Learning Science at University in Times of COVID-19 Crises from the Perspective of Lecturers—An Interview Study
Abstract
:1. Introduction
1.1. Theoretical Background
1.2. Research Questions
- How did the teaching change at university during the COVID-19 pandemic?
- How are the changes perceived by the teachers?
- What are the implications of these changes for future course design?
- What are the differences between lecture, tutorial, and lab courses during the COVID-19 pandemic?
- What are the differences between biology, chemistry, and physics?
1.3. Hypotheses
- Due to the pandemic, lecturers used more digital media in teaching.
- Teachers consider retaining parts of the changes that have been force-tested.
- The digitalization rate is higher in the area of lectures and exercises. Practical courses take place less digitally and less at a distance.
- The wetter an experiment is, the stronger the rejection of digitalization in the field of practical courses. For lectures and tutorials, on the other hand, there is no difference.
2. Materials and Methods
2.1. Development of an Interview Guideline
2.2. Selection and Invitation of Subjects
2.3. Sample
3. Results
3.1. Overview of the Results
3.1.1. Research Question 1: Changes in Teaching
3.1.2. Research Question 2: Perception of the Changes
3.1.3. Research Question 3: Implications for Further Courses
3.1.4. Research Question 4: Differences between Lecture, Tutorial, and Lab Courses
3.1.5. Research Question 5: Differences between Biology, Chemistry, and Physics?
3.2. Changes in Teaching
3.2.1. Changes in Lecture: Almost Half of the Lectures in Asynchronous Formats
Format
Methods and Materials
Time and Interaction
3.2.2. Changes in Tutorials: Tutorials Took Place in Web Conferencing Tools and Worksheets Were Distributed Digitally
Format
Methods and Materials
3.2.3. Changes in Lab Courses: Great Variety of Formats Was Implemented and Content of Lab Courses Was Modified
Format
Colloquia
Groups and Group Size
Materials and Methods
3.3. Changes in Attitude towards Digital Media in Teaching
3.4. Advantages of the Changes: Recorded Files Are Available Afterwards, More Time Flexibility for Students and Lecturers, and Software and Hardware Is Available for the Online Instruction
3.4.1. Format
3.4.2. Methods and Materials
3.4.3. Interaction
3.5. Disadvantages of the Changes
3.5.1. Format
3.5.2. Materials and Methods
3.5.3. Less Interaction, Feedback, Communication, and Relationships Were Declared as Main Negative Side Effects of the Implemented Changes
3.5.4. Workload
3.6. Implications for Further Courses
3.6.1. Format
3.6.2. Materials and Methods
3.6.3. Interaction
4. Discussion
4.1. Main Findings
4.2. Limitations of the Data
4.3. Data in Relation to Current Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marinoni, G.; Van’t Land, H.; Jensen, T. The Impact of COVID-19 on Higher Education around the World: IAU Global Survey Report; International Association of Universities: Paris, France, 2020; p. 48. [Google Scholar]
- Watermeyer, R.; Crick, T.; Knight, C.; Goodall, J. COVID-19 and digital disruption in UK universities: Afflictions and affordances of emergency online migration. High. Educ. 2021, 81, 623–641. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Canal, M.; Obesso, M.l.M.d.; Pérez-Rivero, C.A. New challenges in higher education: A study of the digital competence of educators in Covid times. Technol. Forecast. Soc. Chang. 2022, 174, 121270. [Google Scholar] [CrossRef]
- Verma, G.; Campbell, T.; Melville, W.; Park, B.-Y. Science Teacher Education in the Times of the COVID-19 Pandemic. J. Sci. Teach. Educ. 2020, 31, 483–490. [Google Scholar] [CrossRef]
- Scull, J.; Phillips, M.; Sharma, U.; Garnier, K. Innovations in teacher education at the time of COVID19: An Australian perspective. J. Educ. Teach. 2020, 46, 497–506. [Google Scholar] [CrossRef]
- Zhao, Y.; Pinto Llorente, A.M.; Sánchez Gómez, M.C. Digital competence in higher education research: A systematic literature review. Comput. Educ. 2021, 168, 104212. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, A.-M.; Cardoso-Pulido, M.-J.; La Cruz-Campos, J.-C.d.; Martínez-Heredia, N. Communicating and Collaborating with Others through Digital Competence: A Self-Perception Study Based on Teacher Trainees’ Gender. Educ. Sci. 2022, 12, 534. [Google Scholar] [CrossRef]
- Akerson, V.L.; Carter, I.S. Commentary: Teaching University Science Content Courses During COVID-19. In Science Education during the COVID-19 Pandemic: Tales from the Front Lines; Akerson, V.L., Carter, I.S., Eds.; ISTES Organization: Monument, CO, USA, 2021; pp. 143–144. [Google Scholar]
- Barrio, F. Legal and Pedagogical Issues with Online Exam Proctoring. Eur. J. Law Technol. 2022, 13. Available online: https://ejlt.org/index.php/ejlt/article/view/886 (accessed on 19 March 2023).
- Aristovnik, A.; Keržič, D.; Ravšelj, D.; Tomaževič, N.; Umek, L. Impacts of the COVID-19 Pandemic on Life of Higher Education Students: A Global Perspective. Sustainability 2020, 12, 8438. [Google Scholar] [CrossRef]
- Salta, K.; Paschalidou, K.; Tsetseri, M.; Koulougliotis, D. Shift From a Traditional to a Distance Learning Environment during the COVID-19 Pandemic: University Students’ Engagement and Interactions. Sci. Educ. 2022, 31, 93–122. [Google Scholar] [CrossRef]
- Lepp, L.; Aaviku, T.; Leijen, Ä.; Pedaste, M.; Saks, K. Teaching during COVID-19: The Decisions Made in Teaching. Educ. Sci. 2021, 11, 47. [Google Scholar] [CrossRef]
- Drozdikova-Zaripova, A.R.; Valeeva, R.A.; Latypov, N.R. The Impact of Isolation Measures during COVID-19 Pandemic on Russian Students’ Motivation for Learning. Educ. Sci. 2021, 11, 722. [Google Scholar] [CrossRef]
- Maini, R.; Sehgal, S.; Agrawal, G. Todays’ digital natives: An exploratory study on students’ engagement and satisfaction towards virtual classes amid COVID-19 pandemic. Int. J. Inf. Learn. Technol. 2021, 38, 454–472. [Google Scholar] [CrossRef]
- Lahme, S.Z.; Klein, P.; Lethinen, A.; Müller, A.; Pirinen, P.; Sušac, A. DigiPhysLab: Digital Physics Laboratory Work for Distance Learning. Didaktik der Physik—Beiträge zur DPG-Frühjahrstagung. 2022, pp. 384–390. Available online: https://ojs.dpg-physik.de/index.php/phydid-b/article/view/1250 (accessed on 19 March 2023).
- Gamage, K.A.A.; Wijesuriya, D.I.; Ekanayake, S.Y.; Rennie, A.E.W.; Lambert, C.G.; Gunawardhana, N. Online Delivery of Teaching and Laboratory Practices: Continuity of University Programmes during COVID-19 Pandemic. Educ. Sci. 2020, 10, 291. [Google Scholar] [CrossRef]
- Weiszflog, M.; Goetz, I.K. Transforming laboratory experiments for digital teaching: Remote access laboratories in thermodynamics. Eur. J. Phys. 2021, 43, 15701. [Google Scholar] [CrossRef]
- Haller, K. Über den Zusammenhang von Handlungen und Zielen: Eine Empirische Untersuchung zu Lernprozessen im Physikalischen Praktikum; Logos-Verl: Berlin, Germany, 1999; p. 255. [Google Scholar]
- Hucke, L. Handlungsregulation und Wissenserwerb in Traditionellen und Computergestützten Experimenten des Physikalischen Praktikums; Logos-Verl: Berlin, Germany, 2000; p. 216. [Google Scholar]
- Theyßen, H. Ein Physikpraktikum für Studierende der Medizin: Darstellung der Entwicklung und Evaluation eines Adressatenspezifischen Praktikums nach dem Modell der Didaktischen Rekonstruktion; Logos-Verl: Berlin, Germany, 1999; p. 51. [Google Scholar]
- Sander, F. Verbindung von Theorie und Experiment im Physikalischen Praktikum: Eine Empirische Untersuchung zum Handlungsbezogenen Vorverständnis und dem Einsatz Grafikorientierter Modellbildung im Praktikum; Logos-Verl: Berlin, Germany, 2000; p. 285. [Google Scholar]
- Thoms, L.-J.; Girwidz, R. Virtual and remote experiments for radiometric and photometric measurements. Eur. J. Phys. 2017, 38, 055301–055324. [Google Scholar] [CrossRef]
- Heradio, R.; La Torre, L.d.; Galan, D.; Cabrerizo, F.J.; Herrera-Viedma, E.; Dormido, S. Virtual and remote labs in education: A bibliometric analysis. Comput. Educ. 2016, 98, 14–38. [Google Scholar] [CrossRef]
- Kirstein, J.; Nordmeier, V. Multimedia representation of experiments in physics. Eur. J. Phys. 2007, 28, S115–S126. [Google Scholar] [CrossRef]
- Kuhn, J.; Vogt, P. Smartphones as Mobile Minilabs in Physics; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Lyall, R.; Patti, A.F. Taking the Chemistry Expoerience Home—Home Experiments or “Kitchen Chemistry”. In Accessible Elements; Kennepohl, D., Shaw, L., Eds.; Issues in Distance Education Series; Athabasca University Press: Edmonton, AB, Canada, 2010. [Google Scholar]
- Al-Shamali, F.; Conners, M. Low-Cost Physics Home Laboratory. In Accessible Elements; Kennepohl, D., Shaw, L., Eds.; Issues in Distance Education Series; Athabasca University Press: Edmonton, AB, Canada, 2010; pp. 131–145. [Google Scholar]
- Burnett, J.W.; Burke, K.A.; Stephens, N.M.; Bose, I.; Bonaccorsi, C.; Wade, A.M.; Awino, J.K. How the COVID-19 Pandemic Changed Chemistry Instruction at a Large Public University in the Midwest: Challenges Met, (Some) Obstacles Overcome, and Lessons Learned. J. Chem. Educ. 2020, 97, 2793–2799. [Google Scholar] [CrossRef]
- Thoms, L.-J.; Meier, M.; Huwer, J.; Thyssen, C.; Kotzebue, L.v.; Becker, S.; Kremser, E.; Finger, A.; Bruckermann, T. DiKoLAN—A Framework to Identify and Classify Digital Competencies for Teaching in Science Education and to Restructure Pre-Service Teacher Training. In Society for Information Technology & Teacher Education International Conference; Langran, E., Archambault, L., Eds.; Association for the Advancement of Computing in Education (AACE): Waynesville, NC, USA, 2021; pp. 1652–1657. [Google Scholar]
- Kotzebue, L.v.; Meier, M.; Finger, A.; Kremser, E.; Huwer, J.; Thoms, L.-J.; Becker, S.; Bruckermann, T.; Thyssen, C. The Framework DiKoLAN (Digital Competencies for Teaching in Science Education) as Basis for the Self-Assessment Tool DiKoLAN-Grid. Educ. Sci. 2021, 11, 775. [Google Scholar] [CrossRef]
- Del Molero Jurado, M.M.; Del Simón Márquez, M.M.; Martos Martínez, Á.; Barragán Martín, A.B.; Del Pérez-Fuentes, M.C.; Gázquez Linares, J.J. Qualitative Analysis of Use of ICTs and Necessary Personal Competencies (Self-Efficacy, Creativity and Emotional Intelligence) of Future Teachers: Implications for Education. Sustainability 2022, 14, 12257. [Google Scholar] [CrossRef]
- Große-Heilmann, R.; Riese, J.; Burde, J.-P.; Schubatzky, T.; Weiler, D. Fostering Pre-Service Physics Teachers’ Pedagogical Content Knowledge Regarding Digital Media. Educ. Sci. 2022, 12, 440. [Google Scholar] [CrossRef]
- Kotzebue, L.V. Two is better than one—Examining biology-specific TPACK and its T-dimensions from two angles. J. Res. Technol. Educ. 2022, 1–18. [Google Scholar] [CrossRef]
- Thoms, L.-J.; Colberg, C.; Heiniger, P.; Huwer, J. Digital Competencies for Science Teaching: Adapting the DiKoLAN Framework to Teacher Education in Switzerland. Front. Educ. 2022, 7, 802170. [Google Scholar] [CrossRef]
- Demkanin, P. The Ways the Theory of Physics Education can Evolve. J. Balt. Sci. Educ. 2020, 19, 860–863. [Google Scholar] [CrossRef]
- Diepolder, C.; Weitzel, H.; Huwer, J.; Lukas, S. Verfügbarkeit und Zielsetzungen digitalisierungsbezogener Lehrkräftefortbildungen für naturwissenschaftliche Lehrkräfte in Deutschland. Z. Didakt. Nat. 2021, 27, 203–214. [Google Scholar] [CrossRef]
- Zimmermann, F.; Melle, I.; Huwer, J. Developing Prospective Chemistry Teachers’ TPACK–A Comparison between Students of Two Different Universities and Expertise Levels Regarding Their TPACK Self-Efficacy, Attitude, and Lesson Planning Competence. J. Chem. Educ. 2021, 98, 1863–1874. [Google Scholar] [CrossRef]
- Becker, S.; Meßinger-Koppelt, J.; Thyssen, C.; Joachim Herz, S. Digitale Basiskompetenzen: Orientierungshilfe und Praxisbeispiele für die Universitäre Lehramtsausbildung in den Naturwissenschaften, 1st ed.; Joachim Herz Stiftung: Hamburg, Germany, 2020. [Google Scholar]
- Meier, M.; Thoms, L.-J.; Becker, S.; Finger, A.; Kremser, E.; Huwer, J.; Kotzebue, L.V.; Bruckermann, T.; Thyssen, C. Digitale Transformation von Unterrichtseinheiten—DiKoLAN als Orientierungs- und Strukturierungshilfe am Beispiel Low-Cost-Photometrie mit dem Smartphone. In Digitalisation in Chemistry Education. Digitales Lehren und Lernen an Hochschule und Schule im Fach Chemie; Graulich, N., Huwer, J., Banerji, A., Eds.; Waxmann: Münster, Germany, 2021; pp. 13–27. [Google Scholar]
- Pokhrel, S.; Chhetri, R. A Literature Review on Impact of COVID-19 Pandemic on Teaching and Learning. High. Educ. Future 2021, 8, 133–141. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution. Rotman Management Magazine, 1 September 2016. [Google Scholar]
- Collins, A.; Brown, J.S.; Holum, A. Cognitive Apprenticeship: Making Thinking Visible. Am. Educ. 1991, 15, 6–11, 38–46. [Google Scholar]
- Myyry, L.; Kallunki, V.; Katajavuori, N.; Repo, S.; Tuononen, T.; Anttila, H.; Kinnunen, P.; Haarala-Muhonen, A.; Pyörälä, E. COVID-19 Accelerating Academic Teachers’ Digital Competence in Distance Teaching. Front. Educ. 2022, 7, 770094. [Google Scholar] [CrossRef]
- Johnson, L.; Becker, S.A.; Cummins, M.; Estrada, V.; Freeman, A.; Hall, C. NMC Horizon Report: 2016 Higher Education Edition; The New Media Consortium: Austin, TX, USA, 2016. [Google Scholar]
- Mercader, C.; Gairín, J. University teachers’ perception of barriers to the use of digital technologies: The importance of the academic discipline. Int. J. Educ. Technol. High. Educ. 2020, 17, 4. [Google Scholar] [CrossRef]
- Kvale, S. Doing Interviews, 1st ed.; SAGE: Los Angeles, CA, USA, 2007; Volume 2. [Google Scholar]
- Marczuk, A.; Multrus, F.; Lörz, M. Die Studiensituation in der Corona-Pandemie. Auswirkungen der Digitalisierung auf die Lern-und Kontaktsituation von Studierenden. DZHW Brief 2021, 1, 2021. [Google Scholar]
- Kirstein, J. Interaktive Bildschirmexperimente; Freie Universität Berlin: Berlin, Germany, 2023; Available online: https://tetfolio.fu-berlin.de/web/980458 (accessed on 19 March 2023).
- Dietrich, N.; Kentheswaran, K.; Ahmadi, A.; Teychené, J.; Bessière, Y.; Alfenore, S.; Laborie, S.P.; Bastoul, D.; Loubière, K.; Guigui, C.; et al. Attempts, Successes, and Failures of Distance Learning in the Time of COVID-19. J. Chem. Educ. 2020, 97, 2448–2457. [Google Scholar] [CrossRef]
- Broad, H.; Carey, N.; Williams, D.P.; Blackburn, R.A.R. Impact of the COVID-19 Pandemic on Chemistry Student and Staff Perceptions of their Learning/Teaching Experience. J. Chem. Educ. 2023, 100, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Roddy, C.; Amiet, D.L.; Chung, J.; Holt, C.; Shaw, L.; McKenzie, S.; Garivaldis, F.; Lodge, J.M.; Mundy, M.E. Applying Best Practice Online Learning, Teaching, and Support to Intensive Online Environments: An Integrative Review. Front. Educ. 2017, 2, 59. [Google Scholar] [CrossRef] [Green Version]
- Chi, M.T.H.; Wylie, R. The ICAP Framework: Linking Cognitive Engagement to Active Learning Outcomes. Educ. Psychol. 2014, 49, 219–243. [Google Scholar] [CrossRef]
- Mayer, R.E. Cognitive Theory of Multimedia Learning. In The Cambridge Handbook of Multimedia Learning, 2nd ed.; Mayer, R.E., Ed.; Cambridge Handbooks in Psychology; Cambridge University Press: New York, NY, USA, 2014; pp. 43–71. [Google Scholar]
- Chans, G.M.; Bravo-Gutierrez, M.E.; Orona-Navar, A.; Sanchez-Rodriguez, E.P. Compilation of Chemistry Experiments for an Online Laboratory Course: Student’s Perception and Learning Outcomes in the Context of COVID-19. Sustainability 2022, 14, 2539. [Google Scholar] [CrossRef]
- Henne, A.; Möhrke, P.; Thoms, L.-J.; Huwer, J. Implementing Digital Competencies in University Science Education Seminars Following the DiKoLAN Framework. Educ. Sci. 2022, 12, 356. [Google Scholar] [CrossRef]
- Müller, L.; Thoms, L.J.; Möhrke, P.; Henne, A.; Huwer, J. Erprobung neuer Konzepte in der universitären Lehrerbildung für den Erwerb digitaler Kompetenzen nach DiKoLAN—Entwicklung und Untersuchung der Wirksamkeit eines Lehr-Lernmoduls im Bereich Simulation und Modellierung. Chemkon 2022, 29, 349–354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henne, A.; Möhrke, P.; Huwer, J.; Thoms, L.-J. Learning Science at University in Times of COVID-19 Crises from the Perspective of Lecturers—An Interview Study. Educ. Sci. 2023, 13, 319. https://doi.org/10.3390/educsci13030319
Henne A, Möhrke P, Huwer J, Thoms L-J. Learning Science at University in Times of COVID-19 Crises from the Perspective of Lecturers—An Interview Study. Education Sciences. 2023; 13(3):319. https://doi.org/10.3390/educsci13030319
Chicago/Turabian StyleHenne, Anna, Philipp Möhrke, Johannes Huwer, and Lars-Jochen Thoms. 2023. "Learning Science at University in Times of COVID-19 Crises from the Perspective of Lecturers—An Interview Study" Education Sciences 13, no. 3: 319. https://doi.org/10.3390/educsci13030319
APA StyleHenne, A., Möhrke, P., Huwer, J., & Thoms, L. -J. (2023). Learning Science at University in Times of COVID-19 Crises from the Perspective of Lecturers—An Interview Study. Education Sciences, 13(3), 319. https://doi.org/10.3390/educsci13030319