Virophages and Their Interactions with Giant Viruses and Host Cells
Abstract
:1. Introduction
2. Virophage Biology
3. Interactions between Virophages and Host Cells/Giant Viruses
4. The Potential Roles of the Proteins in the Cellular Interactions of the Virophages
5. Conclusions and Future Prospective
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- La Scola, B.; Desnues, C.; Pagnier, I.; Robert, C.; Barrassi, L.; Fournous, G.; Merchat, M.; Suzan-Monti, M.; Forterre, P.; Koonin, E.; et al. The virophage as a unique parasite of the giant mimivirus. Nature 2008, 455, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M.; Kuhn, J.H.; Fischer, M.G. A classification system for virophages and satellite viruses. Arch. Virol. 2016, 161, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Diesend, J.; Kruse, J.; Hagedorn, M.; Hammann, C. Amoebae, giant viruses, and virophages make up a complex, multilayered threesome. Front. Cell. Infect. Microbiol. 2017, 7, 527. [Google Scholar] [CrossRef] [PubMed]
- Bekliz, M.; Colson, P.; La Scola, B. The expanding family of virophages. Viruses 2016, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, W.; Yan, S.; Xiao, J.; Zhang, Y.; Li, B.; Pan, Y.; Wang, Y. Diversity of virophages in metagenomic data sets. J. Virol. 2013, 87, 4225–4236. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Zhang, W.; Zhou, X.; Wang, H.; Sun, G.; Xiao, J.; Pan, Y.; Yan, S.; Wang, Y. Novel virophages discovered in a freshwater lake in china. Front. Microbiol. 2016, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.G.; Suttle, C.A. A virophage at the origin of large DNA transposons. Science 2011, 332, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Yau, S.; Lauro, F.M.; DeMaere, M.Z.; Brown, M.V.; Thomas, T.; Raftery, M.J.; Andrews-Pfannkoch, C.; Lewis, M.; Hoffman, J.M.; Gibson, J.A.; et al. Virophage control of antarctic algal host-virus dynamics. Proc. Natl. Acad. Sci. USA 2011, 108, 6163–6168. [Google Scholar] [CrossRef] [PubMed]
- Santini, S.; Jeudy, S.; Bartoli, J.; Poirot, O.; Lescot, M.; Abergel, C.; Barbe, V.; Wommack, K.E.; Noordeloos, A.A.; Brussaard, C.P.; et al. Genome of phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc. Natl. Acad. Sci. USA 2013, 110, 10800–10805. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Yoo, D.; Liu, W.T. Metagenomics reveals a novel virophage population in a tibetan mountain lake. Microb. Environ. 2016, 31, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Sun, D.; Childers, A.; McDermott, T.R.; Wang, Y.; Liles, M.R. Three novel virophage genomes discovered from yellowstone lake metagenomes. J. Virol. 2015, 89, 1278–1285. [Google Scholar] [CrossRef] [PubMed]
- Gaia, M.; Benamar, S.; Boughalmi, M.; Pagnier, I.; Croce, O.; Colson, P.; Raoult, D.; La Scola, B. Zamilon, a novel virophage with mimiviridae host specificity. PLoS ONE 2014, 9, e94923. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Renvoise, A.; Botelho-Nevers, E.; La Scola, B.; Desnues, C.; Raoult, D. Acanthamoeba polyphaga mimivirus virophage seroconversion in travelers returning from laos. Emerg. Infect. Dis. 2012, 18, 1500–1502. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; La Scola, B.; Bowman, V.D.; Ryan, C.M.; Whitelegge, J.P.; Raoult, D.; Rossmann, M.G. Structural studies of the sputnik virophage. J. Virol. 2010, 84, 894–897. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M.; Cvirkaite-Krupovic, V. Virophages or satellite viruses? Nat. Rev. Microbiol. 2011, 9, 762–763. [Google Scholar] [CrossRef] [PubMed]
- Boyer, M.; Azza, S.; Barrassi, L.; Klose, T.; Campocasso, A.; Pagnier, I.; Fournous, G.; Borg, A.; Robert, C.; Zhang, X.; et al. Mimivirus shows dramatic genome reduction after intraamoebal culture. Proc. Natl. Acad. Sci. USA 2011, 108, 10296–10301. [Google Scholar] [CrossRef] [PubMed]
- Sobhy, H.; Scola, B.L.; Pagnier, I.; Raoult, D.; Colson, P. Identification of giant mimivirus protein functions using rna interference. Front. Microbiol. 2015, 6, 345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobhy, H. Characterization of Protein Involved in the Fibers of Mimivirus. Ph.D. Thesis, Universite d’Aix-Marseille, Marseille, France, 2014. [Google Scholar]
- Levasseur, A.; Bekliz, M.; Chabriere, E.; Pontarotti, P.; La Scola, B.; Raoult, D. Mimivire is a defence system in mimivirus that confers resistance to virophage. Nature 2016, 531, 249. [Google Scholar] [CrossRef] [PubMed]
- Claverie, J.-M.; Abergel, C. Crispr-cas-like system in giant viruses: Why mimivire is not likely to be an adaptive immune system. Virol. Sin. 2016, 31, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Mohanraju, P.; Makarova, K.S.; Zetsche, B.; Zhang, F.; Koonin, E.V.; van der Oost, J. Diverse evolutionary roots and mechanistic variations of the crispr-cas systems. Science 2016, 353. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.G.; Hackl, T. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 2016, 540, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Ledford, H. Five big mysteries about crispr’s origins. Nature 2017, 541, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Sobhy, H. A review of functional motifs utilized by viruses. Proteomes 2016, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Sobhy, H. A bioinformatics pipeline to search functional motifs within whole-proteome data: A case study of poxviruses. Virus Genes 2017, 53, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.; Wang, S. E3 ubiquitin ligases and human papillomavirus-induced carcinogenesis. J. Int. Med. Res. 2014, 42, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Squiavinato, A.C.M.; Silvestre, R.N.; Elgui De Oliveira, D. Biology and oncogenicity of the kaposi sarcoma herpesvirus k1 protein. Rev. Med. Virol. 2015, 25, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Kawaguchi, Y. Role of the immunoreceptor tyrosine-based activation motif of latent membrane protein 2A (LMP2A) in Epstein-Barr virus LMP2A-induced cell transformation. J. Virol. 2014, 88, 5189–5194. [Google Scholar] [CrossRef] [PubMed]
- Lanier, L.L. Viral immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling in cell transformation and cancer. Trends Cell Biol. 2006, 16, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Lin, J.Y.; Chou, Y.C.; Chen, M.R.; Yeh, T.H.; Lin, C.W.; Lin, S.J.; Tsai, C.H. Epstein-Barr virus LMP2A suppresses MHC class II expression by regulating the B-cell transcription factors E47 and PU.1. Blood 2015, 125, 2228–2238. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Grande, S.M.; Monroe, J.G.; Ross, S.R. Mouse mammary tumor virus suppresses apoptosis of mammary epithelial cells through itam-mediated signaling. J. Virol. 2012, 86, 13232–13240. [Google Scholar] [CrossRef] [PubMed]
- Grande, S.M.; Bannish, G.; Fuentes-Panana, E.M.; Katz, E.; Monroe, J.G. Tonic B-cell and viral itam signaling: Context is everything. Immunol. Rev. 2007, 218, 214–234. [Google Scholar] [CrossRef] [PubMed]
- Geimonen, E.; LaMonica, R.; Springer, K.; Farooqui, Y.; Gavrilovskaya, I.N.; Mackow, E.R. Hantavirus pulmonary syndrome-associated hantaviruses contain conserved and functional itam signaling elements. J. Virol. 2003, 77, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Stebbing, R.E.; Irvin, S.C.; Rivera-Serrano, E.E.; Boehme, K.W.; Ikizler, M.; Yoder, J.A.; Dermody, T.S.; Sherry, B. An ITAM in a nonenveloped virus regulates activation of NF-kB, induction of beta interferon, and viral spread. J. Virol. 2014, 88, 2572–2583. [Google Scholar] [CrossRef] [PubMed]
- Nguyen Ba, A.N.; Pogoutse, A.; Provart, N.; Moses, A.M. Nlstradamus: A simple hidden markov model for nuclear localization signal prediction. BMC Bioinform. 2009, 10, 202. [Google Scholar] [CrossRef] [PubMed]
Virophage | Source | Giant Virus | Host | Genome Size (kb) | Number of ORFs | Reference |
---|---|---|---|---|---|---|
ALM * | Ace Lake, Antarctica | 18 | 22 | [5] | ||
DSLV1 * | Dishui Lake, China | 29 | 28 | [6] | ||
Mavirus | Coastal waters, USA | Cafeteria roenbergensis virus | Marine phagotrophic flagellate | 19 | 20 | [7] |
OLV * | Organic Lake, Antarctica | Organic Lake phycodnavirus | 26 | 24 | [8] | |
PgVV | Dutch coastal waters | Phaeocystis globosa virus PgV-16T | Algae | 20 | 16 | [9] |
QLV * | Qinghai Lake, China | 23 | 25 | [10] | ||
Sputnik | Cooling tower water, France | Mamavirus | A. polyphaga | 18 | 21 | [1] |
YSLV1 * | Yellowstone Lake, USA | 28 | 26 | [5] | ||
YSLV2 * | Yellowstone Lake, USA | 23 | 21 | [5] | ||
YSLV3 * | Yellowstone Lake, USA | 27 | 23 | [5] | ||
YSLV4 * | Yellowstone Lake, USA | 28 | 34 | [5] | ||
YSLV5 * | Yellowstone Lake, USA | 30 | 32 | [11] | ||
YSLV6 * | Yellowstone Lake, USA | 25 | 29 | [11] | ||
YSLV7 * | Yellowstone Lake, USA | 23 | 26 | [11] | ||
Zamilon | Soil, Tunisia | Mont1 virus | A. polyphaga | 17 | 20 | [12] |
DSLV | Mavirus | OLV | PgVV | QLV | Sputnik23 | Sputnik | YLV5 | YLV6 | YLV7 | Zamilon | |
---|---|---|---|---|---|---|---|---|---|---|---|
DSLV | 1 | ||||||||||
Mavirus | 0.681 | 1 | |||||||||
OLV | 0.690 | 0.781 | 1 | ||||||||
PgVV | 0.699 | 0.766 | 0.769 | 1 | |||||||
QLV | 0.764 | 0.805 | 0.791 | 0.833 | 1 | ||||||
Sputnik23 | 0.470 | 0.513 | 0.563 | 0.538 | 0.638 | 1 | |||||
Sputnik | 0.599 | 0.687 | 0.700 | 0.705 | 0.777 | 0.783 | 1 | ||||
YLV5 | 0.853 | 0.717 | 0.715 | 0.736 | 0.794 | 0.536 | 0.693 | 1 | |||
YLV6 | 0.713 | 0.771 | 0.838 | 0.763 | 0.811 | 0.624 | 0.774 | 0.722 | 1 | ||
YLV7 | 0.692 | 0.704 | 0.659 | 0.640 | 0.729 | 0.556 | 0.620 | 0.664 | 0.668 | 1 | |
Zamilon | 0.661 | 0.782 | 0.805 | 0.741 | 0.838 | 0.629 | 0.785 | 0.757 | 0.819 | 0.657 | 1 |
DSLV | Mavirus | OLV | PgVV | QLV | Sputnik23 | Sputnik | YLV5 | YLV6 | YLV7 | Zamilon | |
---|---|---|---|---|---|---|---|---|---|---|---|
Function “Motif” | % of the Proteins | ||||||||||
ISGylation, antiviral response “LRGG” | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
Protein ubiquitylation, and interaction with Nedd4 E3 ubiquitin ligases “PPxY” | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 8 | 0 |
SUMO binding to substrate “[FILV]Kx[DE]” | 46 | 60 | 50 | 69 | 36 | 10 | 38 | 28 | 34 | 38 | 70 |
NLS motif “KRxR” | 11 | 10 | 4 | 0 | 8 | 0 | 5 | 3 | 3 | 4 | 0 |
NLS motif—Bipartite “KRx(10,12)K[KR][KR]” | 4 | 0 | 0 | 0 | 0 | 5 | 0 | 3 | 0 | 0 | 0 |
NLS motif—Class 1 “K[KR]RK” | 7 | 0 | 0 | 0 | 0 | 65 | 5 | 3 | 3 | 8 | 0 |
NLS motif—Class 1 “KR[KR]R” | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NLS motif—Class 2 “[PR]xxKR{DE}[KR]” | 4 | 0 | 0 | 0 | 4 | 5 | 5 | 6 | 0 | 0 | 0 |
NLS motif—Class 4 “[RP]xxKR[KR]{DE}” | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 5 |
ITAM motif, positive signal of immune receptors “Yxx[LI]x(6,8)Yxx[LI]” | 4 | 5 | 8 | 0 | 0 | 0 | 5 | 3 | 10 | 12 | 0 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobhy, H. Virophages and Their Interactions with Giant Viruses and Host Cells. Proteomes 2018, 6, 23. https://doi.org/10.3390/proteomes6020023
Sobhy H. Virophages and Their Interactions with Giant Viruses and Host Cells. Proteomes. 2018; 6(2):23. https://doi.org/10.3390/proteomes6020023
Chicago/Turabian StyleSobhy, Haitham. 2018. "Virophages and Their Interactions with Giant Viruses and Host Cells" Proteomes 6, no. 2: 23. https://doi.org/10.3390/proteomes6020023
APA StyleSobhy, H. (2018). Virophages and Their Interactions with Giant Viruses and Host Cells. Proteomes, 6(2), 23. https://doi.org/10.3390/proteomes6020023