Assessment of Supporting Visual Learning Technologies in the Immersive VET Cyber-Physical Learning Model
Abstract
:1. Introduction
2. Theoretical Framework
3. Related Work
4. Materials and Methods
5. Results
Assessment of Different Visual Learning Approaches with Brainwave Measurements
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Floridi, F. The Fourth Revolution: How the Infosphere is Reshaping Human Reality; Oxford University Press: New York, NY, USA, 2019. [Google Scholar]
- World Energy Outlook 2020. International Energy Agency. 2020. Available online: https://www.iea.org/reports/world-energy-outlook-2020. (accessed on 3 February 2023).
- The Future of Jobs Report 2018; World Economic Forum: Geneva, Switzerland, 2018.
- Trends Shaping Education 2018 Spotlight. 20 November 2018. Available online: https://www.oecd.org/education/ceri/spotlights-trends-shaping-education.htm. (accessed on 5 March 2020).
- Santi, A.; Muthuswamy, P. Industry 5.0 or industry 4.0? Introduction to industry 4.0 and a peek into the prospective industry 5.0 technologies. Int. J. Interact. Des. Manuf. (IJIDeM) 2023, 17, 947–979. [Google Scholar] [CrossRef]
- Vuksanovič, D.; Ugarak, J.; Korčok, D. Industry 4.0: The future concepts and new visions of factory of the future. Adv. Eng. Syst. 2016, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Mozelius, P.; Oberg, L. Play-Based Learning for Programming Education in Primary School-the Östersund Model; Mid Sweden University, Department of Computer and Systems Sciences: Östersund, Sweden, 2017. [Google Scholar]
- Holden, J.; Lander, E. Report to the president: Engage to excel: Producing one million additional college graduates with degrees in science, technology, engineering, and mathematics. In Executive Office of the President President’s Council of Advisors on Science and Technology; Executive Office of the President: Washington, DC, USA, 2012. [Google Scholar]
- Wu, J.; Atit, K.; Ramey, K.E.; Flanagan-Hall, G.A.; Vondracek, M.; Jona, K.; Uttal, D.H. Investigating Students’ Learning through Co-designing with Technology. J. Sci. Educ. Technol. 2021, 30, 529–538. [Google Scholar] [CrossRef]
- Aberšek, B. Problem-Based Learning and Proprioception; Cambridge Scholars Publishing: Cambridge, UK, 2018. [Google Scholar]
- Kordigel, A.; Aberšek, B. Society 5.0 and Literacy 4.0 for 21st Century; Nova Science Publishers, Inc.: New York, NY, USA, 2020. [Google Scholar]
- Cencelj, Z.; Kordigel, A.; Aberšek, B.; Flogie, A. Role and meaning of functional science, technological and engineering literacy in problme based learning. J. Balt. Sci. 2019, 18, 132–146. [Google Scholar] [CrossRef] [Green Version]
- Nejdl, W.; Tochtermann, K. Innovative approaches for learning and knowledge sharing. In Proceedings of the First European Conference on Technology Enhanced Learning, Crete, Greece, 1–4 October 2006. [Google Scholar]
- Muca, E.; Cavallini, D.; Raspa, F.; Bordin, C.; Bergero, D.; Valle, E. Integrating new learning methods into equine nutrition classrooms: The importance of students’ perceptions. J. Equine Veter Sci. 2023, 126, 104537. [Google Scholar] [CrossRef] [PubMed]
- Kosterelioglu, I. Student Views on Learning Environments Enriched by Video Clips. Univers. J. Educ. Res. 2016, 4, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Rajadell, M.; Garriga-Garzón, F. Educational Videos: After the Why, the How. Intang. Cap. 2017, 13, 903–923. [Google Scholar] [CrossRef] [Green Version]
- Pisarenko, V.; Krasnoshchekova, G. Video in teaching. In Proceedings of the IEEE 10th International Conference on Application of Information and Communication Technologies (AICT), Baku, Azerbaijan, 12–14 October 2016. [Google Scholar] [CrossRef]
- Noetel, M.; Griffith, S.; Delaney, O.; Sanders, T.; Parker, P.; Cruz, B.D.P.; Lonsdale, C. Video Improves Learning in Higher Education: A Systematic Review. Rev. Educ. Res. 2021, 91, 204–236. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Barkoukis, V.; Burden, K.; Anastasiadis, T. 360 degree video in education: An overview and a comparative social media data analysis of the last decade. Smart Learn. Environ. 2021, 8, 20. [Google Scholar] [CrossRef]
- Snelson, C.; Hsu, Y.-C. Educational 360-Degree Videos in Virtual Reality: A Scoping Review of the Emerging Research. TechTrends 2019, 64, 404–412. [Google Scholar] [CrossRef]
- Pirker, J.; Dengel, A. The Potential of 360-Degree Virtual Reality Videos and Real VR for Education—A Literature Review. IEEE Comput. Graph. Appl. 2021, 41, 76–89. [Google Scholar] [CrossRef]
- Ulrich, F.; Helms, N.H.; Frandsen, U.P.; Rafn, A.V. Learning effectiveness of 360° video: Experiences from a controlled experiment in healthcare education. Interact. Learn. Environ. 2019, 29, 98–111. [Google Scholar] [CrossRef]
- Tomić, M.K.; Aberšek, B.; Pesek, I. GeoGebra as a spatial skills training tool among science, technology engineering and mathematics students. Comput. Appl. Eng. Educ. 2019, 27, 1506–1517. [Google Scholar] [CrossRef]
- Lekan, S. Virtual Environments, Render Realism and Their Effect on Spatial Memory; University of Washington: Seattle, WA, USA, 2016. [Google Scholar]
- Lampropoulos, G.; Keramopoulos, E.; Diamantaras, K. Enhancing the functionality of augmented reality using deep learning, semantic web and knowledge graphs: A review. Vis. Informatics 2020, 4, 32–42. [Google Scholar] [CrossRef]
- Chowdhury, T.; Holbrook, J.; Rannikmäe, M. Addressing Sustainable Development: Promoting Active Informed Citizenry through Trans-Contextual Science Education. Sustainability 2020, 12, 3259. [Google Scholar] [CrossRef] [Green Version]
- Vuorikari, R.; Punie, Y.; Carretero, S.; Van den Brande, L. DigComp 2.0: The Digital Competence Framework for Citizens; Publications Office of the European Union: Seville, Spain, 2016.
- Gao, Z.; Wanyama, T.; Singh, I.; Gadhrri, A.; Schmidt, R. From Industry 4.0 to Robotics 4.0—A Conceptual Framework for Collaborative and Intelligent Robotic Systems. Procedia Manuf. 2020, 46, 591–599. [Google Scholar] [CrossRef]
- Goel, R.; Gupta, P. Robotics and Industry 4.0, in A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development; Springer: Cham, Switzerland, 2020; pp. 157–169. [Google Scholar]
- Beheshti, M.; Taşpolat, A.; Kaya, O.S.; Sapanca, H. Characteristics of instructional videos. World J. Educ. Technol. Curr. Issues 2018, 10, 61–69. [Google Scholar] [CrossRef]
- Shadiev, R.; Yang, L.; Huang, Y.M. A review of research on 360-degree video and its applications to education. J. Res. Technol. Educ. 2021, 54, 784–799. [Google Scholar] [CrossRef]
- Reyna, J. The potential of 360-degree videos for teaching, learning and research. In Proceedings of the 12th International Technology, Education and Development Conference, Valencia, Spain, 5–7 March 2018. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.-R. An improved cyber-physical systems architecture for Industry 4.0 smart factories. Adv. Mech. Eng. 2018, 10, 1687814018784192. [Google Scholar] [CrossRef] [Green Version]
- The CPS Public Working Group. 2016. Available online: https://pages.nist.gov/cpspwg/ (accessed on 7 December 2022).
- Pishdad-Bozorgi, P.; Gao, X. Introduction to Cyber-Physical Systems in the Built Environment; Routledge: London, UK, 2020; p. 19. [Google Scholar] [CrossRef]
- Deguchi, A.; Hirai, C.; Matsuoka, H.; Nakano, T.; Oshima, K.; Tai, M.; Tani, S. What Is Society 5.0? Society 2020, 5, 1–23. [Google Scholar]
- Zabasta, A.; Peuteman, J.; Kunicina, N.; Kazymyr, V.; Hvesenya, S.; Hnatov, A.; Paliyeva, T.; Ribickis, L. Research on Cross-Domain Study Curricula in Cyber-Physical Systems: A Case Study of Belarusian and Ukrainian Universities. Educ. Sci. 2020, 10, 282. [Google Scholar] [CrossRef]
- Díaz, M.J.; Mantell, C.; Caro, I.; de Ory, I.; Sánchez, J.; Portela, J.R. Creation of Immersive Resources Based on Virtual Reality for Dissemination and Teaching in Chemical Engineering. Educ. Sci. 2022, 12, 572. [Google Scholar] [CrossRef]
- Stankovic, J.A.; Sturges, J.W.; Eisenberg, J. A 21st Century Cyber-Physical Systems Education. Computer 2017, 50, 82–85. [Google Scholar] [CrossRef]
- Mourtzis, D.; Vlachou, E.; Dimitrakopoulos, G.; Zogopoulos, V. Cyber- Physical Systems and Education 4.0 –The Teaching Factory 4.0 Concept. Procedia Manuf. 2018, 23, 129–134. [Google Scholar] [CrossRef]
- Román-Ibáñez, V.; Pujol-López, F.A.; Mora-Mora, H.; Pertegal-Felices, M.L.; Jimeno-Morenilla, A. A Low-Cost Immersive Virtual Reality System for Teaching Robotic Manipulators Programming. Sustainability 2018, 10, 1102. [Google Scholar] [CrossRef] [Green Version]
- Kolloffel, B.; Eysink, T.H.S.; De Jong, T. Comparing the effects of representational tools in collaborative and individual inquiry learning. Int. J. Comput. Collab. Learn. 2011, 6, 223–251. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Wong, C. Next Generation Sequencing; Springer: New York, NY, USA, 2013. [Google Scholar]
- Potkonjak, V.; Gardner, M.; Callaghan, V.; Mattila, P.; Guetl, C.; Petrović, V.M.; Jovanović, K. Virtual laboratories for education in science, technology, and engineering: A review. Comput. Educ. 2016, 95, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Goi, M.T.; Goi, C.L.; Wong, D. Constructing a brand identity scale for higher education institutions. J. Mark. High. Educ. 2014, 24, 59–74. [Google Scholar] [CrossRef]
- Makransky, G.; Terkildsen, T.S.; Mayer, R.E. Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learn. Instr. 2019, 60, 225–236. [Google Scholar] [CrossRef]
- Fernandez, M. Augmented-Virtual Reality: How to improve education systems. High. Learn. Res. Commun. 2017, 7, 1–15. [Google Scholar] [CrossRef]
- Woon, A.P.N.; Mok, W.Q.; Chieng, Y.J.S.; Zhang, H.M.; Ramos, P.; Mustadi, H.B.; Lau, Y. Effectiveness of virtual reality training in improving knowledge among nursing students: A systematic review, meta-analysis and meta-regression. Nurse Educ. Today 2020, 98, 104655. [Google Scholar] [CrossRef]
- Mekacher, L. Education 4.0: Hybrid Learning and Microlearning in a Smart Environment. Int. J. Teaching Educ. Learn. 2022, 6, 127–141. [Google Scholar] [CrossRef]
- Makransky, G.; Gustav, B. The Cognitive Affective Model of Immersive Learning (CAMIL): A Theoretical Research-Based Model of Learning in Immersive Virtual Reality. Educ. Psychol. Rev. 2021, 33, 937–958. [Google Scholar] [CrossRef]
- Nunez, P.; Srinivasan, R. A theoretical basis for standing and traveling brain waves measured. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2006, 117, 2424–2435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Wang, J. Effects of online synchronous instruction with an atention monitoring alarma mechanism on sustained attention and learning performance. Interact. Learn. Environ. 2018, 26, 427–443. [Google Scholar] [CrossRef]
- Lin, H.; Su, S.; Chao, C.; Hsieh, C.; Tsai, S. Construction of multi-mode effective learning system: Taking effective design an example. J. Educ. Technol. Soc. 2016, 19, 132–147. [Google Scholar]
- Chen, C.-M.; Wu, C.-H. Effects of different video lecture types on sustained attention, emotion, cognitive load, and learning performance. Comput. Educ. 2015, 80, 108–121. [Google Scholar] [CrossRef]
- Ma, M.; Wei, C. A comparative study of children’s concentration performance on picture books: Age, gender, and media forms. Interact. Learn. Environ. 2016, 24, 1922–1937. [Google Scholar] [CrossRef]
- Ghergulescu, I.; Muntean, C. A novel sensor-based methodology for learner’s motivation analysis in game-based learning. Interact. Comput. 2014, 26, 305–320. [Google Scholar] [CrossRef]
- Jawed, S.; Amin, H.U.; Malik, A.S.; Faye, I. Classification of Visual and Non-visual Learners Using Electroencephalographic Alpha and Gamma Activities. Front. Behav. Neurosci. 2019, 13, 86. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, J.; Yu, C. Assessing the attention levels of students by using a novel attention aware system based on brainwave signals. In Proceedings of the 2015 IIAI 4th International Congress on Advanced Applied Informatics, Okayama, Japan, 12–16 July 2015; pp. 348–369. [Google Scholar] [CrossRef]
- BFT. 12 December 2021. Available online: https://biofeedback-neurofeedback-therapy.com/neurosky/ (accessed on 1 March 2023).
- Herwing, U.; Setrapi, P.; Schönfeldt-Lecuona, C. Using the International 10-20 EEG System for Positioning of Transcranial Magnetic Stimulation. Brain Topogr. 2003, 16, 95–99. [Google Scholar] [CrossRef]
- Homan, R.W. The 10-20 Electrode System and Cerebral Location. Am. J. EEG Technol. 1988, 28, 269–279. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Kaur, C.; Singh, P. EEG Derived Neuronal Dynamics during Meditation: Progress and Challenges. Adv. Prev. Med. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Gwizdka, J.; Chaovalitwongse, W.A. Using Wireless EEG Signals to Assess Memory Workload in the n-Back Task. IEEE Trans. Human-Machine Syst. 2015, 46, 424–435. [Google Scholar] [CrossRef]
- Sun, J.C.-Y.; Yeh, K.P.-C. The effects of attention monitoring with EEG biofeedback on university students’ attention and self-efficacy: The case of anti-phishing instructional materials. Comput. Educ. 2017, 106, 73–82. [Google Scholar] [CrossRef]
- Anderson, J. Cognitive Psychology and It’s an Implications; Worth Publishers: New York, NY, USA, 2004. [Google Scholar]
- Anand, K.; Ruchika, K.; Ram, K.; Iqbal, A.; Puneet, W. Alternative healing therapies in today’s era. Int. J. Res. Ayurveda Pharm. 2014, 5, 394–396. [Google Scholar]
- Poltavski, D.V. The Use of Single-Electrode Wireless EEG in Biobehavioral Investigations. Mob. Health Technol. Methods Protoc. 2014, 1256, 375–390. [Google Scholar] [CrossRef]
- Phattarapong, S.; Supanida, H.; Pitshaporn, L.; Supavit, K.; Theerawit, W. Consumer EEG Measuring Sensors. IEEE Sens. J. 2019, 20, 3996–4024. [Google Scholar]
- Veber, M.; Pesek, I.; Aberšek, B. Using EEG Device in the Pilot Development of Cyber-Physical Learning Model. In Proceedings of the Mipro Proceedings—44th International Convention, Opatija, Croatia, 27 September–1 October 2021. [Google Scholar]
- Veber, M.; Pesek, I.; Aberšek, B. Implementation of the Modern Immersive Learning Model CPLM. Appl. Sci. 2022, 12, 3090. [Google Scholar] [CrossRef]
- Jensen, H.; Konradsen, H.; Lemoine, J.; Levy, C.R.; Ny, P.; Khalaf, A.; Torres, S. Factor structure and psychometric properties of the Body Appreciation Scale-2 among adolescents and young adults in Danish, Portuguese, and Swedish. Body Image 2018, 26, 1–9. [Google Scholar]
- Napoli, M. Mindfulness training for teachers: A pilot program. Complement. Health Pract. Rev. 2004, 9, 31–42. [Google Scholar] [CrossRef]
- Chang, E.; Kim, H.T.; Yoo, B. Virtual Reality Sickness: A Review of Causes and Measurements. Int. J. Human—Comput. Interact. 2020, 36, 1658–1682. [Google Scholar] [CrossRef]
- Biener, V.; Kalamkar, S.; Nouri, N.; Ofek, E.; Pahud, M.; Dudley, J.J.; Hu, J.; Kristensson, P.O.; Weerasinghe, M.; Pucihar, K.C.; et al. Quantifying the Effects of Working in VR for One Week. IEEE Trans. Vis. Comput. Graph. 2022, 28, 3810–3820. [Google Scholar] [CrossRef] [PubMed]
- Line, K. Application of interactive videos in education. In Proceedings of the Conference: ITHET 2015, 14th International Conference on Information Technology Based Higher Education and Trainin, Lisbon, Portugal, 11–13 June 2015. [Google Scholar]
- Clément, B.; Laurent, M. Enriched Interactive Videos for Teaching and Learning. In Proceedings of the Conference: 8th International Workshop on Interactive Environments and Emerging Technologies for eLearning (IEETeL2017), 21st International Conference on Information Visualisation 2017, London, UK, 11–14 July 2017. [Google Scholar]
- Dina, H.; Dina, M.; Doaa, E.; Rem, F. EduGram: Education Development Based on Hologram Technology. Int. J. Online Biomed. Eng. 2021, 17, 32–49. [Google Scholar]
- Rokoku. Available online: https://www.rokoko.com/products/full-performance-capture (accessed on 5 January 2023).
- Meta Human. 15 April 2022. Available online: https://www.unrealengine.com/en-US/metahuman (accessed on 8 March 2023).
- Buraga, S.C.; Dospinescu, O. A Knowledge-Based Pilot Study on Assessing the Music Influence. Comput. Mater. Contin. 2021, 66, 2857–2873. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Q.; Johnson-Glenberg, M.C.; Han, M.; Ma, J.; Ba, S.; Wu, L. Promoting musical instrument learning in virtual reality environment: Effects of embodiment and visual cues. Comput. Educ. 2023, 198, 104764. [Google Scholar] [CrossRef]
- Delgado, P.; Vargas, C.; Ackerman, R.; Salmerón, L. Don’t throw away your printed books: A meta-analysis on the effects of reading media on reading comprehension. Educ. Res. Rev. 2018, 25, 23–38. [Google Scholar] [CrossRef]
- Shaturaev, J. Termez branch of Tashkent State Technical University The Importance of Handwriting in Education. Int. J. Adv. Res. 2019, 7, 947–954. [Google Scholar] [CrossRef] [Green Version]
- Valverde-Berrocoso, J.; Garrido-Arroyo, M.d.C.; Burgos-Videla, C.; Morales-Cevallos, M.B. Trends in Educational Research about e-Learning: A Systematic Literature Review (2009–2018). Sustainability 2020, 12, 5153. [Google Scholar] [CrossRef]
- Dospinescu, O.; Dospinescu, N. Perception over e-learning tools in higher education: Comparative study romania and moldova. In Proceedings of the of the IE 2020 International Conference, Bucharest, Romania, 20–23 July 2020. [Google Scholar] [CrossRef]
- Mystakidis, S.; Berki, E.; Valtanen, J.-P. Deep and Meaningful E-Learning with Social Virtual Reality Environments in Higher Education: A Systematic Literature Review. Appl. Sci. 2021, 11, 2412. [Google Scholar] [CrossRef]
- Qiao, P.; Zhu, X.; Guo, Y.; Sun, Y.; Qin, C. The Development and Adoption of Online Learning in Pre- and Post-COVID-19: Combination of Technological System Evolution Theory and Unified Theory of Acceptance and Use of Technology. J. Risk Financial. Manag. 2021, 14, 162. [Google Scholar] [CrossRef]
- Mcculloch, G. New Directions in the History of Education. J. Int. Comp. Educ. 2016, 5, 47–56. [Google Scholar] [CrossRef]
- Indianaexpress. The Indian Express. 23 December 2021. Available online: https://indianexpress.com/article/technology/tech-news-technology/elon-musk-mocks-metaverse-idea-says-nobody-wants-a-screen-strapped-to-their-face-7686834/ (accessed on 4 November 2022).
- Langlois, R. Computers and Semiconductors. Technol. Innov. Econ. Perform. 2002, 7, 2. [Google Scholar]
- IFR. 7 February 2023. Available online: https://ifr.org/robot-history (accessed on 22 April 2023).
- Mansi, B. Positive and Negative Impacts of Information and Communication Technology in our Everyday Life. In Proceedings of the International Conference On Disciplinary and Interdisciplinary Approaches to Knowledge Creation in Higher Education: Canada & India (Genesis 2013), Bhavnagar, India, 28–29 December 2013. [Google Scholar]
- Saukh, P.Y. Algorithm of implementing the human paradigm in the modern education: Issues and perspectives. Вісник Житoмирськoгo Державнoгo Університету 2016, 80, 119. [Google Scholar]
N | EV-A | EV-M | 360 V-A | 360 V-M | AR-A | AR-M |
---|---|---|---|---|---|---|
1. | 64.25 | 52.56 | 58.22 | 74.18 | 50.11 | 59.35 |
2. | 59.85 | 49.91 | 78.71 | 41.35 | 83.09 | 55.53 |
3. | 79.69 | 32.64 | 79.73 | 35.64 | 62.85 | 54.19 |
4. | 63.00 | 54.61 | 45.29 | 51.42 | 47.07 | 58.90 |
5. | 45.57 | 57.40 | 75.20 | 47.77 | 60.47 | 83.08 |
6. | 77.40 | 79.20 | 54.68 | 42.33 | 78.53 | 59.90 |
7. | 37.02 | 74.87 | 45.81 | 52.29 | 13.69 | 46.30 |
8. | 79.27 | 39.63 | 75.23 | 41.25 | 54.00 | 49.87 |
9. | 37.22 | 71.70 | 55.83 | 45.66 | 59.18 | 47.64 |
10. | 62.13 | 58.38 | 56.34 | 60.78 | 60.72 | 57.37 |
11. | 64.34 | 59.73 | 70.60 | 53.32 | 52.07 | 63.88 |
12. | 52.80 | 51.43 | 57.88 | 52.48 | 39.36 | 33.95 |
13. | 23.64 | 53.45 | 73.58 | 44.69 | 37.11 | 36.20 |
14. | 58.31 | 63.93 | 47.19 | 58.70 | 35.70 | 59.85 |
15. | 38.78 | 65.75 | 73.23 | 76.47 | 47.93 | 52.54 |
StD | 16.29 | 11.63 | 12.03 | 11.30 | 16.85 | 9.08 |
Mean | 56.22 | 57.88 | 63.17 | 51.89 | 53.04 | 57.04 |
EV-A | 360 V-A | AR-A | |||
---|---|---|---|---|---|
Min | 23.64 | 45.29 | 13.69 | ||
Max | 79.69 | 79.73 | 83.09 | ||
StD | 16.29 | 12.03 | 16.85 | ||
Mean | 56.22 | 63.17 | 53.04 | ||
K | −0.65 | −1.62 | 1.14 | ||
S | −0.32 | −0.10 | −0.42 | ||
Pair | n | r | Sig. p | t | Sig. P 2-tailed |
EV-A 360 V-A 360 V-A | 15 | 0.73 | 0.79 | −1.33 | 0.20 |
AR-A | 15 | 0.44 | 0.094 | 2.65 | 0.019 |
EV-M | 360 V-M | AR-M | |||
---|---|---|---|---|---|
Min | 32.64 | 35.64 | 46.30 | ||
Max | 79.20 | 76.47 | 83.08 | ||
StD | 12.03 | 11.30 | 9.08 | ||
Mean | 57.68 | 51.89 | 57.04 | ||
K | 0.13 | 0.50 | 5.40 | ||
S | −0.17 | 0.96 | 1.94 | ||
Pair | n | r | Sig. p | t | Sig. P 2-tailed |
EV-M 360 V-M 360 V-M | 15 | 0.25 | 0.35 | 1.60 | 0.13 |
AR-M | 15 | 0.087 | 0.75 | −0.65 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veber, M.; Pesek, I.; Aberšek, B. Assessment of Supporting Visual Learning Technologies in the Immersive VET Cyber-Physical Learning Model. Educ. Sci. 2023, 13, 608. https://doi.org/10.3390/educsci13060608
Veber M, Pesek I, Aberšek B. Assessment of Supporting Visual Learning Technologies in the Immersive VET Cyber-Physical Learning Model. Education Sciences. 2023; 13(6):608. https://doi.org/10.3390/educsci13060608
Chicago/Turabian StyleVeber, Matej, Igor Pesek, and Boris Aberšek. 2023. "Assessment of Supporting Visual Learning Technologies in the Immersive VET Cyber-Physical Learning Model" Education Sciences 13, no. 6: 608. https://doi.org/10.3390/educsci13060608
APA StyleVeber, M., Pesek, I., & Aberšek, B. (2023). Assessment of Supporting Visual Learning Technologies in the Immersive VET Cyber-Physical Learning Model. Education Sciences, 13(6), 608. https://doi.org/10.3390/educsci13060608