Next Article in Journal
Correction: Baucum II, Anthony J. et al. Proteomic Analysis of the Spinophilin Interactome in Rodent Striatum Following Psychostimulant Sensitization. Proteomes 2018, 6, 53
Previous Article in Journal
Sex-Specific Proteomic Changes Induced by Genetic Deletion of Fibroblast Growth Factor 14 (FGF14), a Regulator of Neuronal Ion Channels
Open AccessArticle

A Novel Analysis of the Peptide Terminome Characterizes Dynamics of Proteolytic Regulation in Vertebrate Skeletal Muscle Under Severe Stress

1
Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
2
Department of Mathematical Sciences, Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
*
Author to whom correspondence should be addressed.
Proteomes 2019, 7(1), 6; https://doi.org/10.3390/proteomes7010006
Received: 18 January 2019 / Revised: 9 February 2019 / Accepted: 10 February 2019 / Published: 13 February 2019
In healthy cells, proteolysis is orderly executed to maintain basal homeostasis and normal physiology. Dyscontrol in proteolysis under severe stress condition induces cell death, but the dynamics of proteolytic regulation towards the critical phase remain unclear. Teleosts have been suggested an alternative model for the study of proteolysis under severe stress. In this study, horse mackerel (Trachurus japonicus) was used and exacerbated under severe stress conditions due to air exposure. Although the complete genome for T. japonicus is not available, a transcriptomic analysis was performed to construct a reference protein database, and the expression of 72 proteases were confirmed. Quantitative peptidomic analysis revealed that proteins related to glycolysis and muscle contraction systems were highly cleaved into peptides immediately under the severe stress. Novel analysis of the peptide terminome using a multiple linear regression model demonstrated profiles of proteolysis under severe stress. The results indicated a phase transition towards dyscontrol in proteolysis in T. japonicus skeletal muscle during air exposure. Our novel approach will aid in investigating the dynamics of proteolytic regulation in skeletal muscle of non-model vertebrates. View Full-Text
Keywords: peptide terminome; proteolysis; peptidomic analysis; multiple linear regression model; non-model vertebrates peptide terminome; proteolysis; peptidomic analysis; multiple linear regression model; non-model vertebrates
Show Figures

Graphical abstract

MDPI and ACS Style

Kominami, Y.; Hayashi, T.; Tokihiro, T.; Ushio, H. A Novel Analysis of the Peptide Terminome Characterizes Dynamics of Proteolytic Regulation in Vertebrate Skeletal Muscle Under Severe Stress. Proteomes 2019, 7, 6.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop