Artificial Intelligence in Higher Education: An Analysis of Existing Bibliometrics
Abstract
:1. Introduction
2. State-of-the-Art
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blázquez-Jiménez, C.; Sanchis, J.R. La coopetencia interempresarial. Descripción teórica y aplicación a sectores tecnológicos. RETOS Revista de Ciencias de la Administración y Economía 2023, 13, 325–340. [Google Scholar] [CrossRef]
- Torres-Cruz, F.; Yucra-Mamani, Y.J. Técnicas de inteligencia artificial en la valoración de la ense nanza virtual por estudiantes de nivel universitario. Rev. Int. Humanid. 2022, 11, 1–11. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Inteligencia Artificial. Un Enfoque Moderno, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Forero-Bautista, A.; Ortegón-Cortázar, L. ¿ Por qué visitar lifestyle centers? Variables alternativas de atracción a través de un modelo de ecuaciones estructurales. RETOS Rev. Cienc. Adm. Econ. 2023, 13, 87–103. [Google Scholar] [CrossRef]
- Dávila, M.; Guzmán, R.; Macareno, H.; Piñeres, D.; de la Rosa, D.; Caballero-Uribe, C. Bibliometría: Conceptos y utilidades para el estudio médico y la formación profesional. Salud Uninorte 2009, 25, 319–330. [Google Scholar]
- Ocaña-Fernández, Y.; Valenzuela-Fernández, L.A.; Garro-Aburto, L.L. Inteligencia artificial y sus implicaciones en la educación superior. Propos. Represent. 2019, 7, 536–568. [Google Scholar] [CrossRef]
- Parra-Sánchez, J.S. Potencialidades de la Inteligencia Artificial en Educación Superior: Un Enfoque desde la Personalización. Rev. Docentes 2.0 2022, 14, 19–27. [Google Scholar] [CrossRef]
- Carbonell-García, C.E.; Burgos-Goicochea, S.; Calderón-de-los Ríos, D.O.; Paredes-Fernández, O.W. La Inteligencia Artificial en el contexto de la formación educativa. Epistem. Koin. Rev. Electrón. Cienc. Educ. Humanid. Artes Bellas Artes 2023, 6, 152–166. [Google Scholar] [CrossRef]
- Fajardo Aguilar, G.M.; Ayala Gavilanes, D.C.; Arroba Freire, E.M.; López Quincha, M. Inteligencia Artificial y la Educación Universitaria: Una revisión sistemática. Mag. Cienc. Rev. Investig. Innov. 2023, 8, 109–131. [Google Scholar] [CrossRef]
- Domingos, P. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World; Basic Books: New York, NY, USA, 2015. [Google Scholar]
- Tegmark, M. Life 3.0: Being Human in the Age of Artificial Intelligence; Knopf Publishing Group: New York, NY, USA, 2018. [Google Scholar]
- Lee, K.F. AI Superpowers: China, Silicon Valley, and the New World Order; Houghton Mifflin: Boston, MA, USA, 2018. [Google Scholar]
- Marcus, G.; Davis, E. Rebooting AI: Building Artificial Intelligence We Can Trust; Knopf Publishing Group: New York, NY, USA, 2019. [Google Scholar]
- Crawford, K. The Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence; Yale University Press: New Haven, CT, USA, 2021. [Google Scholar]
- Salas-Pilco, S.Z.; Yang, Y. Artificial intelligence applications in Latin American higher education: A systematic review. Int. J. Educ. Technol. High. Educ. 2022, 19, 21. [Google Scholar] [CrossRef]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef]
- Núñez Zorrilla, M.C. Los nuevos avances en la regulación europea de la responsabilidad civil por los daños ocasionados en el ámbito del transporte con inteligencia artificial. Rev. Española Derecho Eur. 2021, 78–79, 201–256. [Google Scholar] [CrossRef]
- Martínez-Ortega, A.G.; Medina-Chicaiza, R.P. Tecnologías en la inteligencia artificial para el Marketing: Una revisión de la literatura. Pro Sci. 2020, 4, 36–47. [Google Scholar] [CrossRef]
- Ortiz, C.V.J.; Guzmán-Seraquive, J.E. Análisis de las técnicas de machine learning aplicadas en la detección de fraudes bancarios. Cienc. Tecnol. Rev. Cient. Multidiscip. 2022, 22, 10. [Google Scholar] [CrossRef]
- Shrivastava, R. Role of Artificial Intelligence in Future of Education. Int. J. Prof. Bus. Rev. Int. J. Prof. Bus. Rev. 2023, 8, 2. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=8789502 (accessed on 1 December 2023). [CrossRef]
- Castrillón, O.D.; Sarache, W.; Ruiz-Herrera, S. Predicción del rendimiento académico por medio de técnicas de inteligencia artificial. Form. Univ. 2020, 13, 93–102. [Google Scholar] [CrossRef]
- Barrios-Tao, H.; Díaz, V.; Guerra, Y.M. Propósitos de la educación frente a desarrollos de inteligencia artificial. Cad. Pesqui. 2021, 51, e07767. [Google Scholar] [CrossRef]
- Vera, F. Integración de la Inteligencia Artificial en la Educación superior: Desafíos y oportunidades. Transformar 2023, 4, 17–34. [Google Scholar]
- Holmes, W.; Bialik, M.; Fadel, C. Artificial Intelligence in Education; Globethics Publications: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Belinchón Romero, I. La bibliometría como herramienta de conocimiento de la situación de la investigación clínica espa nola en dermatología y sus implicaciones futuras. Actas Dermo-Sifiliogr. 2018, 109, 2. [Google Scholar] [CrossRef]
- Centre for Science and Technology Studies. VOSviewer—Visualizing Scientific Landscapes. 2023. Available online: https://www.vosviewer.com (accessed on 1 December 2023).
- Moreno Padilla, R.D. La llegada de la inteligencia artificial a la educación. Rev. Investig. Tecnol. Inf. 2019, 7, 260–270. [Google Scholar] [CrossRef]
- Sidiropoulos, N.D.; De Lathauwer, L.; Fu, X.; Huang, K.; Papalexakis, E.E.; Faloutsos, C. Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 2017, 65, 3551–3582. [Google Scholar] [CrossRef]
- Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of rice diseases using deep convolutional neural networks. Neurocomputing 2017, 267, 378–384. [Google Scholar] [CrossRef]
- Popenici, S.A.; Kerr, S. Exploring the impact of artificial intelligence on teaching and learning in higher education. Res. Pract. Technol. Enhanc. Learn. 2017, 12, 22. [Google Scholar] [CrossRef]
- Chen, L.; Chen, P.; Lin, Z. Artificial intelligence in education: A review. IEEE Access 2020, 8, 75264–75278. [Google Scholar] [CrossRef]
- Wang, D.; He, H.; Liu, D. Adaptive critic nonlinear robust control: A survey. IEEE Trans. Cybern. 2017, 47, 3429–3451. [Google Scholar] [CrossRef]
- Zheng, T.; Xie, W.; Xu, L.; He, X.; Zhang, Y.; You, M.; Yang, G.; Chen, Y. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int. J. Med. Inform. 2017, 97, 120–127. [Google Scholar] [CrossRef]
- Androutsopoulou, A.; Karacapilidis, N.; Loukis, E.; Charalabidis, Y. Transforming the communication between citizens and government through AI-guided chatbots. Gov. Inf. Q. 2019, 36, 358–367. [Google Scholar] [CrossRef]
- Ding, Z.; Shi, H.; Zhang, H.; Meng, L.; Fan, M.; Han, C.; Zhang, K.; Ming, F.; Xie, X.; Liu, H.; et al. Gastroenterologist-level identification of small-bowel diseases and normal variants by capsule endoscopy using a deep-learning model. Gastroenterology 2019, 157, 1044–1054. [Google Scholar] [CrossRef]
- Molinillo, S.; Aguilar-Illescas, R.; Anaya-Sánchez, R.; Vallespín-Arán, M. Exploring the impacts of interactions, social presence and emotional engagement on active collaborative learning in a social web-based environment. Comput. Educ. 2018, 123, 41–52. [Google Scholar] [CrossRef]
- Tran, B.; Xue, B.; Zhang, M. A new representation in PSO for discretization-based feature selection. IEEE Trans. Cybern. 2017, 48, 1733–1746. [Google Scholar] [CrossRef]
- CEPAL NU. Estudio Económico de América Latina y el Caribe 2020: Principales Condicionantes de las Políticas Fiscal y Monetaria en la era Pospandemia de COVID-19; Cepal: Santiago, Chile, 2020; Available online: https://repositorio.cepal.org/items/faed4e37-c425-4504-b761-e90a18ac5667 (accessed on 1 December 2023).
- Saltos, G.D.C.; Oyarvide, W.V.; Sánchez, E.A.; Reyes, Y.M. Análisis bibliométrico sobre estudios de la neurociencia, la inteligencia artificial y la robótica: énfasis en las tecnologías disruptivas en educación. Salud Cienc. Tecnol. 2023, 3, 362. [Google Scholar] [CrossRef]
- Montesdeoca-Delgado, E.F.; Espinoza-Espinoza, I.R.; De la Torre, T.E.G. Estudio Bibliométrico de la producción científica en SCOPUS: Métodos de ense nanza del inglés en la Educación Superior. Polo Del Conoc. 2022, 7, 1585–1605. [Google Scholar]
- Sánchez, O.V.G. Uso y Percepción de ChatGPT en la Educación Superior. Rev. Investig. Tecnol. Inf. 2023, 11, 98–107. [Google Scholar] [CrossRef]
Research Area | Documents |
---|---|
Computer Science | 373 |
Social Sciences | 370 |
Engineering | 234 |
Medicine | 115 |
Mathematics | 85 |
Business, Management and Accounting | 73 |
Psychology | 58 |
Environmental Science | 53 |
Energy | 40 |
Materials Science | 35 |
Ranking | Journal | Article | SJR | Quartile | h-Index |
---|---|---|---|---|---|
1 | Sustainability | 29 | 0.66 | Q1 | 136 |
2 | IEEE Access | 19 | 0.93 | Q1 | 204 |
3 | Frontiers in Psychology | 18 | 0.89 | Q2 | 157 |
4 | Mobile Information Systems | 18 | 0.36 | Q3 | 42 |
5 | Wireless Communications and Mobile Computing | 16 | 0.45 | Q2 | 73 |
6 | Computers and Education Artificial Intelligence | 15 | 0.17 | Q1 | 17 |
7 | Education and Information Technologies | 13 | 1.25 | Q1 | 61 |
8 | International Journal of Emerging Technologies in Learning | 13 | 0.54 | Q2 | 39 |
9 | International Journal Of Educational Technology in Higher Education | 12 | 2.05 | Q1 | 49 |
10 | Computational Intelligence and Neuroscience | 11 | 0 | SQ | 70 |
Ranking | Journal | Article | Year | Citations | Ref. |
---|---|---|---|---|---|
1 | IEEE Transactions on Signal Processing | Tensor decomposition for signal processing and machine learning | 2017 | 919 | [28] |
2 | Neurocomputing | Identification of rice diseases using deep convolutional neural networks | 2017 | 625 | [29] |
3 | Research and Practice in Technology Enhanced Learning | Exploring the impact of artificial intelligence on teaching and learning in higher education | 2017 | 330 | [30] |
4 | IEEE Access | Artificial intelligence in education: A review | 2020 | 276 | [31] |
5 | IEEE Transactions on Cybernetics | Adaptive critic nonlinear robust control: A survey | 2017 | 255 | [32] |
6 | International Journal of Medical Informatics | A machine learning-based framework to identify type-2 diabetes through electronic health records | 2017 | 243 | [33] |
7 | Government Information Quarterly | Transforming the communication between citizens and government through AI-guided chatbots | 2019 | 214 | [34] |
8 | Gastroenterology | Gastroenterologist-level identification of small-bowel diseases and normal variants by capsule endoscopy using a deep-learning model | 2019 | 179 | [35] |
9 | Computers and Education | Exploring the impacts of interactions, social presence and emotional engagement on active collaborative learning in a social web-based environment | 2018 | 142 | [36] |
10 | IEEE Transactions on Cybernetics | A new representation in PSO for discretization-based feature selection | 2018 | 133 | [37] |
Ranking | Country | Articles | Ranking | Country | Citations |
---|---|---|---|---|---|
1 | China | 221 | 1 | China | 3165 |
2 | United States | 150 | 2 | United States | 2928 |
3 | United Kingdom | 64 | 3 | Saudi Arabia | 1086 |
4 | India | 50 | 4 | United Kingdom | 888 |
5 | Spain | 48 | 5 | Australia | 829 |
6 | Australia | 43 | 6 | Spain | 681 |
7 | Saudi Arabia | 38 | 7 | India | 494 |
8 | South Korea | 32 | 8 | Turkey | 342 |
9 | Germany | 29 | 9 | Canada | 236 |
10 | Canada | 22 | 10 | Greece | 232 |
Ranking | Authors | Documents | Citations |
---|---|---|---|
1 | Fomunyam K.G. | 3 | 6 |
2 | Hu Y.; Donald C.; Giacaman N. | 2 | 3 |
3 | Jiang B. | 2 | 12 |
4 | McCoy C.; Rosenbaum H. | 2 | 15 |
5 | Moşteanu N.R. | 2 | 5 |
6 | Romero-Rodríguez J.-M.; Ramírez-Montoya M.-S.; Buenestado-Fernández M.; Lara-Lara F. | 2 | 0 |
7 | Rudolph J.; Tan S.; Tan S. | 2 | 157 |
8 | Wang Y. | 2 | 0 |
9 | Wu J. | 2 | 3 |
10 | Xiao M.; Yi H. | 2 | 19 |
Ranking | Keyword | Occurrences |
---|---|---|
1 | Artificial Intelligence | 381 |
2 | Higher Education | 157 |
3 | Machine Learning | 83 |
4 | ChatGPT | 33 |
5 | Education | 33 |
6 | Deep Learning | 31 |
7 | Active Learning | 30 |
8 | COVID-19 | 23 |
9 | E-Learning | 20 |
10 | Big Data | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Chila, R.; Llerena-Izquierdo, J.; Sumba-Nacipucha, N.; Cueva-Estrada, J. Artificial Intelligence in Higher Education: An Analysis of Existing Bibliometrics. Educ. Sci. 2024, 14, 47. https://doi.org/10.3390/educsci14010047
López-Chila R, Llerena-Izquierdo J, Sumba-Nacipucha N, Cueva-Estrada J. Artificial Intelligence in Higher Education: An Analysis of Existing Bibliometrics. Education Sciences. 2024; 14(1):47. https://doi.org/10.3390/educsci14010047
Chicago/Turabian StyleLópez-Chila, Roberto, Joe Llerena-Izquierdo, Nicolás Sumba-Nacipucha, and Jorge Cueva-Estrada. 2024. "Artificial Intelligence in Higher Education: An Analysis of Existing Bibliometrics" Education Sciences 14, no. 1: 47. https://doi.org/10.3390/educsci14010047
APA StyleLópez-Chila, R., Llerena-Izquierdo, J., Sumba-Nacipucha, N., & Cueva-Estrada, J. (2024). Artificial Intelligence in Higher Education: An Analysis of Existing Bibliometrics. Education Sciences, 14(1), 47. https://doi.org/10.3390/educsci14010047