Exploring the Influence of Vicarious Experiences in Teaching with Digital Technology on Pre-Service Science Teachers’ Digitalization-Related Affective-Motivational Dispositions
Abstract
:1. Introduction
1.1. Technology-Related Self-Efficacy as an Aspect of Teachers’ Profession
1.2. Positive Attitudes Toward Digital Media as an Aspect of Teachers’ Profession
1.3. Fostering Pre-Service Teachers’ Digital Media Self-Efficacy and Positive Attitudes Toward Digital Media
1.4. Research Objectives and Hypotheses
2. Materials and Methods
2.1. Study Design and Sample
2.2. Instruments
2.3. Data Analysis
2.3.1. Data Preparation and Model Specification
Model Specification
Outliers
Normal Distribution
Multicollinearity
2.3.2. Bayesian Path Analysis
3. Results
3.1. Descriptives and Results of the t-Test
3.2. Results of the Hypotheses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Construct | Items | Reference |
Vicarious experiences using digital media in teaching (VEDM) | During my studies or internship…
| Tondeur et al. (2016) |
Digital media self-efficacy (DMSE) |
| Pumptow (2020) |
Positive attitudes toward digital media in teaching (PADM) |
| Vogelsang et al. (2019) |
Motivational orientation toward digital media in teaching (MODM) |
| Vogelsang et al. (2019) |
Appendix B
- (i)
- Prior Specification
- (ii)
- Test for Convergence
- (iii)
- Test for Autocorrelation
- (iv)
- Posterior Distribution
- (v)
- Sensitivity Analysis
- (1)
- Comparison with Non-Informative Priors
- (2)
- Parameter Variation
- (3)
- Evaluating Model Fit
Appendix C
LOOIC | ||
Informative Priors (Baseline Model) N(M, SD), G(1, 1) | 569.250 | 14.658 |
Non-informative Priors | 575.056 | 18.682 |
M (−0.4) | 574.103 | 14.340 |
M (−0.2) | 570.807 | 14.527 |
M (+0.2) | 569.754 | 14.876 |
M (+0.4) | 572.067 | 15.166 |
SD = 0.1 | 564.003 | 9.585 |
SD = 0.5 | 572.386 | 16.803 |
G(0.01, 0.01) | 570.505 | 15.765 |
G(10, 10) | 570.989 | 11.253 |
Appendix D
Regression Coefficient According to Vogelsang et al. (2023) | Hyperparameters of the Informative Priors for Regression Paths in the Model | |
MODM(t2)~MODM(t1) | 0.345 | N(0.4, 0.2) |
MODM(t2)~PADM(t2) | 0.335 | N(0.3, 0.2) |
MODM(t2)~DMSE(t2) | 0.323 | N(0.3, 0.3) |
DMSE(t2)~DMSE(t1) | 0.395 | N(0.4, 0.3) |
PADM(t2)~PADM(t1) | 0.495 | N(0.5, 0.2) |
DMSE(t2)~VEDM(t2) | - | N(0.3, 0.3) |
PADM(t2)~VEDM(t2) | - | N(0.3, 0.3) |
VEDM(t2)~VEDM(t1) | - | N(0.4, 0.3) |
FUDM(t2)~MODM(t2) | - | N(0.3, 0.3) |
FUDM(t2)~FUDM(t1) | - | N(0.4, 0.3) |
Appendix E
Regression Parameter | MODM (t2) | MODM (t2) | MODM (t2) | PADM (t2) | PADM (t2) | DMSE (t2) | DMSE (t2) | VEDM (t2) | FUDM (t2) | FUDM (t2) | |
MODM (t1) | PADM (t2) | DMSE (t2) | PADM (t1) | VEDM (t2) | DMSE (t1) | VEDM (t2) | VEDM (t1) | FUDM (t1) | MODM (t2) | ||
Model with Informative Priors | |||||||||||
Regression | 0.419 | 0.517 | 0.165 | 0.438 | 0.202 | 0.492 | 0.115 | 0.494 | 0.417 | 0.307 | |
Credible Intervall/Posterior Intervall | lower | 0.217 | 0.257 | −0.031 | 0.241 | 0.066 | 0.278 | −0.085 | 0.200 | 0.165 | 0.051 |
upper | 0.618 | 0.766 | 0.369 | 0.639 | 0.337 | 0.703 | 0.318 | 0.788 | 0.666 | 0.563 | |
Model with Non-Informative Priors | |||||||||||
Regression | 0.402 | 0.680 | 0.104 | 0.419 | 0.199 | 0.512 | 0.088 | 0.522 | 0.420 | 0.308 | |
Credible Intervall/Posterior Intervall | lower | 0.166 | 0.354 | −0.188 | 0.195 | 0.061 | 0.283 | −0.131 | 0.180 | 0.131 | 0.018 |
upper | 0.634 | 10.006 | 0.324 | 0.642 | 0.335 | 0.744 | 0.307 | 0.863 | 0.706 | 0.598 |
Appendix F
Variance Parameter | MODM (t2) | PADM (t2) | DMSE (t2) | VEDM (t2) | FUDM (t2) | |
Model with Informative Priors | ||||||
Variance | 0.495 | 0.423 | 0.946 | 10.679 | 10.004 | |
Credible Intervall/Posterior Intervall | lower | 0.319 | 0.274 | 0.612 | 10.098 | 0.650 |
upper | 0.423 | 0.946 | 10.452 | 20.568 | 10.538 | |
Model with Non-Informative Priors | ||||||
Variance | 0.467 | 0.396 | 0.948 | 10.725 | 10.015 | |
Credible Intervall/Posterior Intervall | lower | 0.297 | 0.254 | 0.607 | 10.110 | 0.649 |
upper | 0.733 | 0.617 | 10.476 | 20.660 | 10.579 |
References
- Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211. [Google Scholar] [CrossRef]
- Al-Awidi, H. M., & Alghazo, I. M. (2012). The Effect of student teaching experience on preservice elementary teachers’ self-efficacy beliefs for technology integration in the UAE. Educational Technology Research and Development, 60, 923–941. [Google Scholar] [CrossRef]
- Anderson, S. E., Groulx, J. G., & Maninger, R. M. (2011). Relationships among preservice teachers’ technology-related abilities, beliefs, and intentions to use technology in their future classrooms. Journal of Educational Computing Research, 45, 321–338. [Google Scholar] [CrossRef]
- Aumann, A., & Weitzel, H. (2022, July 4–6). Fostering pre-service science teachers’ enacted TPACK. Presentation of a comprehensive intervention in terms of a specific media use. Proceedings of the EDULEARN22 Proceedings (pp. 5400–5406), Palma, Spain. [Google Scholar]
- Aumann, A., & Weitzel, H. (2023). Exploring a theory-practice gap: An investigation of pre-service biology teachers’ enacted tpack. shaping the future of biological education research. In K. Korfiatis, M. Grace, & M. Hammann (Eds.), Contributions from Biology Education Research (pp. 311–323). Springer International Publishing. ISBN 978-3-031-44791-4. [Google Scholar]
- Backfisch, I., Lachner, A., Stürmer, K., & Scheiter, K. (2021). Gelingensbedingungen Beim Einsatz Digitaler Medien Im Unterricht—Kognitive Und Motivationale Voraussetzungen von Lehrpersonen. In N. Beck, T. Bohl, & S. Meissner (Eds.), Vielfältig herausgefordert. Forschungs-und entwicklungsfelder der lehrerbildung auf dem prüfstand (pp. 73–87). Universität Tübingen. ISBN 978-3-947251-30-8. [Google Scholar]
- Bandura, A. (1997). Self-Efficacy: The Exercise of Control. Freeman. [Google Scholar]
- Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84, 191–215. [Google Scholar] [CrossRef] [PubMed]
- Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 25–48). Springer. ISBN 978-1-4614-5148-8. [Google Scholar]
- Bautista, N. U. (2011). Investigating the use of vicarious and mastery experiences in influencing early childhood education majors’ self-efficacy beliefs. Journal of Science Teacher Education, 22, 333–349. [Google Scholar] [CrossRef]
- Becker, S., Bruckermann, T., Finger, A., Huwer, J., Kremser, J., Meier, M., Thoms, L. J., Thyssen, C., & von Kothebue, L. (2020). Orientierungsrahmen digitale kompetenzen für das lehramt in den naturwissenschaften—DiKoLAN. In S. Becker, J. Meßinger-Koppelt, & C. Thyssen (Eds.), Digitale Basiskompetenzen—Orientierungshilfe und Praxisbeispiele für die universitäre Lehramtsausbildung in den Naturwissenschaften (pp. 14–43). Joachim Herz Stiftung. [Google Scholar]
- Blömeke, S. (2007). Empirische forschung zu neuen medien in schule und lehrerausbildung. In W. Sesink, M. Kerres, & H. Moser (Eds.), Jahrbuch Medienpädagogik 6. Medienpädagogik—Standortbestimmung einer erziehungswissenschaftlichen Disziplin (pp. 246–262). Springer. [Google Scholar]
- Braun, A., Weiß, S., & Kiel, E. (2022). Überzeugungsmuster angehender lehrpersonen zum einsatz digitaler medien im unterricht. MedienPädagogik: Zeitschrift für theorie und praxis der medienbildung, 235–259. [Google Scholar] [CrossRef]
- Caprara, G. V., Barbaranelli, C., Steca, P., & Malone, P. S. (2006). Teachers’ self-efficacy beliefs as determinants of job satisfaction and students’ academic achievement: A study at the school level. Journal of School Psychology, 44, 473–490. [Google Scholar] [CrossRef]
- Cheng, Y., & Weng, C. (2017). Factors influence the digital media teaching of primary school teachers in a flipped class: A Taiwan case study. South African Journal of Education, 37, 1–12. [Google Scholar] [CrossRef]
- De Bondt, N., Donche, V., & Van Petegem, P. (2020). Are contextual rather than personal factors at the basis of an anti-school culture? A bayesian analysis of differences in intelligence, overexcitability, and learning patterns between (former) lower and higher-track students. Social Psychology of Education, 23, 1627–1657. [Google Scholar] [CrossRef]
- DeCoito, I., & Richardson, T. (2018). Teachers and technology: Present practice and future directions. Contemporary Issues in Technology and Teacher Education, 18, 362–378. [Google Scholar]
- De La Torre Cruz, M. J., & Casanova Arias, P. F. (2007). Comparative analysis of expectancies of efficacy in in-service and prospective teachers. Teaching and Teacher Education, 23, 641–652. [Google Scholar] [CrossRef]
- Depaoli, S., & Van De Schoot, R. (2017). Improving transparency and replication in bayesian statistics: The WAMBS-checklist. Psychological Methods, 22, 240–261. [Google Scholar] [CrossRef] [PubMed]
- Diepolder, C., Weitzel, H., Huwer, J., & Lukas, S. (2021). Verfügbarkeit und zielsetzungen digitalisierungsbezogener lehrkräftefortbildungen für naturwissenschaftliche lehrkräfte in Deutschland. Zeitschrift für Didaktik der Naturwissenschaften, 27, 203–214. [Google Scholar] [CrossRef]
- Drossel, K., Eickelmann, B., & Gerick, J. (2017). Predictors of teachers’ use of ICT in school—the relevance of school characteristics, teachers’ attitudes and teacher collaboration. Education and Information Technologies, 22, 551–573. [Google Scholar] [CrossRef]
- Eickelmann, B., Bos, W., Gerick, J., Goldhammer, F., Schaumburg, H., Schwippert, K., Senkbeil, M., & Vahrenhold, J. (2019). ICILS 2018 #Deutschland computer-und informationsbezogene kompetenzen von schülerinnen und schülern im zweiten internationalen vergleich und kompetenzen im bereich computational thinking. Waxmann. ISBN 978-3-8309-4000-5. [Google Scholar]
- Eickelmann, B., Lorenz, R., Endberg, M., & Domke, M. (2022). Digitalisierungsbezogene fortbildung und professionelle lerngelegenheiten von lehrpersonen der sekundarstufe 1 in Deutschland und im bundesländervergleich. In R. Lorenz, S. Yotyodying, B. Eickelmann, & M. Endberg (Eds.), Schule digital—der Länderindikator 2021. Lehren und lernen mit digitalen medien in der sekundarstufe 1 in Deutschland im bundesländervergleich und im Trend seit 2017. Waxmann. [Google Scholar]
- Eldaou, B. (2016). The relationship between teacher’s self-efficacy, attitudes toward ICT usefulness and student’s science performance in the lebanese inclusive schools 2015. Acta Psychopathology, 8, 277–293. [Google Scholar] [CrossRef]
- Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013a). Bayesian data analysis (3rd ed.). Chapman and Hall/CRC. ISBN 978-0-429-11307-9. [Google Scholar]
- Gelman, A., Hwang, J., & Vehtari, A. (2013b). Understanding predictive information criteria for bayesian models. Statistics and Computing, 24, 997–1016. [Google Scholar] [CrossRef]
- Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511. [Google Scholar] [CrossRef]
- Gerick, J., Eickelmann, B., & Labusch, A. (2019). Schulische prozesse als lern- und lehrbedingungen in den ICILS-2018-teilnehmerländern. In B. Eickelmann, W. Bos, J. Gerick, F. Goldhammer, H. Schaumburg, K. Schwippert, M. Senkbeil, & J. Vahrenhold (Eds.), ICILS 2018 #Deutschland. Computer-und informationsbezogene kompetenzen von schülerinnen und schülern im zweiten internationalen vergleich und kompetenzen im bereich computational thinking (pp. 173–203). Waxmann. [Google Scholar]
- Goldstone, R. L., & Sakamoto, Y. (2003). The Transfer of abstract principles governing complex adaptive systems. Cognitive Psychology, 46, 414–466. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, M. (2003). Is it a challenge or a threat? A dual-process model of teachers’ cognition and appraisal processes during conceptual change. Educational Psychology Review, 15, 147–179. [Google Scholar] [CrossRef]
- Han, I., Shin, W. S., & Ko, Y. (2017). The effect of student teaching experience and teacher beliefs on pre-service teachers’ self-efficacy and intention to use technology in teaching. Teachers and Teaching: Theory and Practice, 23, 829–842. [Google Scholar] [CrossRef]
- Heath, M. K. (2017). Teacher-initiated one-to-one technology initiatives: How teacher self-efficacy and beliefs help overcome barrier thresholds to implementation. Computers in the Schools, 34, 88–106. [Google Scholar] [CrossRef]
- Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S. I., & Reiss, K. M. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education, 153, 103897. [Google Scholar] [CrossRef]
- Holden, H., & Rada, R. (2011). Understanding the influence of perceived usability and technology self-efficacy on teachers’ technology acceptance. Journal of Research on Technology in Education, 43, 343–367. [Google Scholar] [CrossRef]
- Holzberger, D., Philipp, A., & Kunter, M. (2013). How teachers’ self-efficacy is related to instructional quality: A longitudinal analysis. Journal of Educational Psychology, 105, 774–786. [Google Scholar] [CrossRef]
- Hoofs, H., Van De Schoot, R., Jansen, N. W. H., & Kant, I. (2018). Evaluating model fit in bayesian confirmatory factor analysis with large samples: Simulation study introducing the BRMSEA. Educational and Psychological Measurement, 78, 537–568. [Google Scholar] [CrossRef] [PubMed]
- Hoy, A. W., Hoy, W. K., & Davis, H. A. (2009). Teachers’ self-efficacy beliefs. In K. R. Wigfield, & A. Wentzel (Eds.), Handbook of motivation at school (pp. 627–653). Routledge. [Google Scholar]
- Hsu, M. H., & Chiu, C. M. (2004). Internet self-efficacy and electronic service acceptance. Decision Support Systems, 38, 369–381. [Google Scholar] [CrossRef]
- Joo, Y. J., Park, S., & Lim, E. (2018). Factors influencing preservice teachers’ intention to use technology. Educational Technology & Society, 21, 48–59. [Google Scholar]
- Kaplan, D., & Harra, K. (2024). A bayesian workflow for the analysis and reporting of international large-scale assessments: A case study using the oecd teaching and learning international survey. Large-Scale Assessments in Education, 12, 2. [Google Scholar] [CrossRef]
- Kiili, C., Kauppinen, M., Coiro, J., & Utriainen, J. (2016). Measuring and supporting pre-service teachers’ self-efficacy toward computers, teaching, and technology integration. Journal of Technology and Teacher Education, 24, 443–469. [Google Scholar]
- Kindermann, K., & Pohlmann-Rother, S. (2022). Unterricht mit digitalen medien?!: Mit welchen überzeugungen und motivationalen orientierungen zum unterrichtlichen einsatz von tablets starten studierende ins lehramtsstudium? Zeitschrift für Grundschulforschung, 15, 435–452. [Google Scholar] [CrossRef]
- Klassen, R. M., & Tze, V. M. C. (2014). Teachers’ self-efficacy, personality, and teaching effectiveness: A meta-analysis. Educational Research Review, 12, 59–76. [Google Scholar] [CrossRef]
- Klassen, R. M., Bong, M., Usher, E. L., Chong, W. H., Huan, V. S., Wong, I. Y. F., & Georgiou, T. (2009). Exploring the validity of a teachers’ self-efficacy scale in five countries. Contemporary Educational Psychology, 34, 67–76. [Google Scholar] [CrossRef]
- König, C., & Van De Schoot, R. (2018). Bayesian statistics in educational research: A look at the current state of affairs. Educational Review, 70, 486–509. [Google Scholar] [CrossRef]
- Kramer, M., Förtsch, C., Aufleger, M., & Neuhaus, B. J. (2019). Der einsatz digitaler medien im gymnasialen biologieunterricht. Eine deskriptive auswertung einer quantitativen videostudie. Zeitschrift für Didaktik der Naturwissenschaften, 25, 131–160. [Google Scholar] [CrossRef]
- Kreijns, K., Van Acker, F., Vermeulen, M., & Van Buuren, H. (2013). What stimulates teachers to integrate ICT in their pedagogical practices? The use of digital learning materials in education. Computers in Human Behavior, 29, 217–225. [Google Scholar] [CrossRef]
- Lee, Y., & Lee, J. (2014). Enhancing pre-service teachers’ self-efficacy beliefs for technology integration through lesson planning practice. Computers & Education, 73, 121–128. [Google Scholar] [CrossRef]
- Li, Y., Garza, V., Keicher, A., & Popov, V. (2019). Predicting high school teacher use of technology: Pedagogical beliefs, technological beliefs and attitudes, and teacher training. Technology, Knowledge and Learning, 24, 501–518. [Google Scholar] [CrossRef]
- McGarr, O., & McDonagh, A. (2020). Exploring the digital competence of pre-service teachers on entry onto an initial teacher education programme in ireland. Irish Educational Studies, 40, 115–128. [Google Scholar] [CrossRef]
- Meagher, M., Ozgun-Koca, A., & Edwards, M. T. (2011). Preservice teachers’ experiences with advanced digital technologies: The interplay between technology in a preservice classroom and in field placements. Contemporary Issues in Technology and Teacher Education, 11, 243–270. [Google Scholar]
- Murphy, C. A., Coover, D., & Owen, S. V. (1989). Development and validation of the computer self-efficacy scale. Educational and Psychological Measurement, 49, 893–899. [Google Scholar] [CrossRef]
- Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313–335. [Google Scholar] [CrossRef]
- Paetsch, J., Franz, S., & Wolter, I. (2023). Changes in early career teachers’ technology use for teaching: The roles of teacher self-efficacy, ICT literacy, and experience during COVID-19 school closure. Teaching and Teacher Education, 135, 104318. [Google Scholar] [CrossRef]
- Pfitzner-Eden, F. (2016). Why do I feel more confident? Bandura’s sources predict preservice teachers’ latent changes in teacher self-efficacy. Frontiers in Psychology, 7, 1486. [Google Scholar] [CrossRef] [PubMed]
- Pozas, M., Letzel, V., & Frohn, J. (2022). An empirical study exploring pre-service teachers’ profiles and their prospective ICT integration: Is it a matter of attitudes, self-efficacy, self-concept or concerns? Journal of Computers in Education, 11, 237–257. [Google Scholar] [CrossRef]
- Pringle, R. M., Dawson, K., & Ritzhaupt, A. D. (2015). Integrating science and technology: Using technological pedagogical content knowledge as a framework to study the practices of science teachers. Journal of Science Education and Technology, 24, 648–662. [Google Scholar] [CrossRef]
- Pumptow, M. I. (2020). Digital media in higher education—The use and importance of digital media in contemporary university studies [Ph.D. Dissertation, Tübingen University]. [Google Scholar]
- Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2, 21–33. [Google Scholar]
- Reusser, K., & Pauli, C. (2014). Berufsbezogene überzeugungen von lehrerinnen und lehrern. In E. Terhart, H. Bennewitz, & M. Rothland (Eds.), Handbuch der Forschung zum Lehrerberuf (pp. 642–661). Waxmann. [Google Scholar]
- Schleicher, A. (2020). The impact of COVID-19 on education: Insights from education at a glance. OECD. [Google Scholar]
- Smid, S. C., & Rosseel, Y. (2020). SEM with small samples. Two-step modeling and factor score regression versus bayesian estimation with informative priors. In R. Van De Schoot, & M. Miočević (Eds.), Small sample size solutions: A guide for applied researchers and practitioners (pp. 239–255). Routledge. [Google Scholar]
- Stender, A., Brückmann, M., & Neumann, K. (2017). Transformation of topic-specific professional knowledge into personal pedagogical content knowledge through lesson planning. International Journal of Science Education, 39, 1690–1714. [Google Scholar] [CrossRef]
- Straub, E. T. (2009). Understanding technology adoption: Theory and future directions for informal learning. Review of Educational Research, 79, 625–649. [Google Scholar] [CrossRef]
- Szeto, E., & Cheng, A. Y. N. (2017). Pedagogies across subjects: What are preservice teachers’ tpack patterns of integrating technology in practice? Journal of Educational Computing Research, 55, 346–373. [Google Scholar] [CrossRef]
- Teo, T., Zhou, M., & Noyes, J. (2016). Teachers and technology: Development of an extended theory of planned behavior. Educational Technology Research and Development, 64, 1033–1052. [Google Scholar] [CrossRef]
- Tondeur, J., van Braak, J., Sang, G., Voogt, J., Fisser, P., & Ottenbreit-Leftwich, A. (2012). Preparing pre-service teachers to integrate technology in education: A synthesis of qualitative evidence. Computers & Education, 59, 134–144. [Google Scholar] [CrossRef]
- Tondeur, J., van Braak, J., Siddiq, F., & Scherer, R. (2016). Time for a new approach to prepare future teachers for educational technology use: Its meaning and measurement. Computers & Education, 94, 134–150. [Google Scholar] [CrossRef]
- Valtonen, T., Hoang, N., Sointu, E., Näykki, P., Virtanen, A., Pöysä-Tarhonen, J., Häkkinen, P., Järvelä, S., Mäkitalo, K., & Kukkonen, J. (2021). How pre-service teachers perceive their 21st-century skills and dispositions: A longitudinal perspective. Computers in Human Behavior, 116, 106643. [Google Scholar] [CrossRef]
- Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 1413–1432. [Google Scholar] [CrossRef]
- Vogelsang, C., Caruso, C., Seifert, A., & Schwabl, F. (2023). Wie entwickeln sich medienbezogene einstellungen, selbsteingeschätzte medienkompetenzen und motivationale orientierungen angehender lehrkräfte? Eine sekundäranalyse von evaluationsdaten zum praxissemester im zweiten COVID-19-bedingten lockdown. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung, 22–50. [Google Scholar] [CrossRef]
- Vogelsang, C., Finger, A., Laumann, D., & Thyssen, C. (2019). Vorerfahrungen, einstellungen und motivationale orientierungen als mögliche einflussfaktoren auf den einsatz digitaler werkzeuge im naturwissenschaftlichen unterricht. Zeitschrift für Didaktik der Naturwissenschaften, 25, 115–129. [Google Scholar] [CrossRef]
- Wang, L., Ertmer, P. A., & Newby, T. J. (2004). Increasing preservice teachers’ self-efficacy beliefs for technology integration. Journal of Research on Technology in Education, 36, 231–250. [Google Scholar] [CrossRef]
- Weinert, F. E. (2001). Vergleichende leistungsmessung in schulen—Eine umstrittene selbstverständlichkeit. Beltz. [Google Scholar]
- West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural equation modeling. concepts, issues, and applications (pp. 56–76). Sage. [Google Scholar]
- Węglarczyk, S. (2018). Kernel density estimation and its application. ITM Web Conferences, 23, 00037. [Google Scholar] [CrossRef]
- Zeng, Y., Wang, Y., & Li, S. (2022). The relationship between teachers’ information technology integration self-efficacy and TPACK: A meta-analysis. Frontiers in Psychology, 13, 1091017. [Google Scholar] [CrossRef] [PubMed]
Construct | Exemplary Item | Reference | Validity | Items |
---|---|---|---|---|
Vicarious experiences using digital media in teaching (VEDM) | “I saw good examples of ICT practice that inspired me to use ICT applications in the classroom myself.” | Tondeur et al. (2016) | Cronbachs’ α = 0.875 (Pre) α = 0.928 (Post) | 4 |
Digital media self-efficacy (DMSE) | “I am relaxed about difficulties when dealing with digital media, because I can always trust by abilities.” | Pumptow (2020) | Cronbachs’ α = 0.957 (Pre) α = 0.946 (Post) | 7 |
Positive attitudes toward digital media in teaching (PADM) | “The use of digital media enables a high degree of self-determined learning.” | Vogelsang et al. (2019) | Cronbachs’ α = 0.822 (Pre) α = 0.881 (Post) | 8 |
Motivational orientation toward digital media in teaching (MODM) | “I am very interested in thinking about how I can better support my students’ learning with the help of digital media.” | Vogelsang et al. (2019) | Cronbachs’ α = 0.865 (Pre) α = 0.916 (Post) | 6 |
Frequency of use of digital media in teaching (FUDM) | “How often have you systematically used digital media to achieve specific learning objectives in your own teaching and learning programs (e.g., internships, seminars)?” | Single-item scale with 5 response categories ranging from 0 to over 15 times. |
MODM (t1) | MODM (t2) | PADM (t1) | PADM (t2) | DMSE (t1) | DMSE (t2) | VEDM (t1) | VEDM (t2) | FUDM (t1) | FUDM (t2) | |
---|---|---|---|---|---|---|---|---|---|---|
Arithmetic Mean Value | 3.760 | 4.205 | 4.407 | 4.762 | 3.700 | 4.269 | 3.366 | 3.465 | 2.910 | 3.370 |
Standard Deviation | 1.075 | 1.111 | .877 | .781 | 1.327 | 1.181 | 1.178 | 1.421 | 1.130 | 1.176 |
MODM | PADM | DMSE | |
---|---|---|---|
Significance (Two-Sided) | p < 0.001 | p = 0.003 | p < 0.001 |
Cohen’s d | 0.899 | 0.816 | 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aumann, A.; Grassinger, R.; Weitzel, H. Exploring the Influence of Vicarious Experiences in Teaching with Digital Technology on Pre-Service Science Teachers’ Digitalization-Related Affective-Motivational Dispositions. Educ. Sci. 2025, 15, 15. https://doi.org/10.3390/educsci15010015
Aumann A, Grassinger R, Weitzel H. Exploring the Influence of Vicarious Experiences in Teaching with Digital Technology on Pre-Service Science Teachers’ Digitalization-Related Affective-Motivational Dispositions. Education Sciences. 2025; 15(1):15. https://doi.org/10.3390/educsci15010015
Chicago/Turabian StyleAumann, Alexander, Robert Grassinger, and Holger Weitzel. 2025. "Exploring the Influence of Vicarious Experiences in Teaching with Digital Technology on Pre-Service Science Teachers’ Digitalization-Related Affective-Motivational Dispositions" Education Sciences 15, no. 1: 15. https://doi.org/10.3390/educsci15010015
APA StyleAumann, A., Grassinger, R., & Weitzel, H. (2025). Exploring the Influence of Vicarious Experiences in Teaching with Digital Technology on Pre-Service Science Teachers’ Digitalization-Related Affective-Motivational Dispositions. Education Sciences, 15(1), 15. https://doi.org/10.3390/educsci15010015