- Bonaccorsi, A.; Belingheri, P.; Secondi, L. The research productivity of universities. A multilevel and multidisciplinary analysis on European institutions. J. Informetr. 2021, 15, 101129. [Google Scholar] [CrossRef]
- Bonaccorsi, A.; Secondi, L. The determinants of research performance in European universities: A large scale multilevel analysis. Scientometrics 2017, 112, 1147–1178. [Google Scholar] [CrossRef]
- Beasley, J.E. Determining teaching and research efficiencies. J. Oper. Res. Soc. 1995, 46, 441–452. [Google Scholar] [CrossRef]
- Gralka, S. Stochastic Frontier Analysis in Higher Education. A Systematic Review. CEPIE Working Paper, No. 05/18. 2018. Available online: https://www.econstor.eu/bitstream/10419/189968/1/1042418004.pdf (accessed on 4 October 2021).
- Flegg, A.T.; Allen, D.O.; Field, K.; Thurlow, T.W. Measuring the efficiency of British universities: A multi-period data envelopment analysis. Educ. Econ. 2004, 12, 231–249. [Google Scholar] [CrossRef]
- Chapple, W.; Lockett, A.; Siegel, D.; Wright, M. Assessing the relative performance of U.K. university technology transfer offices: Parametric and non-parametric evidence. Res. Policy 2005, 34, 369–384. [Google Scholar] [CrossRef]
- Sav, G.T. Stochastic cost inefficiency estimates and rankings of public and private research ad doctoral granting universities. J. Knowl. Manag. Econ. Inf. Technol. 2012, 2, 1–20. [Google Scholar]
- Hornbostel, S. Third party funding of German universities. An indicator of research activity? Scientometrics 2001, 50, 523–537. [Google Scholar] [CrossRef]
- Gralka, S.; Wohlrabe, K.; Bornmann, L. How to measure research efficiency in higher education? Research grants vs. publication output. J. High. Educ. Policy Manag. 2019, 41, 322–341. [Google Scholar] [CrossRef]
- Agasisti, T.; Haetermans, C. Comparing efficiency of public universities among European countries. Different incentives lead to different performance. High. Educ. Q. 2016, 70, 81–104. [Google Scholar] [CrossRef]
- Abbott, M.; Doucoliagos, C. Competition and efficiency: Overseas students and technical efficiency in Australian and New Zealand universities. Educ. Econ. 2009, 17, 31–57. [Google Scholar] [CrossRef]
- Agasisti, T.; Dal Bianco, A. Reforming the university sector: Effects on teaching efficiency. Evidence from Italy. High. Educ. 2009, 57, 477–498. [Google Scholar] [CrossRef]
- Johnes, J. Efficiency and mergers in English higher education 1996/97 to 2008/9: Parametric and non-parametric estimation of the multi-input multi-output distance function. Manch. Sch. 2014, 82, 465–487. [Google Scholar] [CrossRef] [Green Version]
- Barra, C.; Lagravinese, R.; Zotti, R. Does econometric methodology matter to rank universities? An analysis of Italian higher education system. Socio Econ. Plan. Sci. 2018, 62, 104–120. [Google Scholar] [CrossRef]
- Carrington, R.; O’Donnell, C.; Rao, D.S.P. Australian university productivity growth and public funding revisited. Stud. High. Educ. 2016, 43, 1417–1438. [Google Scholar] [CrossRef]
- Agasisti, T.; Barra, C.; Zotti, R. Evaluating the efficiency of Italian public universities (2008–2011) in presence of (unobserved) heterogeneity. Socio Econ. Plan. Sci. 2016, 55, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Johnes, J. Measuring teaching efficiency in higher education: An application of data envelopment analysis to economics graduates from UK Universities 1993. Eur. J. Oper. Res. 2006, 174, 443–456. [Google Scholar] [CrossRef]
- Agasisti, T.; Salerno, C. Assessing the cost efficiency of Italian universities. Educ. Econ. 2007, 15, 455–471. [Google Scholar] [CrossRef]
- Worthington, A.; Lee, B. Efficiency, technology and productivity change in Australian universities, 1998–2003. Econ. Educ. Rev. 2008, 27, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Başkaya, S.; Klumpp, M. International Data Envelopment Analysis in Higher Education: How Do Institutional Factors Influence University Efficiency? J. Bus. Econ. 2014, 5, 2085–2090. [Google Scholar] [CrossRef]
- Dawson, S.P.; Macfadyen, L.; Lockyer, L. Learning or Performance: Predicting Drivers of Student Motivation. 2009. Available online: https://ro.uow.edu.au/edupapers/114 (accessed on 8 November 2021).
- Biagi, F.; Blasko, Z.; Castaño Muñoz, J.; Sánchez-Barrioluengo, M.; Schnepf, S. Role of universities shaping graduates’ labour market outcomes. In Proceedings of the 1st International DZHW User Conference on Dynamics in the Student and Academic Life Course, Hannover, Germany, 16–17 May 2019. [Google Scholar]
- De Groot, H.; McMahon, W.W.; Volkwein, J.F. The Cost Structure of American Research Universities. Rev. Econ. Stat. 1991, 73, 424. [Google Scholar] [CrossRef]
- Adams, J.D.; Black, G.C.; Clemmons, J.R.; Stephan, P.E. Scientific teams and institutional collaborations: Evidence from U.S. universities, 1981–1999. Res. Policy 2005, 34, 259–285. [Google Scholar] [CrossRef]
- Longlong, H.; Fengliang, L.; Weifang, M. Multi-product total cost functions for higher education. The case of Chinese research universities. Econ. Educ. Rev. 2009, 28, 505–511. [Google Scholar] [CrossRef]
- Christensen, L.R.; Jorgenson, D.W.; Lau, L.J. Transcendental Logarithmic Production Frontiers. Rev. Econ. Stat. 1973, 55, 28. [Google Scholar] [CrossRef]
- Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 1962, 57, 348–368. [Google Scholar] [CrossRef]
- Baltagi, B.H. Econometrics; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Cadavez, V.; Henningsen, A. The use of seemingly unrelated regression to predict the carcass composition of lambs. Meat Sci. 2012, 92, 548–553. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Judge, G.G.; Hill, R.C.; Griffiths, W.E.; Lütkepohl, H.; Lee, T.C. Introduction to the Theory and Practice of Econometrics; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Yahya, W.B.; Adebayo, S.B.; Jolayemi, E.T.; Oyejola, B.A.; Sanni, O.O.M. Effects of non-orthogonality on the efficiency of seemingly unrelated regression (SUR) models. InterStat J. 2008, 1, 1–29. [Google Scholar]
- Agresti, A. Statistical Methods for the Social Sciences, 5th ed.; Pearson: New York, NY, USA, 2018. [Google Scholar]
- Daraio, C.; Simar, L. Introducing environmental variables in nonparametric frontier models: A probabilistic approach. J. Product. Anal. 2005, 24, 93–121. [Google Scholar] [CrossRef]
Variable Name | Description | Source |
---|---|---|
PUBTF_ | Total number of publications during a 4-year time window ISCED-F_ (for the five disciplinary areas from FoE 05 science to FoE 09 medicine) | GRBS |
CITF_ | Total number of citations within a 4-year time window to papers published in that time window All citations count used in GRBS exclude self-citations | GRBS |
PUB10F_ PUB10F_P | PUB10F__: Number of pubs published in source titles that are within top 10% of that subject area, based on the SNIP value (ranked outlets) of the last year in the time window and for the specific area ISCED-F__ (for the five disciplinary areas from FoE 05 science to FoE 09 medicine) pub10F09p: Percentage of total pubs published in source titles that are within top 10% of that subject area, based on the SNIP value for the specific area ISCED-F__ (for the five disciplinary areas from FoE 05 science to FoE 09 medicine) | GRBS |
PUB25F_ PUB25F_P | pub25F__: Number of pubs published in source titles that are within top 25% of that subject area, based on the SNIP value of the last year in the time window (for the five disciplinary areas from FoE 05 science to FoE 09 medicine) pub25F__p: Percentage of total pubs published in source titles that are within top 25% of that subject area, based on the SNIP value of the last year in the time window (for the five disciplinary areas from FoE 05 science to FoE 09 medicine) | GRBS |
CIT10F_ CIT10F_P | cit10F__: Number of cites received from publications in journals that are within top 10% based on SNIP value (for the five disciplinary areas from FoE 05 science to FoE 09 medicine) cit10F__p: Percentage of total cites received from publications in journals that are within top 10% based on SNIP value (for the five disciplinary areas from FoE 05 science to FoE 09 medicine) | GRBS |
CIT25F_ CIT25F_P | cit25F09: Number of cites received from publications in journals that are within top 25% based on SNIP value (for the five disciplinary areas from FoE 05 science to FoE 09 medicine) cit25F09p: Percentage of total cites received from publications in journals that are within top 25% based on SNIP value (for the five disciplinary areas from FoE 05 science to FoE 09 medicine) | GRBS |
BAS.FOUNYEAR | Foundation year | ETER |
SIZE | Total number of enrolled students ISCED5-8 in all fields | ETER |
BAS.UNIHOSP | University hospital (1: yes; 0: no) | ETER |
BAS.LEGALST | Legal status (0: public universities; 1: private and private-government dependent universities) | ETER |
PHDINT.TOT | PhD intensity (students ISCED8/students ISCED5-8) | ETER |
PHDINT.ISCEDF_ | PhD intensity (students ISCED8/students ISCED5-8) within each disciplinary area FoE__ (for the five disciplinary areas from FoE 05 science to FoE 09 medicine) | ETER |
FOREIGN8_TOTST | Share of foreign PhD students | Elaboration from ETER |
RATIO_S_AS | Total students enrolled/total academic staff (HC) | ETER |
TOP251DEC P_TOP251DEC: (absolute and % terms) | Number of sub-sub-subjects where the HEIs is in the first decile of the world rank of institutions with the highest share of publications in source titles that are within top 25% of that subject area, based on the SNIP value (except the one considered) (P_TOP251DEC: Percentage share of sub-sub-subjects in the first decile top 25% SNIP over total number of sub-subjects where the HEIs has publication in GRBS) (except the one considered) | Elaboration from GRBS |
IC | International Collaboration Institution’s output ratio produced in collaboration with foreign institutions. The values are computed by analyzing an institution’s output whose affiliations include more than one country address | SCIMAGO |
SPEC | specialization index: The specialization index indicates the extent of thematic concentration/dispersion of an institution’s scientific output. Values range between 0 and 1, indicating generalist vs. specialized institutions, respectively. This indicator is computed according to the Gini index used in applied economics and statistics. | SCIMAGO |
F05—Science | F06—Computer Science | F07—Engineering | F08—Agriculture | F09—Medicine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | |
OUTPUT Equation (1): GRADUATES | |||||||||||||||
X1: Academic staff | 0.426 | 0.244 | 0.081 | 0.748 | 0.740 | 0.313 | −0.806 | 0.499 | 0.106 | −0.274 | 0.337 | 0.416 | 0.062 | 0.241 | 0.797 |
X12 | 0.075 | 0.049 | 0.127 | −0.099 | 0.192 | 0.606 | −0.186 | 0.082 | 0.023 | 0.019 | 0.050 | 0.695 | −0.029 | 0.020 | 0.148 |
X2: Students in the area | 0.891 | 0.222 | 0.000 | 1.090 | 0.472 | 0.021 | 2.304 | 0.551 | 0.000 | −0.070 | 0.435 | 0.872 | 0.656 | 0.450 | 0.145 |
X22 | 0.092 | 0.048 | 0.054 | −0.008 | 0.123 | 0.950 | −0.333 | 0.142 | 0.019 | 0.121 | 0.067 | 0.072 | 0.037 | 0.078 | 0.636 |
X1 × X2 | −0.221 | 0.123 | 0.073 | −0.110 | 0.250 | 0.658 | 0.433 | 0.218 | 0.047 | 0.061 | 0.098 | 0.536 | 0.011 | 0.077 | 0.891 |
Constant | −2.266 | 1.198 | 0.059 | −2.719 | 1.676 | 0.105 | −3.582 | 1.135 | 0.002 | 2.817 | 1.687 | 0.095 | −0.084 | 1.394 | 0.952 |
OUTPUT Equation (2): TOT_PUB | |||||||||||||||
X1: Academic staff | −0.767 | 0.457 | 0.093 | −2.327 | 1.139 | 0.041 | −1.481 | 1.285 | 0.249 | −0.577 | 0.568 | 0.310 | 0.747 | 0.688 | 0.278 |
X12 | 0.387 | 0.092 | 0.000 | 0.316 | 0.296 | 0.285 | 0.235 | 0.210 | 0.264 | −0.134 | 0.084 | 0.110 | 0.201 | 0.057 | 0.000 |
X2: Students in the area | −0.133 | 0.416 | 0.750 | 1.394 | 0.726 | 0.055 | 0.397 | 1.418 | 0.779 | −1.610 | 0.734 | 0.028 | −3.279 | 1.287 | 0.011 |
X22 | 0.015 | 0.089 | 0.863 | −0.405 | 0.189 | 0.033 | −0.218 | 0.366 | 0.551 | 0.217 | 0.113 | 0.056 | 0.522 | 0.222 | 0.019 |
X1 × X2 | −0.020 | 0.231 | 0.932 | 0.505 | 0.384 | 0.188 | 0.296 | 0.560 | 0.597 | 0.361 | 0.166 | 0.030 | −0.250 | 0.221 | 0.256 |
Constant | 5.838 | 2.249 | 0.009 | 4.801 | 2.580 | 0.063 | 8.127 | 2.921 | 0.005 | 10.542 | 2.848 | 0.000 | 14.084 | 3.986 | 0.000 |
Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | |
BP test of independence | 0.130 | 3.328 | 0.068 | 0.409 | 24.092 | 0.000 | 0.248 | 8.537 | 0.003 | 0.081 | 0.203 | 0.652 | 0.075 | 0.980 | 0.322 |
F05—Science | F06—Computer Science | F07—Engineering | F08—Agriculture | F09—Medicine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | |
OUTPUT Equation (1): GRADUATES | |||||||||||||||
X1: Academic staff in the area | 0.172 | 0.227 | 0.448 | 0.757 | 0.721 | 0.294 | −0.360 | 0.492 | 0.464 | −0.297 | 0.374 | 0.426 | 0.465 | 0.325 | 0.153 |
X12 | −0.033 | 0.048 | 0.496 | −0.089 | 0.191 | 0.642 | −0.168 | 0.081 | 0.039 | 0.020 | 0.048 | 0.684 | −0.011 | 0.021 | 0.609 |
X2: Students in the area | 0.420 | 0.227 | 0.064 | 1.182 | 0.541 | 0.029 | 1.743 | 0.556 | 0.002 | −0.263 | 0.461 | 0.568 | −1.331 | 0.749 | 0.076 |
X22 | 0.096 | 0.045 | 0.034 | −0.010 | 0.131 | 0.940 | −0.191 | 0.143 | 0.183 | 0.154 | 0.068 | 0.023 | 0.367 | 0.128 | 0.004 |
X1 × X2 | −0.042 | 0.116 | 0.721 | −0.135 | 0.248 | 0.585 | 0.275 | 0.216 | 0.203 | 0.071 | 0.112 | 0.527 | −0.126 | 0.102 | 0.220 |
International collaboration | 0.020 | 0.004 | 0.000 | 0.006 | 0.007 | 0.347 | 0.018 | 0.006 | 0.006 | 0.009 | 0.012 | 0.446 | 0.018 | 0.004 | 0.000 |
Specialization index | −1.412 | 0.343 | 0.000 | −0.967 | 0.488 | 0.047 | −0.868 | 0.418 | 0.038 | −1.893 | 1.505 | 0.208 | −0.807 | 0.359 | 0.024 |
Base foundation year legal status (ref. public university) | 0.000 | 0.000 | 0.755 | 0.000 | 0.000 | 0.029 | 0.000 | 0.000 | 0.607 | 0.000 | 0.000 | 0.995 | 0.000 | 0.000 | 0.018 |
Private university | −0.288 | 0.360 | 0.424 | 0.256 | 0.493 | 0.604 | 0.399 | 0.461 | 0.388 | 0.302 | 0.255 | 0.237 | |||
University size (# students enrolled) | −0.004 | 0.002 | 0.082 | 0.000 | 0.000 | 0.903 | −0.003 | 0.002 | 0.157 | −0.011 | 0.007 | 0.131 | −0.011 | 0.003 | 0.000 |
Constant | 0.745 | 1.256 | 0.553 | −3.628 | 2.006 | 0.070 | −3.200 | 1.153 | 0.005 | 4.357 | 2.384 | 0.068 | 5.193 | 2.368 | 0.028 |
OUTPUT Equation (2): TOT_PUB | |||||||||||||||
X1: Academic staff in the area | −1.317 | 0.413 | 0.001 | −2.146 | 0.988 | 0.030 | −0.195 | 0.943 | 0.836 | 0.576 | 0.499 | 0.249 | 1.433 | 0.930 | 0.123 |
X12 | 0.185 | 0.087 | 0.034 | 0.266 | 0.262 | 0.310 | 0.300 | 0.156 | 0.055 | −0.147 | 0.065 | 0.022 | 0.176 | 0.059 | 0.003 |
X2: Students in the area | −1.000 | 0.413 | 0.015 | 0.560 | 0.741 | 0.450 | −0.863 | 1.066 | 0.418 | −0.604 | 0.616 | 0.327 | −4.546 | 2.144 | 0.034 |
X22 | 0.006 | 0.082 | 0.945 | −0.242 | 0.180 | 0.179 | 0.149 | 0.274 | 0.587 | 0.170 | 0.091 | 0.061 | 0.784 | 0.366 | 0.032 |
X1 × X2 | 0.339 | 0.212 | 0.109 | 0.486 | 0.340 | 0.153 | −0.172 | 0.413 | 0.676 | −0.008 | 0.149 | 0.956 | −0.451 | 0.293 | 0.123 |
International collaboration | 0.020 | 0.008 | 0.009 | 0.016 | 0.009 | 0.077 | 0.052 | 0.012 | 0.000 | 0.067 | 0.017 | 0.000 | 0.067 | 0.013 | 0.000 |
Specialization index | −4.286 | 0.623 | 0.000 | −4.222 | 0.668 | 0.000 | −6.244 | 0.801 | 0.000 | 0.706 | 2.011 | 0.726 | −2.214 | 1.027 | 0.031 |
Base foundation year Legal status (ref. public university) | 0.000 | 0.000 | 0.899 | 0.001 | 0.000 | 0.065 | −0.001 | 0.000 | 0.150 | 0.001 | 0.001 | 0.252 | 0.000 | 0.000 | 0.703 |
Private university | −0.477 | 0.656 | 0.467 | −0.779 | 0.675 | 0.249 | −0.562 | 0.617 | 0.362 | 1.902 | 0.731 | 0.009 | |||
University size (students enrolled) | −0.008 | 0.004 | 0.025 | −0.006 | 0.004 | 0.201 | −0.006 | 0.004 | 0.137 | 0.023 | 0.009 | 0.015 | 0.001 | 0.009 | 0.888 |
Constant | 13.315 | 2.285 | 0.000 | 7.641 | 2.748 | 0.005 | 11.563 | 2.209 | 0.000 | 0.732 | 3.187 | 0.818 | 15.688 | 6.776 | 0.021 |
Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | |
BP test | −0.048 | 0.459 | 0.498 | 0.381 | 20.852 | 0.000 | 0.065 | 0.592 | 0.442 | 0.127 | 0.499 | 0.480 | −0.088 | 1.339 | 0.247 |
F05—Science | F06—Computer Science | F07—Engineering | F08—Agriculture | F09—Medicine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | |
OUTPUT Equation (1): GRADUATES | |||||||||||||||
X1: Academic staff in the area | 0.426 | 0.244 | 0.081 | 0.748 | 0.740 | 0.313 | −0.806 | 0.499 | 0.106 | −0.274 | 0.337 | 0.416 | 0.062 | 0.241 | 0.797 |
X12 | 0.075 | 0.049 | 0.127 | −0.099 | 0.192 | 0.606 | −0.186 | 0.082 | 0.023 | 0.019 | 0.050 | 0.695 | −0.029 | 0.020 | 0.148 |
X2: Students in the area | 0.891 | 0.222 | 0.000 | 1.090 | 0.472 | 0.021 | 2.304 | 0.551 | 0.000 | −0.070 | 0.435 | 0.872 | 0.656 | 0.450 | 0.145 |
X22 | 0.092 | 0.048 | 0.054 | −0.008 | 0.123 | 0.950 | −0.333 | 0.142 | 0.019 | 0.121 | 0.067 | 0.072 | 0.037 | 0.078 | 0.636 |
X1 × X2 | −0.221 | 0.123 | 0.073 | −0.110 | 0.250 | 0.658 | 0.433 | 0.218 | 0.047 | 0.061 | 0.098 | 0.536 | 0.011 | 0.077 | 0.891 |
Constant | −2.266 | 1.198 | 0.059 | −2.719 | 1.676 | 0.105 | −3.582 | 1.135 | 0.002 | 2.817 | 1.687 | 0.095 | −0.084 | 1.394 | 0.952 |
OUTPUT Equation (2): TOT_CIT | |||||||||||||||
X1: Academic staff in the area | −0.380 | 0.588 | 0.518 | −2.199 | 1.408 | 0.119 | −1.590 | 1.629 | 0.329 | −0.947 | 0.591 | 0.109 | 1.420 | 0.821 | 0.084 |
X12 | 0.546 | 0.118 | 0.000 | 0.443 | 0.366 | 0.226 | 0.352 | 0.266 | 0.186 | −0.147 | 0.087 | 0.091 | 0.265 | 0.068 | 0.000 |
X2: Students in the area | 0.073 | 0.535 | 0.891 | 2.197 | 0.897 | 0.014 | 0.422 | 1.799 | 0.814 | −1.850 | 0.763 | 0.015 | −3.697 | 1.535 | 0.016 |
X22 | 0.106 | 0.115 | 0.356 | −0.473 | 0.234 | 0.043 | −0.201 | 0.464 | 0.664 | 0.220 | 0.118 | 0.062 | 0.647 | 0.265 | 0.015 |
X1 × X2 | −0.316 | 0.297 | 0.288 | 0.331 | 0.475 | 0.486 | 0.188 | 0.710 | 0.791 | 0.504 | 0.172 | 0.003 | −0.483 | 0.263 | 0.066 |
Constant | 4.382 | 2.890 | 0.129 | 2.426 | 3.189 | 0.447 | 9.403 | 3.705 | 0.011 | 12.577 | 2.959 | 0.000 | 15.199 | 4.754 | 0.001 |
Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | |
BP test | 0.274 | 14.679 | 0.000 | 0.449 | 29.018 | 0.000 | 0.246 | 8.354 | 0.004 | 0.004 | 0.001 | 0.980 | 0.066 | 0.755 | 0.385 |
F05—Science | F06—Computer Science | F07—Engineering | F08—Agriculture | F09—Medicine | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | Coef. | Std. Err. | p > z | |
OUTPUT Equation (1): GRADUATES | |||||||||||||||
X1: Academic staff in the area | 0.172 | 0.227 | 0.448 | 0.757 | 0.721 | 0.294 | −0.360 | 0.492 | 0.464 | −0.297 | 0.374 | 0.426 | 0.465 | 0.325 | 0.153 |
X12 | −0.033 | 0.048 | 0.496 | −0.089 | 0.191 | 0.642 | −0.168 | 0.081 | 0.039 | 0.020 | 0.048 | 0.684 | −0.011 | 0.021 | 0.609 |
X2: Students in the area | 0.420 | 0.227 | 0.064 | 1.182 | 0.541 | 0.029 | 1.743 | 0.556 | 0.002 | −0.263 | 0.461 | 0.568 | −1.331 | 0.749 | 0.076 |
X22 | 0.096 | 0.045 | 0.034 | −0.010 | 0.131 | 0.940 | −0.191 | 0.143 | 0.183 | 0.154 | 0.068 | 0.023 | 0.367 | 0.128 | 0.004 |
X1 × X2 | −0.042 | 0.116 | 0.721 | −0.135 | 0.248 | 0.585 | 0.275 | 0.216 | 0.203 | 0.071 | 0.112 | 0.527 | −0.126 | 0.102 | 0.220 |
International collaboration | 0.020 | 0.004 | 0.000 | 0.006 | 0.007 | 0.347 | 0.018 | 0.006 | 0.006 | 0.009 | 0.012 | 0.446 | 0.018 | 0.004 | 0.000 |
Specialization index | −1.412 | 0.343 | 0.000 | −0.967 | 0.488 | 0.047 | −0.868 | 0.418 | 0.038 | −1.893 | 1.505 | 0.208 | −0.807 | 0.359 | 0.024 |
Base foundation year legal status (ref. public university) | 0.000 | 0.000 | 0.755 | 0.000 | 0.000 | 0.029 | 0.000 | 0.000 | 0.607 | 0.000 | 0.000 | 0.995 | 0.000 | 0.000 | 0.018 |
Private university | −0.288 | 0.360 | 0.424 | 0.256 | 0.493 | 0.604 | 0.399 | 0.461 | 0.388 | 0.302 | 0.255 | 0.237 | |||
University size (# students enrolled) | −0.004 | 0.002 | 0.082 | 0.000 | 0.003 | 0.903 | −0.003 | 0.002 | 0.157 | −0.011 | 0.007 | 0.131 | −0.011 | 0.003 | 0.000 |
Constant | 0.745 | 1.256 | 0.553 | −3.628 | 2.006 | 0.070 | −3.200 | 1.153 | 0.005 | 4.357 | 2.384 | 0.068 | 5.193 | 2.368 | 0.028 |
OUTPUT Equation (2): TOT_CIT | |||||||||||||||
X1: Academic staff in the area | −1.248 | 0.498 | 0.012 | −2.036 | 1.204 | 0.091 | 0.201 | 1.173 | 0.864 | 0.116 | 0.544 | 0.831 | 1.921 | 1.081 | 0.076 |
X12 | 0.217 | 0.105 | 0.038 | 0.235 | 0.319 | 0.461 | 0.446 | 0.194 | 0.022 | −0.151 | 0.070 | 0.031 | 0.220 | 0.069 | 0.001 |
X2: Students in the area | −1.387 | 0.497 | 0.005 | 1.499 | 0.903 | 0.097 | −1.390 | 1.327 | 0.295 | −0.911 | 0.672 | 0.175 | −4.823 | 2.493 | 0.053 |
X22 | 0.105 | 0.099 | 0.288 | −0.385 | 0.219 | 0.080 | 0.318 | 0.341 | 0.352 | 0.176 | 0.099 | 0.075 | 0.887 | 0.426 | 0.037 |
X1 × X2 | 0.261 | 0.255 | 0.306 | 0.508 | 0.414 | 0.220 | −0.469 | 0.514 | 0.362 | 0.158 | 0.163 | 0.333 | −0.626 | 0.341 | 0.066 |
International collaboration | 0.042 | 0.009 | 0.000 | 0.043 | 0.011 | 0.000 | 0.073 | 0.015 | 0.000 | 0.069 | 0.018 | 0.000 | 0.088 | 0.015 | 0.000 |
Specialization index | −6.129 | 0.752 | 0.000 | −4.365 | 0.814 | 0.000 | −8.035 | 0.997 | 0.000 | −0.051 | 2.193 | 0.982 | −2.572 | 1.194 | 0.031 |
Base foundation year legal status (ref. Public university) | 0.000 | 0.000 | 0.854 | 0.000 | 0.000 | 0.172 | −0.001 | 0.001 | 0.244 | 0.001 | 0.001 | 0.217 | 0.000 | 0.000 | 0.409 |
Private university | −0.652 | 0.791 | 0.409 | −1.200 | 0.823 | 0.145 | 0.066 | 0.672 | 0.921 | 2.508 | 0.850 | 0.003 | |||
University size (students enrolled) | −0.014 | 0.004 | 0.002 | −0.004 | 0.005 | 0.475 | −0.008 | 0.005 | 0.103 | 0.019 | 0.010 | 0.065 | −0.002 | 0.010 | 0.851 |
Constant | 15.622 | 2.756 | 0.000 | 3.795 | 3.348 | 0.257 | 13.641 | 2.749 | 0.000 | 3.365 | 3.474 | 0.333 | 16.245 | 7.880 | 0.039 |
Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | Corr | Chi2 (1) | Sign | |
BP test | 0.077 | 1.146 | 0.284 | 0.437 | 27.498 | 0.000 | 0.051 | 0.355 | 0.551 | −0.012 | 0.004 | 0.947 | −0.122 | 2.582 | 0.108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonaccorsi, A.; Belingheri, P.; Secondi, L. Economies of Scope between Research and Teaching in European Universities. Mathematics 2022, 10, 42. https://doi.org/10.3390/math10010042
Bonaccorsi A, Belingheri P, Secondi L. Economies of Scope between Research and Teaching in European Universities. Mathematics. 2022; 10(1):42. https://doi.org/10.3390/math10010042
Chicago/Turabian StyleBonaccorsi, Andrea, Paola Belingheri, and Luca Secondi. 2022. "Economies of Scope between Research and Teaching in European Universities" Mathematics 10, no. 1: 42. https://doi.org/10.3390/math10010042
APA StyleBonaccorsi, A., Belingheri, P., & Secondi, L. (2022). Economies of Scope between Research and Teaching in European Universities. Mathematics, 10(1), 42. https://doi.org/10.3390/math10010042