Conceptualization of Energy by Practicing Scientists: Do Researchers from Different Disciplines Grasp Energy as a Crosscutting Concept?
Abstract
:1. Background
1.1. Teaching Cross-Disciplinary Unifying Concepts
1.2. Energy
1.3. Energy in Instruction
1.4. Conceptual Profile Theory
2. Methods
2.1. Sample
2.2. Instruments
2.3. Analysis
3. Results
3.1. Did the Scientists Use the Energy Concept Spontaneously to Make Sense of Phenomena?
3.2. Coding According to the Five Key Elements
3.3. Did the Practicing Scientists Grasp Energy as a Concept Similarly across the Disciplines?
- “There are clear definitions of what energy is. Naturally, physicists are very accurate about what energy is. We’re talking about the same term we’re talking about energy and there’s a point in being precise so we can explain our ideas to physicists in a coherent way clearly.” (B4).
- “No. I don’t think that biologists recognize the physical concept of energy but use it as a currency ATP.” (B6).
- “I do not doubt that energy is a universal interdisciplinary concept. Will people in different research fields answer in the same manner? Of course not. Physicists are more mathematical and therefore, will give you the formulas. Biologists will use less math and will explain in their words the same phenomenon.” (B7).
- “Biology is complex systems, energy describes only a small part of the story ... energy may be a crosscutting concept, but it tells a lot less about what happened....” (P1).
- “There is no doubt that the term energy is used in the same way in all disciplines ... but it is not grasped in the same way.” (P6).
- “It is very dangerous to teach energy as a crosscutting concept. If so, soon everyone will start treating energy as “Reiki” and transfer energy from rocks to the spirit…. There is only one energy that is in the physical concept of energy.” (P10).
- “Biologists perhaps because of their education and what they have learned all these years are less likely to use energy as an explanation in general.” (C4).
4. Discussion
5. Conclusions
6. Future Research and Implications
7. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chesnutt, K.; Gail Jones, M.; Corin, E.N.; Hite, R.; Childers, G.; Perez, M.P.; Ennes, M. Crosscutting concepts and achievement: Is a sense of size and scale related to achievement in science and mathematics? J. Res. Sci. Teach. 2019, 56, 302–321. [Google Scholar] [CrossRef]
- Fick, S.J. What does three-dimensional teaching and learning look like?: Examining the potential for crosscutting concepts to support the development of science knowledge. Sci. Educ. 2018, 102, 5–35. [Google Scholar] [CrossRef]
- National Research Council. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Krajcik, J.; Codere, S.; Dahsah, C.; Bayer, R.; Mun, K. Planning instruction to meet the intent of the Next Generation Science Standards. J. Sci. Teach. Educ. 2014, 25, 157–175. [Google Scholar] [CrossRef]
- Driver, R.; Millar, R. (Eds.) Energy Matters: Proceedings of an Invited Conference: Teaching about Energy Within the Secondary Science Curriculum; University of Leeds, Centre for Studies in Science and Mathematics Education: Leeds, UK, 1986. [Google Scholar]
- Nordine, J.C.; Krajcik, J.S.; Fortus, D. Transforming energy instruction in middle school to support integrated understanding and future learning. Sci. Educ. 2011, 95, 670–699. [Google Scholar] [CrossRef]
- Park, M.; Liu, X. Assessing understanding of the energy concept in different science disciplines. Sci. Educ. 2016, 100, 483–516. [Google Scholar] [CrossRef]
- Sanderson, R. Chemical Bonds and Bonds Energy; Elsevier: Cambridge, MA, USA, 2012; Volume 21. [Google Scholar]
- Cooper, M.M.; Klymkowsky, M.W. The trouble with chemical energy: Why understanding bond energies requires an interdisciplinary systems approach. CBE—Life Sci. Educ. 2013, 12, 306–312. [Google Scholar] [CrossRef]
- Chen, R.F.; Eisenkraft, A.; Fortus, D.; Krajcik, J.S.; Neumann, K.; Nordine, J.C.; Scheff, A. (Eds.) Teaching and Learning of Energy in K-12 Education; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Duit, R. Learning the energy concept in schools—Empirical results from The Phillippines and West Germany. Phys. Educ. 1984, 19, 59–66. [Google Scholar] [CrossRef]
- Liu, X.; McKeough, A. Developmental growth in students’ concept of energy: Analysis of selected items from the TIMSS database. J. Res. Sci. Teach. 2005, 42, 493–517. [Google Scholar] [CrossRef]
- Neumann, K.; Viering, T.; Boone, W.J.; Fischer, H.E. Towards a learning progression of energy. J. Res. Sci. Teach. 2013, 50, 162–188. [Google Scholar] [CrossRef]
- Ben-Zvi, R.; Silberstein, J.; Mamlok, R. A model of thermal equilibrium: A tool for the introduction of thermodynamics. J. Chem. Educ. 1993, 70, 31. [Google Scholar] [CrossRef]
- Levy Nahum, T.; Mamlok-Naaman, R.; Hofstein, A.; Taber, K.S. Teaching and learning the concept of chemical bonding. Stud. Sci. Educ. 2010, 46, 179–207. [Google Scholar] [CrossRef]
- Granville, M.F. Student misconceptions in thermodynamics. J. Chem. Educ. 1985, 62, 847. [Google Scholar] [CrossRef]
- Opitz, S.T.; Harms, U.; Neumann, K.; Kowalzik, K.; Frank, A. Students’ energy concepts at the transition between primary and secondary school. Res. Sci. Educ. 2014, 45, 691–715. [Google Scholar] [CrossRef]
- Barker, V.; Millar, R. Students’ reasoning about basic chemical thermodynamics and chemical bonding: What changes occur during a context-based post-16 chemistry course? Int. J. Sci. Educ. 2000, 22, 1171–1200. [Google Scholar] [CrossRef]
- Storey, R.D. Textbook errors & misconceptions in biology: Cell energetics. Am. Biol. Teach. 1992, 54, 161–166. [Google Scholar]
- Mortimer, E.F. Conceptual change or conceptual profile change? Sci. Educ. 1995, 4, 267–285. [Google Scholar] [CrossRef]
- Mortimer, E.F.; El-Hani, C.N. (Eds.) Conceptual Profiles: A Theory of Teaching and Learning Scientific Concepts; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014; Volume 42. [Google Scholar]
- Aguiar, O.; Sevian, H.; El-Hani, C. Teaching about energy. Sci. Educ. 2018, 27, 863–893. [Google Scholar] [CrossRef]
- Yonai, E.; Blonder, R. Scientists suggest insertion of nanoscience and technology into middle school physics. Phys. Rev. Phys. Educ. Res. 2020, 16, 010110. [Google Scholar] [CrossRef]
- Ornstein, A.C.; Hunkins, F.P. Curriculum: Foundations, Principles, and Issues; Pearson Education: Essex, UK, 1988. [Google Scholar]
- Shkedi, A. Words of Meaning: Qualitative Research—Theory and Practice; Ramot Publishers: Tel Aviv, Israel, 2003. (In Hebrew) [Google Scholar]
- Chi, M.T. Quantifying qualitative analyses of verbal data: A practical guide. J. Learn. Sci. 1997, 6, 271–315. [Google Scholar] [CrossRef]
- Ericcson, K.; Simon, H. Protocol Analysis; MIT Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Cooper, M.M.; Klymkowsky, M.W.; Becker, N.M. Energy in chemical systems: An integrated approach. In Teaching and Learning of Energy in K-12 Education; Springer: Berlin/Heidelberg, Germany, 2014; pp. 301–316. [Google Scholar]
- Kohn, K.P.; Underwood, S.M.; Cooper, M.M. Energy connections and misconnections across chemistry and biology. CBE—Life Sci. Educ. 2018, 17. [Google Scholar] [CrossRef]
- Harrer, B.W. On the origin of energy: Metaphors and manifestations as resources for conceptualizing and measuring the invisible, imponderable. Am. J. Phys. 2017, 85, 454–460. [Google Scholar] [CrossRef]
- NGSS Lead States. Next Generation Science Standards: For States, by States; National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Mezey, P.G. Potential Energy Hypersurfaces; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Quinn, H.R. A physicist’s musings on teaching about energy. In Teaching and Learning of Energy in K-12 Education; Springer: Berlin/Heidelberg, Germany, 2014; pp. 15–36. [Google Scholar]
- Von Mayer, J.R. Die Mechanik der Wärme: In gesammelten Schriften; JG Cotta: Stuttgart, Germany, 1874. [Google Scholar]
- Osborne, J.; Rafanelli, S.; Kind, P. Toward a more coherent model for science education than the crosscutting concepts of the next generation science standards: The affordances of styles of reasoning. J. Res. Sci. Teach. 2018, 55, 962–981. [Google Scholar] [CrossRef]
- Fortus, D.; Kubsch, M.; Bielik, T.; Krajcik, J.S.; Lehavi, Y.; Neumann, K.; Nordine, J.C.; Opitz, S.T.; Touitou, I. Systems, transfer, and fields: Evaluating a new approach to energy instruction. J. Res. Sci. Teach. 2019, 56, 1341–1361. [Google Scholar] [CrossRef]
- Sahney, S.; Benton, M.J. Recovery from the most profound mass extinction of all time. Proc. R. Soc. B Biol. Sci. 2008, 275, 759–765. [Google Scholar] [CrossRef]
- Lamanna, C.; Blonder, B.; Violle, C.; Kraft, N.J.B.; Sandel, B.; Šímová, I.; Donoghue, J.C., II.; Svenning, J.-C.; McGill, B.J.; Boyle, B.; et al. Functional trait space and the latitudinal diversity gradient. Proc. Natl. Acad. Sci. USA 2014, 111, 13745–13750. [Google Scholar] [CrossRef]
- Rosenzweig, M. How to reject the area hypothesis of latitudinal gradients. In Macroecology: Concepts and Consequences; Blackburn, T.M., Gaston, K.J., Eds.; Blackwell Publishing: Oxford, UK, 2003; pp. 87–106. [Google Scholar]
- London, A. Why Do We Get Tired While Running? 2013. Available online: https://davidson.weizmann.ac.il/online/askexpert/life_sci/%D7%9E%D7%93%D7%95%D7%A2%20%D7%94%D7%92%D7%95%D7%A3%20%D7%9E%D7%AA%D7%A2%D7%99%D7%99%D7%A3%20%D7%9B%D7%A9%D7%A8%D7%A6%D7%99%D7%9D%3F (accessed on 7 May 2023).
- Brown, T.E.; LeMay, H.E.H.; Bursten, B.E.; Murphy, C. Chemistry: The Central Science, 12th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
Discipline | Alias | Specialization |
---|---|---|
Biology professor | B1 | Structural biology |
B2 | Structural biology | |
B3 | Ecology | |
B4 | Microbiology | |
B5 | Computational immunology | |
B6 | Biochemistry and cell biology | |
B7 | Neurobiology | |
B8 | Developmental biology | |
B9 | Immunology | |
B10 | Biochemistry and proteomics | |
Physics professor | P1 | Physics of soft matter |
P2 | Particle physics and astrophysics | |
P3 | Theoretical physics | |
P4 | Quantum and matter physics | |
P5 | Biophysics | |
P6 | String theory | |
P7 | Particle physics and astrophysics | |
P8 | Physical chemistry | |
P9 | Theoretical physics | |
P10 | Particle physics and astrophysics | |
Chemistry professor | C1 | Materials and interfaces |
C2 | Inorganic chemistry | |
C3 | Organic chemistry | |
C4 | Synthetic chemistry | |
C5 | Materials and interfaces | |
C6 | Organic chemistry | |
C7 | Green chemistry and renewable energy | |
C8 | Organic chemistry | |
C9 | Nanomaterials | |
C10 | Materials and interfaces |
Discipline | Alias | Biology Q1 | Biology Q2 | Biology Q3 | Chemistry Q1 | Chemistry Q2 | Physics Q1 | Physics Q2 |
---|---|---|---|---|---|---|---|---|
Biology Professor | B1 | EO | E | E | ||||
B2 | E | E | EO | |||||
B3 | EO | E | EO | O | E | O | E | |
B4 | O | E | E | E | E | EO | EO | |
B5 | EO | E | EO | E | EO | E | O | |
B6 | EO | E | E | EO | E | O | O | |
B7 | EO | E | O | E | EO | O | O | |
B8 | EO | E | E | EO | E | O | O | |
B9 | EO | E | EO | E | E | O | EO | |
B10 | EO | O | E | EO | E | O | O | |
Physics Professor | P1 | O | EO | EO | ||||
P2 | O | E | E | |||||
P3 | O | E | EO | O | O | E | E | |
P4 | EO | E | E | E | O | E | E | |
P5 | EO | E | EO | E | EO | EO | E | |
P6 | O | EO | EO | E | EO | E | EO | |
P7 | O | EO | E | E | E | E | EO | |
P8 | O | EO | O | E | O | EO | E | |
P9 | EO | EO | E | EO | EO | EO | EO | |
P10 | EO | EO | E | EO | O | E | E | |
Chemistry Professor | C1 | EO | E | E | ||||
C2 | O | E | EO | |||||
C3 | EO | E | EO | |||||
C4 | EO | E | E | E | E | O | O | |
C5 | O | E | E | E | EO | EO | O | |
C6 | O | E | E | E | E | E | E | |
C7 | E | E | E | E | E | O | EO | |
C8 | O | EO | EO | EO | E | O | O | |
C9 | O | E | E | E | E | EO | EO | |
C10 | E | EO | EO | E | E | EO | EO | |
E | Used energy spontaneously | |||||||
EO | Used energy among other explanations | |||||||
O | Did not use energy even after being asked to |
Field | Alias | Biology Q1 | Biology Q2 | Biology Q3 | Chemistry Q1 | Chemistry Q2 | Physics Q1 | Physics Q2 | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
forms | transformation | transfer | dissipation | conservation | resource | forms | transformation | transfer | dissipation | conservation | resource | forms | transformation | transfer | dissipation | conservation | resource | forms | transformation | transfer | dissipation | conservation | resource | forms | transformation | Transfer | dissipation | conservation | resource | forms | transformation | Transfer | dissipation | conservation | resource | forms | transformation | transfer | dissipation | conservation | resource | ||
Biology | B1 | v | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||||
B2 | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||||||
B3 | v | v | v | v | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||
B4 | v | v | v | v | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||
B5 | v | v | v | v | v | v | v | v | v | ||||||||||||||||||||||||||||||||||
B6 | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||||||
B7 | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||||||
B8 | v | v | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||||
B9 | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||||||
B10 | v | v | v | v | v | ||||||||||||||||||||||||||||||||||||||
Chemistry | C1 | v | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||||
C2 | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||||||
C3 | v | v | v | v | |||||||||||||||||||||||||||||||||||||||
C4 | v | v | v | v | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||
C5 | v | v | v | v | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||
C6 | v | v | v | v | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||
C7 | v | v | v | v | v | v | v | v | v | ||||||||||||||||||||||||||||||||||
C8 | v | v | v | v | |||||||||||||||||||||||||||||||||||||||
C9 | v | v | v | v | v | v | v | v | v | v | v | v | v | ||||||||||||||||||||||||||||||
C10 | v | v | v | v | v | v | v | v | v | v | v | v | v | ||||||||||||||||||||||||||||||
Physics | P1 | v | v | v | v | v | v | ||||||||||||||||||||||||||||||||||||
P2 | v | v | v | v | v | v | v | ||||||||||||||||||||||||||||||||||||
P3 | v | v | v | v | v | v | v | ||||||||||||||||||||||||||||||||||||
P4 | v | v | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||||
P5 | v | v | v | v | v | v | v | v | v | v | v | ||||||||||||||||||||||||||||||||
P6 | v | v | v | v | v | v | v | v | v | v | v | v | v | ||||||||||||||||||||||||||||||
P7 | v | v | v | v | v | v | v | v | v | v | v | ||||||||||||||||||||||||||||||||
P8 | v | v | v | v | v | v | |||||||||||||||||||||||||||||||||||||
P9 | v | v | v | v | v | v | v | v | v | v | v | v | v | v | v | v | |||||||||||||||||||||||||||
P10 | v | v | v | v | v | v | v | v | v | v | v | v | v | v |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramovitch, S.; Fortus, D. Conceptualization of Energy by Practicing Scientists: Do Researchers from Different Disciplines Grasp Energy as a Crosscutting Concept? Educ. Sci. 2023, 13, 1179. https://doi.org/10.3390/educsci13121179
Abramovitch S, Fortus D. Conceptualization of Energy by Practicing Scientists: Do Researchers from Different Disciplines Grasp Energy as a Crosscutting Concept? Education Sciences. 2023; 13(12):1179. https://doi.org/10.3390/educsci13121179
Chicago/Turabian StyleAbramovitch, Shahar, and David Fortus. 2023. "Conceptualization of Energy by Practicing Scientists: Do Researchers from Different Disciplines Grasp Energy as a Crosscutting Concept?" Education Sciences 13, no. 12: 1179. https://doi.org/10.3390/educsci13121179
APA StyleAbramovitch, S., & Fortus, D. (2023). Conceptualization of Energy by Practicing Scientists: Do Researchers from Different Disciplines Grasp Energy as a Crosscutting Concept? Education Sciences, 13(12), 1179. https://doi.org/10.3390/educsci13121179