# ρ — Adic Analogues of Ramanujan Type Formulas for 1/π

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

**MSC**11G07; 11G15; 11F11; 44A20

## 1. Introduction

## 2. Statement of Results

**Theorem 1.**For $d\in \{2,3,4,6\}$, let ${\lambda}_{d}\in \overline{\mathbb{Q}}$ such that $\mathbb{Q}\left({\lambda}_{d}\right)$ is totally real, the elliptic curve ${E}_{d}\left({\lambda}_{d}\right)$ has complex multiplication, and $|{\lambda}_{d}|<1$ for an embedding of ${\lambda}_{d}$ to $\mathbb{C}$. For each prime p that is unramified in $\mathbb{Q}\left(\sqrt{1-{\lambda}_{d}}\right)$ and coprime to the discriminant of ${E}_{d}\left({\lambda}_{d}\right)$ such that $a,{\lambda}_{d}$ can be embedded in ${\mathbb{Z}}_{p}^{*}$ (and we fix such embeddings), then

**Theorem 2.**With notation and assumptions as in Theorem 1,

## 3. Ramanujan Type Formula for $1/\pi $

#### 3.1. Hypergeometric Formulas

**Lemma 3.**For x such that both hand sides converge,

#### 3.2. Picard–Fuchs Equation

**Lemma 4.**Let $f\left(\lambda \right)$ be defined by

#### 3.3. Modular Forms and Singular Values of Modular Forms

**Proposition 5.**For each imaginary quadratic field K, there is a number ${\Omega}_{K}\in {\mathbb{C}}^{*}$ such that for all meromorphic modular forms F of weight k with algebraic coefficients, and all $\tau \in K\cap \mathcal{H}$,

**Lemma 6.**Let K be an imaginary quadratic field and F a weight k meromorphic modular form with algebraic coefficients. Then there is a number ${\Omega}_{K}\in {\mathbb{C}}^{*}$, depending on K, such that for any $\tau \in K\cap \mathcal{H}$, $F\left(\tau \right){\Omega}_{K}^{-k}$ and ${\partial}_{k}F\left(\tau \right){\Omega}_{K}^{-k-2}$ are algebraic.

**Lemma 7.**The monodromy group Γ for the Picard–Fuchs equation $P{F}_{\lambda}$ from Equation (3.6) is isomorphic to a level 2 subgroup of $S{L}_{2}\left(\mathbb{Z}\right)$.

**Lemma 8.**Both

#### 3.4. Formulas for $1/\pi $ in Terms of Periods

**Lemma 9.**Let $\tau \in K$ be such that $w:={f}_{\lambda}\left(\tau \right){\Omega}_{K}^{-1}\ne 0$. Then there is a unique algebraic number ${c}^{\prime}$ such that

**Corollary 10.**The function $p\left(\lambda \right)$ describing the variation of the period integrals is equal to the product of π with the solution to the Picard–Fuchs equation, up to multiplication by an algebraic number;

**Proposition 11**(Borweins and Chudnovskys [3,4]) There exists $a\in \overline{\mathbb{Q}}$ such that

## 4. The Arithmetic of the Elliptic Curves

#### 4.1. Expansions of the Invariant Differentials at Infinity

**Lemma 12.**Let $p\ge 5$ be a prime. For each family of curves ${\tilde{E}}_{d}\left(t\right):{y}^{2}+Ay=B,$ listed in the introduction, with $A={a}_{1}x+{a}_{3}$, $B={x}^{3}+{a}_{2}{x}^{2}+{a}_{4}x+{a}_{6}$, let $z=\frac{-x}{y}$ be the local uniformizer. Expand

- For $d=2$: $A=0$, $B=x(x-1)(x-t)$.$$\begin{array}{ccc}\hfill {H}_{2,p-1}\left(t\right)& =& {\phantom{\rule{0.166667em}{0ex}}}_{2}{F}_{1}\left(\right)open="["\; close="]">\begin{array}{cc}\frac{1-p}{2}& \frac{1-p}{2}\\ & 1\end{array}\phantom{\rule{0.277778em}{0ex}};\phantom{\rule{0.277778em}{0ex}}t\hfill \end{array}& \equiv & {\phantom{\rule{0.166667em}{0ex}}}_{2}{F}_{1}{\left(\right)}_{\begin{array}{cc}\frac{1}{2}& \frac{1}{2}\\ & 1\end{array}}(p-1)\phantom{\rule{10.0pt}{0ex}}(mod\phantom{\rule{0.277778em}{0ex}}p)\hfill $$
- For $d=3$: $A=x+\frac{t}{27}$, $B={x}^{3}$. ${H}_{3,p-1}\left(t\right)$ is the coefficient of ${x}^{p-1}$ in$$\sum _{\begin{array}{c}s+j=p-1\\ j\le s\end{array}}\left(\right)open="("\; close=")">\genfrac{}{}{0pt}{}{s}{j}{B}^{j}{A}^{s-j}$$By a similar argument, we obtain$$\begin{array}{ccc}\hfill {H}_{3,p-1}\left(t\right)& =& \sum _{j=0}^{\frac{p-1}{3}}\left(\right)open="("\; close=")">\genfrac{}{}{0pt}{}{p-1-j}{j}\left(\right)open="("\; close=")">\genfrac{}{}{0pt}{}{p-1-2j}{p-1-3j}\hfill & {\left(\right)}^{\frac{t}{27}}j\end{array}$$
- For $d=4$: $A=0$, $B=x({x}^{2}+x+\frac{t}{4})$.$$\begin{array}{ccc}\hfill {H}_{4,p-1}& =& \sum _{i=0}^{\frac{p-1}{4}}\left(\right)open="("\; close=")">\genfrac{}{}{0pt}{}{\frac{p-1}{2}}{j,j,\frac{p-1}{2}-2j}{\left(\right)}^{\frac{t}{4}}j\hfill \end{array}$$
- For $d=6$: $A=x$, $B={x}^{3}-\frac{t}{432}$.$$\begin{array}{ccc}\hfill {H}_{6,p-1}\left(t\right)& \equiv & \sum _{j=0}^{\frac{p-1}{6}}\left(\right)open="("\; close=")">\genfrac{}{}{0pt}{}{p-1-3j}{3j}\left(\right)open="("\; close=")">\genfrac{}{}{0pt}{}{3j}{j}\hfill & {\left(\right)}^{\frac{-t}{432}}j\end{array}$$

**Lemma 13.**For $d=2,3,4,6$, and $p\ge 5$ prime,

**Corollary 14.**For $d=2,3,4,6$, and $p\ge 5$ prime,

#### 4.2. Geometric Interpretation of Lemma 13

#### 4.3. Interpretation in Terms of Galois Representations

**Lemma 15.**For $\tilde{\rho}$ defined above, the determinant of $\tilde{\rho}\left({\mathrm{Fr}}_{v}\right)$ is p and its trace is determined up to a ± sign.

## 5. Proof of Theorems 1 and 2

**Results of Atkin, Swinnerton-Dyer and Katz**

**Proposition 16.**With notation and assumptions as above, if under the choice of the local uniformizer there exists a degree p (resp. ${p}^{2}$) Frobenius lifting Φ that commutes with the induced action of R on ${H}_{DR}^{1}(\widehat{E}/A,\left(p\right))$ in the ordinary (resp. supersingular case) then

**Lemma 17.**Let $d=\{2,3,4,6\}$. Then for any odd prime p coprime to d,

**Lemma 18.**Let $d\in \{2,3,4,6\}$, p be an odd prime coprime to d, and $t\in {\mathbb{Z}}_{p}$. Then

## Acknowledgements

## References

- Ramanujan, S. Modular equations and approximations to π. Quart. J. Math.
**1914**, 45, 350–372. [Google Scholar] - Bauer, G. Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. J. Reine Angew. Math.
**1859**, 56, 101–121. [Google Scholar] [CrossRef] - Borwein, J.M.; Borwein, P.B. Pi and the AGM. In Canadian Mathematical Society Series of Monographs and Advanced Texts; John Wiley & Sons Inc.: New York, NY, USA, 1987; p. xvi+414. [Google Scholar]
- Chudnovsky, D.V.; Chudnovsky, G.V. Approximations and complex multiplication according to Ramanujan. In Ramanujan Revisited (Urbana-Champaign, Ill., 1987); Academic Press: Boston, MA, USA, 1988; pp. 375–472. [Google Scholar]
- Baruah, N.D.; Berndt, B.C.; Chan, H.H. Ramanujan’s series for 1/π: A survey. Am. Math. Mon.
**2009**, 116, 567–587. [Google Scholar] [CrossRef] - Zudilin, W. Ramanujan-type formulae for 1/π: A second wind? In Modular Forms and String Duality; American Mathematical Society: Providence, RI, USA, 2008; Volume 54, pp. 179–188. [Google Scholar]
- Sun, Z.-W. List of conjectural series for powers of π and other constants. arXiv:1102.5649.
- van Hamme, L. Some conjectures concerning partial sums of generalized hypergeometric series. In p-adic Functional Analysis (Nijmegen, 1996); Dekker: New York, NY, USA, 1997; Volume 192, pp. 223–236. [Google Scholar]
- Mortenson, E. A p-adic supercongruence conjecture of van Hamme. Proc. Am. Math. Soc.
**2008**, 136, 4321–4328. [Google Scholar] [CrossRef] - Zudilin, W. Ramanujan-type supercongruences. J. Number Theory
**2009**, 129, 1848–1857. [Google Scholar] [CrossRef] - McCarthy, D.; Osburn, R. A p-adic analogue of a formula of Ramanujan. Arch. Math. (Basel)
**2008**, 91, 492–504. [Google Scholar] [CrossRef] - Long, L. Hypergeometric evaluation identities and supercongruences. Pacific J. Math.
**2011**, 249, 405–418. [Google Scholar] [CrossRef] - Sun, Z.-W. A refinement of a congruence result by van Hamme and Mortenson. arXiv:1011.1902.
- Selberg, A.; Chowla, S. On Epstein’s zeta-function. J. Reine Angew. Math.
**1967**, 227, 86–110. [Google Scholar] - Guillera, J.; Zudilin, W. “Divergent” Ramanujan-type supercongruences. Proc. Am. Math. Soc.
**2012**, 140, 765–777. [Google Scholar] [CrossRef] - Shioda, T.; Inose, H. On singular K3 surfaces. In Complex Analysis and Algebraic Geometry; Iwanami Shoten: Tokyo, Japan, 1977; pp. 119–136. [Google Scholar]
- Ahlgren, S.; Ono, K.; Penniston, D. Zeta functions of an infinite family of K3 surfaces. Am. J. Math.
**2002**, 124, 353–368. [Google Scholar] [CrossRef] - Kibelbek, J.; Long, L.; Moss, K.; Sheller, B.; Yuan, H. Supercongruences and Complex Multiplication. arXiv:1210.4489.
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions. In Encyclopedia of Mathematics and its Applications; Cambridge University Press: Cambridge, UK, 1999; Volume 71, p. xvi+664. [Google Scholar]
- Yoshida, M. Fuchsian Differential Equations; Vieweg & Sohn: Braunschweig, Germany, 1987; p. xiv+215. [Google Scholar]
- Zagier, D. Elliptic Modular Forms and Their Applications. In The 1-2-3 of Modular Forms; Springer: Berlin, Germany, 2008; pp. 1–103. [Google Scholar]
- Stiller, P.F. A note on automorphic forms of weight one and weight three. Trans. Am. Math. Soc.
**1985**, 291, 503–518. [Google Scholar] [CrossRef] - Gross, B.H. On the periods of abelian integrals and a formula of Chowla and Selberg. Invent. Math.
**1978**, 45, 193–211. [Google Scholar] [CrossRef] - Stienstra, J.; Beukers, F. On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces. Math. Ann.
**1985**, 271, 269–304. [Google Scholar] [CrossRef] - Lian, B.H.; Yau, S.T. Arithmetic Properties of Mirror Map and Quantum Coupling. Available online: http://lanl.arxiv.org/abs/hep-th/9411234v3 (accessed on 1 March 2013).
- Yang, Y.; Yui, N. Differential equations satisfied by modular forms and K3 surfaces. Illinois J. Math.
**2007**, 51, 667–696. [Google Scholar] - Ditters, E.J. Hilbert functions and Witt functions. An identity for congruences of Atkin and of Swinnerton-Dyer type. Math. Z.
**1990**, 205, 247–278. [Google Scholar] - Top, J. Descent by 3-isogeny and 3-rank of quadratic fields. In Advances in Number Theory (Kingston, ON, 1991); Oxford Science Publisher, Oxford University Press: New York, NY, USA, 1993; pp. 303–317. [Google Scholar]
- Atkin, A.O.L.; Swinnerton-Dyer, H.P.F. Modular forms on noncongruence subgroups. In Combinatorics (Proceedings Symposium Pure Mathematical, Vol. XIX, University California, Los Angeles, California, 1968); American Mathematical Society: Providence, RI, USA, 1971; pp. 1–25. [Google Scholar]
- Cartier, P. Groupes formels, fonctions automorphes et fonctions zeta des courbes elliptiques. In Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2; Gauthier-Villars: Paris, France, 1971; pp. 291–299. [Google Scholar]
- Katz, N.M. Crystalline cohomology, Dieudonné modules, and Jacobi sums. In Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979); Tata Institute of Fundamental Research: Bombay, India, 1981; Volume 10, pp. 165–246. [Google Scholar]
- Katz, N.M. p-adic properties of modular schemes and modular forms. In Modular Functions of One Variable, III (Proceedings International Summer School, University Antwerp, Antwerp, 1972); Springer: Berlin, Germany, 1973; Volume 350, pp. 69–190. [Google Scholar]
- Coster, M.J.; van Hamme, L. Supercongruences of Atkina and Swinnerton-Dyer type for Legendre polynomials. J. Number Theory
**1991**, 38, 265–286. [Google Scholar] [CrossRef]

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Chisholm, S.; Deines, A.; Long, L.; Nebe, G.; Swisher, H.
*ρ *— Adic Analogues of Ramanujan Type Formulas for 1/π. *Mathematics* **2013**, *1*, 9-30.
https://doi.org/10.3390/math1010009

**AMA Style**

Chisholm S, Deines A, Long L, Nebe G, Swisher H.
*ρ *— Adic Analogues of Ramanujan Type Formulas for 1/π. *Mathematics*. 2013; 1(1):9-30.
https://doi.org/10.3390/math1010009

**Chicago/Turabian Style**

Chisholm, Sarah, Alyson Deines, Ling Long, Gabriele Nebe, and Holly Swisher.
2013. "*ρ *— Adic Analogues of Ramanujan Type Formulas for 1/π" *Mathematics* 1, no. 1: 9-30.
https://doi.org/10.3390/math1010009