Ensuring Scalability of a Cognitive Multiple-Choice Test through the Mokken Package in R Programming Language
Abstract
:1. Introduction
2. Literature Review
2.1. Mokken Scale Analysis
2.2. Scalability Coefficients
2.3. Invariant Item Ordering (IIO)
- To what extent do the empirical datasets for WAEC mathematics assessments support the fit of the monotone homogeneity model?
- What is the extent of item-invariant ordering (IIO) of the test items?
3. Materials and Methods
3.1. Participants
3.2. Measures
3.3. Data Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Code Lines Used in R Software
- ✔
- Download R software at http://www.r-project.org/ (25 November 2021), then install on the system.
- ✔
- Install R packages and their dependencies from the menu. Here, mokken package was used.
- ✔
- WAEC < -read.csv(“C:/Users/xx xx/Desktop/WAEC.csv”, header = FALSE)
- #
- Import dataset to R environment
- ✔
- library(mokken)
- #
- Call package for the analysis
- ✔
- coefH(dataframe=WAEC)
- #
- Compute scalability coefficients (Hij, Hi & H) and standard errors
- ✔
- SCALE < -aisp(dataframe = WAEC, lowerbound = 0.3, search = “ga”, alpha = 0.05, popsize = 20, verbose = TRUE)
- #
- automated item selection for unidimensional scale
- ✔
- print (SCALE)
- #
- Print output
- ✔
- SCALES <- aisp(dataframe, lowerbound = seq(0.30, 0.55, 0.05))
- #
- Perform automated item selection for unidimensional scale for increasing lower bounds
- ✔
- print (SCALE)
- ✔
- Print output
- ✔
- INVARIANT < -(check.iio(dataframe, method = “MIIO”, alpha = 0.05, item.selection = TRUE, verbose = TRUE))
- #
- assessment of invariant item ordering
- ✔
- Summary (INVARIANT)
- #
- summary for assessment of invariant item ordering
- ✔
- plot(check.iio(dataframe))
- #
- Plot item response function for test items
Appendix B. 2019 West African Examinations Council Mathematics Multiple-Choice Test Items
References
- Algina, J.; Swaminathan, H. Psychometrics: Classical Test Theory. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Elsevier: Gainesville, FL, USA, 2015; pp. 423–430. [Google Scholar] [CrossRef]
- Coulacoglou, C.; Saklofske, D.H. Classical Test Theory, Generalizability Theory, and Item Response Perspectives on Reliability. In Psychometrics and Psychological Assessment; Elsevier: North York, ON, Canada, 2017; pp. 27–44. [Google Scholar]
- Kane, M.; Bridgeman, B. Research on Validity Theory and Practice at ETS. Adv. Hum. Assess. 2017, 18, 489–552. [Google Scholar]
- Prieto, L.; Alonso, J.; Lamarca, R. Classical test theory versus Rasch analysis for quality of life questionnaire reduction. Health Quality Life Outcomes 2003, 1, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sijtsma, K.; Emons, W.H.M.; Bouwmeester, S.; Nyklíček, I.; Roorda, L.D. Non-parametric IRT analysis of Quality-of-Life Scales and its application to the World Health Organization Quality-of-Life Scale (WHOQOL-Bref). Qual. Life Res. 2008, 17, 275–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokken, R.J. A Theory and Procedure of Scale Analysis; De Gruyter Mouton: Berlin, Germany, 1971. [Google Scholar]
- Sijtsma, K.; Molenaar, I. Introduction to Nonparametric Item Response Theory; SAGE Publications: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Van der Ark, L.A. New developments in Mokken scale analysis in R. J. Stat. Softw. 2012, 48, 1–27. Available online: http://www.jstatsoft.org/ (accessed on 8 March 2021).
- Sijtsma, K.; van der Ark, L.A. A tutorial on how to do a Mokken scale analysis on your test and questionnaire data. Br. J. Math. Stat. Psychol. 2017, 70, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Stochl, J.; Jones, P.B.; Croudace, T.J. Mokken scale analysis of mental health and well-being questionnaire item responses: A non-parametric IRT method in empirical research for applied health researchers. BMC Med. Res. Methodol. 2012, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Sijtsma, K.; Molenaar, I.W. Reliability of test scores in non-parametric item response theory. Psychometrika 1987, 52, 79–97. [Google Scholar] [CrossRef]
- Vaughan, B.; Grace, S. A Mokken scale analysis of the peer physical examination questionnaire. Chiropr. Man. Ther. 2018, 26, 6. [Google Scholar] [CrossRef]
- Rasch, G. Studies in Mathematical Psychology: I. Probabilistic Models for Some Intelligence and Attainment Tests; Nielsen & Lydiche: Washington, DC, USA, 1960; Volume 44. [Google Scholar]
- Barton, M.A.; Lord, F.M. An upper asymptote for the three-parameter logistic item-response model. ETS Res. Rep. Ser. 1981, 19, 388–402. [Google Scholar] [CrossRef]
- Birnbaum, A. Some latent trait models and their use in inferring an examinee’s ability. In Statistical Theories of Mental Test Scores; Lord, F.M., Novick, M.R., Eds.; Information Age Publishing: Charlotte, NC, USA, 1968; pp. 397–472. [Google Scholar]
- Sijtsma, K.; Hemker, B.T. Non-parametric polytomous IRT models for invariant item ordering, with results for parametric models. Psychometrika 1998, 63, 183–200. [Google Scholar] [CrossRef] [Green Version]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2011. [Google Scholar]
- Ligtvoet, R.; van der Ark, L.A.; te Marvelde, J.M.; Sijtsma, K. Investigating an invariant item ordering for polytomous scored items. Educ. Psychol. Meas. 2010, 70, 578–595. [Google Scholar] [CrossRef] [Green Version]
- Mooij, T. A Mokken Scale to Assess Secondary Pupils’ Experience of Violence in Terms of Severity. J. Psychoeduc. Assess. 2012, 30, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Emons, W.H.M.; Sijtsma, K.; Pedersen, S.S. Dimensionality of the Hospital Anxiety and Depression Scale (HADS) in Cardiac Patients: Comparison of Mokken Scale Analysis and Factor Analysis. Assessment 2012, 19, 337–353. [Google Scholar] [CrossRef]
- Van der Ark, L.A.; Sijtsma, K.; Meijer, R.R. Mokken scale analysis as time goes by: An update for scaling practitioners. Pers. Individ. Differ. 2011, 50, 31–37. [Google Scholar]
- Watson, R.; Deary, I.; Austin, E. Are personality trait items reliably more or less ‘difficult’? Mokken scaling of the NEO-FFI. Pers. Individ. Differ. 2007, 43, 1460–1469. [Google Scholar] [CrossRef]
- Hemker, B.T.; Sijtsma, K.; Molenaar, I.W. Selection of unidimensional scales from a multidimensional item bank in the polytomous Mokken’s IRT model. Appl. Psychol. Meas. 1995, 19, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Mokken, R.J.; Lewis, C.; Sijtsma, K. Rejoinder to ‘The Mokken Scale: A Critical Discussion’. Appl. Psychol. Meas. 1986, 10, 279–285. [Google Scholar] [CrossRef]
- Van der Ark, L.A. R Package Mokken. 2017. Available online: https://cran.r-project.org/web/packages/mokken/assessed:11-08-2021 (accessed on 25 November 2021).
- Abdelhamid, G.S.M.; Gómez-Benito, J.; Abdeltawwab, A.T.M.; Bakr, M.H.S.A.; Kazem, A.M. A Demonstration of Mokken Scale Analysis Methods Applied to Cognitive Test Validation Using the Egyptian WAIS-IV. J. Psychoeduc. Assess. 2020, 38, 493–506. [Google Scholar] [CrossRef]
- Dirlik, E.M. Investigating Invariant Item Ordering Using Mokken Scale Analysis for Dichotomously Scored Items. Int. J. Progress. Educ. 2020, 16, 84–96. [Google Scholar] [CrossRef]
- Boomsma, A. Book review of Introduction to nonparametric item response modeling (authors K. Sijtsma & I.W. Molenaar). Psychometrika 2003, 68, 323–326. [Google Scholar]
- Ayanwale, M.A. Performance of Exploratory Structural Equation Modeling (ESEM) in Detecting Differential Item Functioning. J. Meas. Eval. Educ. Psychol. 2021. In press. [Google Scholar]
- Meijer, R.R.; Egberink, I.J.L. Investigating Invariant Item Ordering in Personality and Clinical Scales: Some Empirical Findings and a Discussion. Educ. Psychol. Meas. 2012, 72, 589–607. [Google Scholar] [CrossRef]
- Sijtsma, K.; Meijer, R.R. A Method for Investigating the Intersection of Item Response Functions in Mokken’s Nonparametric IRT Model. Appl. Psychol. Meas. 1992, 16, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Wind, S.A. An Instructional Module on Mokken Scale Analysis. Educ. Meas. Issues Pract. 2017, 36, 50–66. [Google Scholar] [CrossRef]
- Van Der Ark, L.A.; Croon, M.A.; Sijtsma, K. Mokken scale analysis for dichotomous items using marginal models. Psychometrika 2008, 73, 183–208. [Google Scholar] [CrossRef] [Green Version]
- Straat, J.H.; van der Ark, L.A.; Sijtsma, K. Comparing optimization algorithms for item selection in Mokken scale analysis. J. Classif. 2013, 30, 75–99. [Google Scholar] [CrossRef]
- Meijer, R.R.; Egberink, I.J.L.; Emons, W.H.M.; Sijtsma, K. Detection and validation of unscalable item score patterns using item response theory: An illustration with harter’s self-perception profile for children. J. Pers. Assess. 2008, 90, 227–238. [Google Scholar] [CrossRef]
- Van Schuur, W.H. Ordinal Item Response Theory: Mokken Scale Analysis; SAGE Publications: Thousand Oaks, CA, USA, 2011. [Google Scholar]
Items | Hj ≥ 0.30 | Standard Error | Items | Hj ≥ 0.30 | Standard Error |
---|---|---|---|---|---|
V1 | 0.37 | 0.02 | V26 | 0.34 | 0.02 |
V2 | 0.45 | 0.02 | V27 | 0.45 | 0.02 |
V3 | 0.48 | 0.02 | V28 | 0.18 | 0.05 |
V4 | 0.24 | 0.03 | V29 | 0.61 | 0.04 |
V5 | 0.76 | 0.02 | V30 | 0.55 | 0.04 |
V6 | 0.33 | 0.02 | V31 | 0.34 | 0.04 |
V7 | 0.30 | 0.02 | V32 | 0.46 | 0.04 |
V8 | 0.67 | 0.02 | V33 | 0.42 | 0.04 |
V9 | 0.36 | 0.02 | V34 | 0.38 | 0.04 |
V10 | 0.21 | 0.03 | V35 | 0.15 | 0.03 |
V11 | 0.46 | 0.04 | V36 | 0.44 | 0.04 |
V12 | 0.39 | 0.04 | V37 | 0.13 | 0.03 |
V13 | 0.62 | 0.04 | V38 | 0.45 | 0.02 |
V14 | 0.24 | 0.05 | V39 | 0.18 | 0.03 |
V15 | 0.38 | 0.04 | V40 | 0.33 | 0.04 |
V16 | 0.17 | 0.05 | V41 | 0.42 | 0.04 |
V17 | 0.35 | 0.02 | V42 | 0.17 | 0.03 |
V18 | 0.57 | 0.02 | V43 | 0.30 | 0.04 |
V19 | 0.14 | 0.05 | V44 | 0.31 | 0.04 |
V20 | 0.41 | 0.02 | V45 | 0.25 | 0.02 |
V21 | 0.34 | 0.02 | V46 | 0.34 | 0.04 |
V22 | 0.49 | 0.02 | V47 | 0.29 | 0.05 |
V23 | 0.24 | 0.05 | V48 | 0.37 | 0.04 |
V24 | 0.56 | 0.02 | V49 | 0.23 | 0.03 |
V25 | 0.26 | 0.02 | V50 | 0.58 | 0.04 |
Minvi Size | Minvi Size | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Items | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.55 | Items | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.55 |
V1 | 1 | 1 | 1 | 1 | 1 | 1 | V26 | 1 | 1 | 1 | 2 | 2 | 2 |
V2 | 1 | 1 | 1 | 2 | 0 | 1 | V27 | 1 | 1 | 1 | 2 | 3 | 2 |
V3 | 1 | 1 | 2 | 1 | 1 | 1 | V28 | 2 | 2 | 2 | 2 | 2 | 2 |
V4 | 3 | 3 | 3 | 4 | 3 | 3 | V29 | 1 | 1 | 1 | 2 | 2 | 5 |
V5 | 1 | 1 | 1 | 2 | 3 | 3 | V30 | 1 | 1 | 1 | 2 | 0 | 5 |
V6 | 1 | 1 | 0 | 0 | 2 | 2 | V31 | 1 | 1 | 0 | 3 | 2 | 4 |
V7 | 1 | 2 | 1 | 1 | 2 | 2 | V32 | 1 | 1 | 1 | 3 | 3 | 3 |
V8 | 1 | 1 | 3 | 1 | 4 | 1 | V33 | 1 | 1 | 1 | 3 | 3 | 3 |
V9 | 2 | 1 | 1 | 2 | 1 | 1 | V34 | 1 | 1 | 1 | 3 | 3 | 3 |
V10 | 5 | 5 | 5 | 5 | 5 | 5 | V35 | 2 | 6 | 4 | 6 | 6 | 6 |
V11 | 1 | 1 | 1 | 2 | 2 | 2 | V36 | 1 | 1 | 4 | 1 | 2 | 6 |
V12 | 1 | 1 | 1 | 2 | 2 | 2 | V37 | 5 | 3 | 5 | 4 | 5 | 6 |
V13 | 1 | 1 | 1 | 1 | 2 | 2 | V38 | 1 | 1 | 1 | 1 | 1 | 1 |
V14 | 3 | 3 | 3 | 3 | 3 | 3 | V39 | 3 | 6 | 5 | 6 | 4 | 4 |
V15 | 1 | 1 | 0 | 2 | 1 | 5 | V40 | 1 | 1 | 5 | 6 | 6 | 6 |
V16 | 3 | 3 | 4 | 6 | 6 | 6 | V41 | 1 | 1 | 6 | 6 | 6 | 6 |
V17 | 1 | 1 | 1 | 3 | 3 | 3 | V42 | 6 | 6 | 6 | 6 | 6 | 6 |
V18 | 1 | 1 | 1 | 3 | 3 | 3 | V43 | 1 | 1 | 6 | 6 | 6 | 6 |
V19 | 3 | 4 | 4 | 4 | 3 | 3 | V44 | 1 | 3 | 3 | 6 | 6 | 6 |
V20 | 1 | 1 | 0 | 3 | 2 | 2 | V45 | 4 | 6 | 6 | 6 | 6 | 6 |
V21 | 1 | 1 | 1 | 1 | 1 | 1 | V46 | 1 | 1 | 5 | 6 | 6 | 6 |
V22 | 1 | 1 | 1 | 1 | 1 | 1 | V47 | 5 | 6 | 6 | 6 | 6 | 6 |
V23 | 5 | 5 | 5 | 5 | 5 | 5 | V48 | 4 | 3 | 6 | 6 | 6 | 6 |
V24 | 1 | 1 | 1 | 1 | 1 | 4 | V49 | 3 | 4 | 6 | 6 | 6 | 6 |
V25 | 4 | 4 | 4 | 4 | 4 | 4 | V50 | 2 | 3 | 6 | 6 | 6 | 6 |
Items | ItemH | #Ac | #Vi | #Zsig | Crit | Items | ItemH | #Ac | #Vi | #zsig | Crit |
---|---|---|---|---|---|---|---|---|---|---|---|
(Mean) | (#Active Comparison) | (#Violation) | (#Significant Violation) | (Mean) | (#Active Comparison) | (#Violation) | (#Significant Violation) | ||||
V4 | 2.28 | 147 | 0 | 0 | 0 | V20 | 2.08 | 147 | 4 | 4 | 40 |
V18 | 2.20 | 147 | 0 | 0 | 0 | V15 | 2.20 | 145 | 3 | 1 | 70 |
V9 | 2.34 | 145 | 2 | 1 | 36 | V27 | 2.36 | 147 | 10 | 10 | 52 |
V35 | 2.16 | 147 | 11 | 6 | 40 | V6 | 2.24 | 145 | 2 | 0 | 27 |
V21 | 2.28 | 146 | 9 | 4 | 30 | V31 | 2.36 | 147 | 8 | 3 | 80 |
V10 | 2.36 | 147 | 11 | 11 | 88 * | V32 | 2.35 | 147 | 11 | 5 | 50 |
V45 | 2.31 | 145 | 5 | 5 | 82 * | V26 | 2.31 | 146 | 10 | 4 | 71 |
V48 | 2.38 | 147 | 5 | 2 | 78 | V30 | 2.22 | 146 | 8 | 5 | 47 |
V17 | 2.23 | 147 | 10 | 5 | 43 | V36 | 2.32 | 147 | 5 | 3 | 67 |
V11 | 2.36 | 145 | 12 | 5 | 44 | V25 | 2.30 | 145 | 12 | 12 | 85 * |
V47 | 2.33 | 147 | 7 | 7 | 93 * | V34 | 2.26 | 146 | 4 | 1 | 42 |
V19 | 2.24 | 147 | 8 | 8 | 96 * | V5 | 2.11 | 147 | 7 | 2 | 45 |
V7 | 2.26 | 145 | 12 | 3 | 41 | V8 | 2.10 | 146 | 2 | 2 | 39 |
V14 | 2.13 | 147 | 3 | 3 | 96 * | V40 | 2.28 | 146 | 2 | 0 | 35 |
V44 | 2.27 | 147 | 5 | 3 | 36 | V28 | 2.35 | 145 | 7 | 7 | 89 * |
V2 | 2.15 | 146 | 8 | 4 | 61 | V37 | 2.30 | 146 | 10 | 10 | 96 * |
V49 | 2.20 | 147 | 1 | 9 | 35 | V39 | 2.21 | 147 | 6 | 6 | 86 * |
V22 | 2.30 | 146 | 0 | 0 | 0 | V43 | 2.14 | 145 | 9 | 2 | 53 |
V46 | 2.30 | 147 | 4 | 1 | 74 | V13 | 2.10 | 147 | 3 | 1 | 25 |
V16 | 2.20 | 147 | 5 | 5 | 82 * | V50 | 2.20 | 147 | 4 | 1 | 35 |
V23 | 2.16 | 147 | 3 | 3 | 86 * | V29 | 2.08 | 147 | 2 | 1 | 29 |
V3 | 2.17 | 145 | 8 | 3 | 53 | V33 | 2.31 | 146 | 7 | 3 | 79 |
V38 | 2.35 | 147 | 3 | 1 | 41 | V12 | 2.29 | 147 | 4 | 1 | 56 |
V42 | 2.26 | 145 | 12 | 12 | 88 * | V24 | 2.24 | 145 | 7 | 2 | 61 |
V41 | 2.36 | 147 | 2 | 1 | 31 | V1 | 2.03 | 147 | 6 | 2 | 32 |
Items | Step 1 | Step 2 | Step 3 | Step 4 | Step 5 | Step 6 | Step 7 | Step 8 |
---|---|---|---|---|---|---|---|---|
V4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V9 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V35 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 0 |
V21 | 4 | 3 | 2 | 1 | 0 | 0 | 0 | 0 |
V10 | 10 | NA | NA | NA | NA | NA | NA | NA |
V45 | 5 | 4 | 3 | NA | NA | NA | NA | NA |
V48 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
V17 | 5 | 4 | 3 | 2 | 1 | 0 | 0 | 0 |
V11 | 4 | 3 | 2 | 1 | 0 | 0 | 0 | 0 |
V47 | 6 | 5 | NA | NA | NA | NA | NA | NA |
V19 | 8 | NA | NA | NA | NA | NA | NA | NA |
V7 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
V14 | 3 | NA | NA | NA | NA | NA | NA | NA |
V44 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
V2 | 4 | 3 | 3 | 0 | 0 | 0 | 0 | 0 |
V49 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
V22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V46 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V16 | 5 | 4 | 3 | NA | NA | NA | NA | NA |
V23 | 3 | NA | NA | NA | NA | NA | NA | NA |
V3 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
V38 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V42 | 7 | 6 | 5 | 4 | NA | NA | NA | NA |
V41 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V20 | 4 | 3 | 2 | 1 | 0 | 0 | 0 | 0 |
V15 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V27 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
V6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V31 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
V32 | 5 | 4 | 3 | 2 | 1 | 0 | 0 | 0 |
V26 | 4 | 3 | 2 | 1 | 0 | 0 | 0 | 0 |
V30 | 5 | 4 | 3 | 2 | 1 | 0 | 0 | 0 |
V36 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
V25 | 10 | 9 | 8 | 7 | NA | NA | NA | NA |
V34 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V5 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
V8 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
V40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V28 | 7 | NA | NA | NA | NA | NA | NA | NA |
V37 | 9 | 8 | 7 | 6 | 5 | NA | NA | NA |
V39 | 6 | 5 | 4 | 3 | NA | NA | NA | NA |
V43 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
V13 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V50 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V29 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V33 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
V12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V24 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
V1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayanwale, M.A.; Ndlovu, M. Ensuring Scalability of a Cognitive Multiple-Choice Test through the Mokken Package in R Programming Language. Educ. Sci. 2021, 11, 794. https://doi.org/10.3390/educsci11120794
Ayanwale MA, Ndlovu M. Ensuring Scalability of a Cognitive Multiple-Choice Test through the Mokken Package in R Programming Language. Education Sciences. 2021; 11(12):794. https://doi.org/10.3390/educsci11120794
Chicago/Turabian StyleAyanwale, Musa Adekunle, and Mdutshekelwa Ndlovu. 2021. "Ensuring Scalability of a Cognitive Multiple-Choice Test through the Mokken Package in R Programming Language" Education Sciences 11, no. 12: 794. https://doi.org/10.3390/educsci11120794
APA StyleAyanwale, M. A., & Ndlovu, M. (2021). Ensuring Scalability of a Cognitive Multiple-Choice Test through the Mokken Package in R Programming Language. Education Sciences, 11(12), 794. https://doi.org/10.3390/educsci11120794