Artificial Intelligence, ESG Governance, and Green Innovation Efficiency in Emerging Economies
Abstract
1. Introduction
2. Literature Review and Theoretical Framework
2.1. Literature Review: AI and GIE
2.2. Theoretical Framework and Hypothesis Development
2.2.1. AI Capability and GIE
2.2.2. ESG as a Moderating Capability
3. Methodology
3.1. Sample and Data Sources
3.2. Variable Construction
3.2.1. Dependent Variable: GIE
3.2.2. Independent Variable: AI Adoption
3.2.3. Moderating Variable: ESG Performance
3.2.4. Control Variables
- ROE (Profitability): financial capacity to invest in AI-enabled innovation (Khalaf et al., 2023; Zhong & Song, 2025).
- FLEV (Leverage): measures capital structure; moderate leverage may improve investment efficiency (Song et al., 2025).
- CSIZE (Firm Size): proxies absorptive capacity; larger firms have greater access to resources and networks (Shubita et al., 2024; Zhao & Wang, 2025).
- CAGE (Firm Age): captures organizational maturity; older firms may show inertia yet benefit from accumulated expertise (Xi & Shao, 2025).
- INT_COV (Interest Coverage): measures financial resilience to sustain innovation projects (C. Xu & Lin, 2025).
3.3. Empirical Strategy
- System GMM to address dynamic endogeneity and reverse causality (Blundell & Bond, 1998).
- Heckman two-step model to correct for potential sample-selection bias (Heckman, 1979).
- PSM to ensure comparability between AI-adopting and non-adopting firms (Rosenbaum & Rubin, 1983).
3.4. Variable Definitions
3.5. Baseline Model
- -
- GIE i,t is the green innovation efficiency of firm i in year t (proxied by ln-transformed eco-innovation score);
- -
- AI i,t denotes the AI Adoption Index score;
- -
- X i,t is a vector of control variables including ROE, FLEV, CSIZE, CAGE, and INT_COV (see Table 1);
- -
- φ j and τ_t represent country, industry and year fixed effects, respectively;
- -
- € i,t is the idiosyncratic error term.
3.6. Moderation Model (AI × ESG)
- -
- ESG i,t is the ESG composite score (rescaled to [0, 1]);
- -
- (AI i,t × ESG i,t) is the multiplicative interaction term that captures the conditional effect of ESG on the AI–GIE relationship.
4. Results
4.1. Descriptive Statistics
4.2. Bivariate Correlations
4.3. Baseline Regression Results
4.4. Addressing Endogeneity: System GMM Estimation
4.5. One-Year Lag Analysis
4.6. GDP-Based Heterogeneity Analysis
5. Sensitivity Tests
6. Robustness Checks
6.1. Heckman Two-Stage Selection Model
6.2. Propensity Score Matching
6.3. Instrumental Variable Estimation
7. Discussion and Implications
7.1. Theoretical Contributions
7.2. Managerial Implications
7.3. Policy Implications
7.4. Limitations and Future Research
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ESG | Environmental, Social, and Governance |
| GIE | Green Innovation Efficiency |
| NRBV | Natural Resource-Based View |
| DCT | Dynamic Capability Theory |
| SDGs | Sustainable Development Goals |
| FE | Fixed Effects |
| GMM | Generalized Method of Moments |
| PSM | Propensity Score Matching |
| SMEs | Small and Medium-Sized Enterprises |
| IEA | International Energy Agency |
| VIF | variance inflation factor |
References
- Al Halbusi, H., Al-Sulaiti, K. I., Alalwan, A. A., & Al-Busaidi, A. S. (2025). AI capability and green innovation impact on sustainable performance: Moderating role of big data and knowledge management. Technological Forecasting and Social Change, 210, 123897. [Google Scholar] [CrossRef]
- Alhasnawi, M. Y., Alshdaifat, S. M., Mansour, M., Saleh, M. W., & Hu, G. (2025). How does performance-based budgeting enhance sustainable performance? A mediated-moderated model of innovation and information quality. International Journal of Innovation Science, 1–19. [Google Scholar] [CrossRef]
- Alodat, A. Y., Hao, Y., Nobanee, H., Ali, H., Mansour, M., & Al Amosh, H. (2025). Board characteristics and cybersecurity disclosure: Evidence from the UK. Electronic Commerce Research, 25, 4717–4735. [Google Scholar] [CrossRef]
- Al-Okaily, M. (2025a). Artificial intelligence and its impact on the sustainability of digital accounting education. Interactive Technology and Smart Education, 1–13. [Google Scholar] [CrossRef]
- Al-Okaily, M. (2025b). The role of digital technology tools usage on organisational performance continuity. EuroMed Journal of Business, 20(3), 900–915. [Google Scholar] [CrossRef]
- Al-Okaily, M., & Al-Okaily, A. (2025). Digital transformation and financial innovation as drivers of firm resilience: Evidence from the Jordanian financial market. International Journal of Innovation Science, 1–24. [Google Scholar] [CrossRef]
- Alshdaifat, S. M., Saleh, M. W., Mansour, M., Khassawneh, A., Shubita, M. F., Hanaysha, J. R., Al-Matari, E. M., Qamhan, M. A., & Alrawad, M. (2024). Audit committee effectiveness in times of crisis: Empirical insights on key audit matters disclosure. Heritage and Sustainable Development, 6(2), 845–860. [Google Scholar] [CrossRef]
- Al-Tahat, S., Bani-Khaled, S., Jaradat, Z., Mansour, M., & Al-zoubi, A. M. (2025). State ownership as a moderator in the relationship between board characteristics and ESG performance: Evidence from Asia-Pacific markets. Journal of Business and Socio-economic Development, 1–22. [Google Scholar] [CrossRef]
- Arfanuzzaman, M. (2021). Harnessing artificial intelligence and big data for SDGs and prosperous urban future in South Asia. Environmental and Sustainability Indicators, 11, 100127. [Google Scholar] [CrossRef]
- Barney, J. B., & Arikan, A. M. (2005). The resource-based view: Origins and implications. In The Blackwell handbook of strategic management (pp. 123–182). Wiley. [Google Scholar] [CrossRef]
- Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115–143. [Google Scholar] [CrossRef]
- Chen, Y., & Jin, S. (2023). Artificial intelligence and carbon emissions in manufacturing firms: The moderating role of green innovation. Processes, 11(9), 2705. [Google Scholar] [CrossRef]
- Chong, Y. W., Villanueva-Libunao, K., Chee, S. Y., Alvarez, M. J., Yau, K. L. A., & Keoh, S. L. (2022). Artificial intelligence policies to enhance urban mobility in Southeast Asia. Frontiers in Sustainable Cities, 4, 824391. [Google Scholar] [CrossRef]
- Chun, Y., & Hwang, J. (2024). The nexus of artificial intelligence and green innovation: A cross-density analysis at the country level. Journal of the Knowledge Economy, 16(1), 1688–1716. [Google Scholar] [CrossRef]
- Dong, X., Zhou, N., Zhao, X., & Yang, S. (2025). The impact of artificial intelligence on corporate green innovation: Can “increasing quantity” and “improving quality” go hand in hand? Journal of Environmental Management, 376, 124439. [Google Scholar] [CrossRef]
- Farmanesh, P., Solati Dehkordi, N., Vehbi, A., & Chavali, K. (2025). Artificial intelligence and green innovation in small and medium-sized enterprises and competitive-advantage drive toward achieving sustainable development goals. Sustainability, 17(5), 2162. [Google Scholar] [CrossRef]
- Feng, F., Li, J., Zhang, F., & Sun, J. (2024). The impact of artificial intelligence on green innovation efficiency: Moderating role of dynamic capability. International Review of Economics & Finance, 96, 103649. [Google Scholar] [CrossRef]
- He, X., Ruan, J., & Bian, C. (2025). Development of artificial intelligence empowering green innovation: A case study of the Yangtze River Economic Belt. Environment, Development and Sustainability, 1–29. [Google Scholar] [CrossRef]
- Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica, 47(1), 153–161. [Google Scholar] [CrossRef]
- Hussain, M., Yang, S., Maqsood, U. S., & Zahid, R. A. (2024). Tapping into the green potential: The power of artificial intelligence adoption in corporate green innovation drive. Business Strategy and the Environment, 33(5), 4375–4396. [Google Scholar] [CrossRef]
- IEA. (2023). World energy outlook 2023. Available online: https://www.iea.org (accessed on 17 August 2025).
- International Organization for Standardization. (2015). Environmental management systems—Requirements with guidance for use (ISO 14001:2015). International Organization for Standardization.
- Khalaf, A. M., Ismail, W. N. B. W., Marei, A., Saleh, M. W. A., & Mansour, M. (2023). The framework for system trust’s effect on organizational commitment in the Jordanian public sector: Taking into consideration the role of the timeliness factor. Scientific Papers of the University of Pardubice, Series D: Faculty of Economics & Administration, 31(2), 1696. [Google Scholar] [CrossRef]
- Li, D., Xiao, J., & Yang, F. (2024). Artificial intelligence and enterprise green innovation: Intrinsic mechanisms and heterogeneous effects. Sustainability, 16(21), 9246. [Google Scholar] [CrossRef]
- Liang, P., Sun, X., & Qi, L. (2024). Does artificial intelligence technology enhance green transformation of enterprises: Based on green innovation perspective. Environment, Development and Sustainability, 26(8), 21651–21687. [Google Scholar] [CrossRef]
- Lin, B., & Zhu, Y. (2025). The impact of artificial intelligence policy on green innovation of firms. Energy Economics, 148, 108524. [Google Scholar] [CrossRef]
- Lin, J., Zeng, Y., Wu, S., & Luo, X. R. (2024). How does artificial intelligence affect the environmental performance of organizations? The role of green innovation and green culture. Information & Management, 61(2), 103924. [Google Scholar] [CrossRef]
- Liu, Y., Shen, F., Guo, J., Hu, G., & Song, Y. (2025). Can artificial intelligence technology improve companies’ capacity for green innovation? Evidence from listed companies in China. Energy Economics, 143, 108280. [Google Scholar] [CrossRef]
- Mansour, M., Al Zobi, M., Alnohoud, I., Abu-Allan, A., Khassawneh, A., & Saad, M. (2025). Does engaging in ESG practices improve banks’ performance in Jordan? Banks and Bank Systems, 20(1), 62–73. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M., Al Zobi, M., Altawalbeh, M., Alim, S. A., Lutfi, A., Marashdeh, Z., Al-Nohood, S., & Al Barrak, T. (2024). Female leadership and environmental innovation: Do gender boards make a difference? Discover Sustainability, 5, 331. [Google Scholar] [CrossRef]
- Mijit, R., Hu, Q., Xu, J., & Ma, G. (2025). Greening through AI? The impact of artificial intelligence innovation and development pilot zones on green innovation in China. Energy Economics, 146, 108507. [Google Scholar] [CrossRef]
- Pratama, H. C., Sinsiri, T., & Chapirom, A. (2023). Green roof development in ASEAN countries: The challenges and perspectives. Sustainability, 15(9), 7714. [Google Scholar] [CrossRef]
- Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41–55. [Google Scholar] [CrossRef]
- Saleh, M. W., Alshdaifat, S. M., Shubita, M., Mansour, M., & Lutfi, A. (2025). Gender diversity and environmental, social, and governance: Unlocking solutions to corporate risk. Business Strategy & Development, 8(1), e70097. [Google Scholar] [CrossRef]
- Saleh, M. W., & Mansour, M. (2024). Is audit committee busyness associated with earnings management? The moderating role of foreign ownership. Accounting Research Journal, 37(1), 80–97. [Google Scholar] [CrossRef]
- Shubita, M. F., Mansour, M., Saleh, M. W., Lutfi, A., Saad, M., & Shubita, D. (2024). Impact of advertising and sales promotion expenses on the sales performance of Jordanian companies: The moderating role of firm size. Innovative Marketing, 20(4), 146–157. [Google Scholar] [CrossRef]
- Song, Y., Zhang, Y., Zhang, Z., & Sahut, J. M. (2025). Artificial intelligence, digital finance, and green innovation. Global Finance Journal, 64, 101072. [Google Scholar] [CrossRef]
- Tabash, M. I., Ahmed, A., Issa, S. S., Mansour, M., Varma, M., & Al-Absy, M. S. M. (2024). Multiple behavioral conditions of the forward exchange rates and stock market return in the south Asian stock markets during COVID-19: A novel MT-QARDL approach. Computation, 12(12), 233. [Google Scholar] [CrossRef]
- Tabash, M. I., Issa, S. S., Mansour, M., Hannoon, A., & Gherghina, Ş. C. (2025). Ripples of global fear: Transmission of investor sentiment and financial stress to GCC sectoral stock volatility. Economies, 13(11), 313. [Google Scholar] [CrossRef]
- Wang, Z., Zhang, T., Ren, X., & Shi, Y. (2024). AI adoption rate and corporate green innovation efficiency: Evidence from Chinese energy companies. Energy Economics, 132, 107499. [Google Scholar] [CrossRef]
- Wooldridge, J. M. (2021). Econometric analysis of cross section and panel data (3rd ed.). MIT Press. [Google Scholar]
- Xi, K., & Shao, X. (2025). Impact of AI applications on corporate green innovation. International Review of Economics & Finance, 99, 104007. [Google Scholar] [CrossRef]
- Xu, C., & Lin, B. (2025). The AI-sustainability Nexus: How does intelligent transformation affect corporate green innovation? International Review of Financial Analysis, 102, 104107. [Google Scholar] [CrossRef]
- Xu, J., Lee, T., & Goggin, G. (2024). AI governance in Asia: Policies, praxis and approaches. Communication Research and Practice, 10(3), 275–287. [Google Scholar] [CrossRef]
- Yin, K., Cai, F., & Huang, C. (2023). How does artificial intelligence development affect green technology innovation in China? Evidence from dynamic panel data analysis. Environmental Science and Pollution Research, 30(10), 28066–28090. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C., & Wang, L. (2025). Artificial intelligence and enterprise green innovation: Evidence from a Quasi-Natural experiment in China. Sustainability, 17(6), 2455. [Google Scholar] [CrossRef]
- Zhong, K., & Song, L. (2025). Artificial intelligence adoption and corporate green innovation capability. Finance Research Letters, 72, 106480. [Google Scholar] [CrossRef]
| Variable Type/Name | Proxy | Measurement and Description |
|---|---|---|
| Dependent variable | ||
| Green innovation efficiency (GIE) | EIS | ln (1 + EIS/100); Refinitiv Eco-Innovation Score based on 20 weighted eco-process and eco-product indicators; OECD Green Technology and EU EGSS aligned. |
| Alternative proxy | ISO_14001 | Dummy = 1 if ISO 14001 certified, 0 otherwise; robustness check for environmental-management commitment |
| Independent variable | ||
| AI adoption | AI_Adoption_Index | Composite index (0–100) constructed from AI-related disclosures and textual analysis of corporate reports; captures firms’ organizational adoption and strategic integration of artificial intelligence technologies. For empirical estimation, the index is log-transformed. |
| Alternative proxy | ln_AI_patent | Natural logarithm of one plus the number of AI-related patents; captures the codified technological output of AI innovation. |
| Moderator | ||
| ESG performance | ESG_Score | Standardized ESG score (0–100) from Refinitiv Eikon; rescaled to fractional scale [0, 1] |
| Control variables | ||
| Profitability | ROE | Net income/shareholders’ equity |
| Financial leverage | FLEV | Total debt/total equity |
| Firm size | CSIZE | Natural logarithm of total assets |
| Firm age | CAGE | Natural logarithm of years since incorporation |
| Interest-coverage ratio | INT_COV | Operating income/interest expense |
| Fixed effects | Year FE, Industry FE, Country FE | Dummy variables capturing unobserved heterogeneity across years, industries and countries |
| Variable | Obs. | Mean | SD | Min | Max | Skew. | Kurt. |
|---|---|---|---|---|---|---|---|
| GIE | 59,112 | 0.475 | 0.132 | 0.194 | 0.649 | −0.647 | −0.554 |
| Ln_AI Adoption | 59,112 | 5.430 | 1.260 | 3.254 | 7.712 | −0.002 | −0.935 |
| ESG_score | 59,112 | 49.133 | 17.505 | 20.180 | 78.524 | −0.057 | −1.064 |
| ROE | 59,112 | 0.140 | 0.097 | 0.019 | 0.407 | 1.314 | 1.251 |
| FLEV | 59,112 | 0.983 | 1.094 | 0.020 | 4.029 | 1.743 | 1.920 |
| F_SIZE | 59,112 | 24.126 | 2.316 | 19.615 | 27.758 | −0.213 | −0.751 |
| F_AGE | 59,112 | 3.154 | 1.007 | 1.099 | 4.836 | −0.267 | −0.536 |
| INT_COV | 59,112 | 10.370 | 13.260 | 0.000 | 51.738 | 2.030 | 3.371 |
| Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | VIF |
|---|---|---|---|---|---|---|---|---|---|
| (1) GIE | 1.000 | - | |||||||
| (2) AI Adoption | 0.573 (0.000) | 1.000 | 1.46 | ||||||
| (3) ESG_Score | −0.066 (0.119) | 0.472 (0.000) | 1.000 | 1.83 | |||||
| (4) ROE | −0.129 (0.002) | 0.021 (0.624) | 0.128 (0.002) | 1.000 | 3.27 | ||||
| (5) FLEV | 0.032 (0.454) | −0.077 (0.066) | −0.123 (0.003) | −0.124 (0.003) | 1.000 | 2.12 | |||
| (6) F_SIZE | 0.509 (0.000) | 0.382 (0.000) | 0.070 (0.095) | −0.246 (0.000) | 0.012 (0.773) | 1.000 | 1.20 | ||
| (7) F_AGE | 0.093 (0.027) | 0.107 (0.011) | 0.061 (0.146) | −0.025 (0.545) | −0.055 (0.190) | 0.240 (0.000) | 1.000 | 1.12 | |
| (8) INT_COV | −0.135 (0.001) | −0.024 (0.567) | 0.075 (0.075) | 0.061 (0.146) | −0.387 (0.000) | −0.104 (0.013) | −0.154 (0.000) | 1.000 | 1.92 |
| Baseline Model (AI → GIE) | |||
|---|---|---|---|
| Variable | Column (1) | Column (2) | Column (3) |
| AI Adoption | 0.029 *** (0.009) | 0.021 *** (0.009) | 0.032 *** (0.008) |
| ESG_Score | - | 0.010 ** (0.005) | 0.013 *** (0.004) |
| ROE | - | −0.015 (0.019) | −0.021 (0.021) |
| FLEV | - | −0.065 *** (0.013) | −0.086 *** (0.014) |
| F_SIZE | - | 0.017 *** (0.004) | 0.018 *** (0.004) |
| F_AGE | - | 0.003 (0.007) | 0.001 (0.006) |
| INT_COV | - | −0.005 ** (0.003) | −0.006 *** (0.002) |
| Year FE | No | No | Yes |
| Industry FE | No | No | Yes |
| Country FE | No | No | Yes |
| Constant | 0.043 *** (0.003) | −0.091 ** (0.046) | −0.120 *** (0.044) |
| Observations | 59,112 | 59,112 | 59,112 |
| R-Squared | 0.019 | 0.145 | 0.232 |
| Model 1 | Model 2 | |
|---|---|---|
| Variable | Without Interaction | With Interaction |
| Constant | 0.052 (0.021) ** | 0.049 (0.019) * |
| GIE (t-1) | 0.726 (0.228) * | 0.738 (0.215) * |
| AI Adoption | 0.017 (0.008) ** | 0.016 (0.008) ** |
| ESG_Score | 0.011 (0.004) * | 0.012 (0.004) * |
| AI × ESG_Score | - | 0.009 (0.0025) * |
| ROE | −0.014 (0.011) | −0.016 (0.011) |
| FLEV | −0.066 (0.023) * | −0.061 (0.022) * |
| F_SIZE | 0.015 (0.005) * | 0.016 (0.005) * |
| F_AGE | 0.002 (0.002) | 0.001 (0.002) |
| INT_COV | −0.006 (0.003) ** | −0.007 (0.003) ** |
| Year FE | Yes | Yes |
| Industry FE | Yes | Yes |
| Country FE | Yes | Yes |
| F-Test | 148.77 * | 139.32 * |
| Hansen J. Test (p) | 0.318 | 0.402 |
| AR(1) | 0.000 | 0.000 |
| AR(2) | 0.289 | 0.256 |
| No. of Obs. | 59,112 | 59,112 |
| No. of Groups | 4926 | 4926 |
| No. of Instruments | 35 | 36 |
| Variables | Column (1) | Column (2) | Column (3) |
|---|---|---|---|
| L1_AI_Adoption | 0.025 *** (0.007) | 0.019 *** (0.006) | 0.027 *** (0.007) |
| L1_ESG_Score | - | 0.008 ** (0.004) | 0.009 ** (0.004) |
| L1_CSZIE | - | 0.048 *** (0.013) | 0.051 *** (0.014) |
| L1_FLEV | - | −0.031 ** (0.014) | −0.033 ** (0.015) |
| L1_INT_COV | - | −0.004 ** (0.002) | −0.005 ** (0.002) |
| L1_ROE | - | 0.002 (0.005) | 0.001 (0.005) |
| L1_F_AGE | - | −0.001 (0.003) | −0.002 (0.003) |
| Year FE | No | No | Yes |
| Industry FE | No | No | Yes |
| Country FE | No | No | Yes |
| R-squared | 0.092 | 0.184 | 0.226 |
| Variables | High-GDP Countries | Low-GDP Countries |
|---|---|---|
| AI Adoption | 0.041 *** (0.012) | 0.019 * (0.010) |
| ESG_Score | 0.028 ** (0.013) | 0.011 (0.009) |
| AI × ESG_Score | 0.017 ** (0.007) | 0.006 (0.005) |
| ROE | 0.005 ** (0.002) | 0.003 * (0.002) |
| FLEV | −0.014 ** (0.006) | −0.009 (0.005) |
| CSIZE | 0.009 *** (0.002) | 0.006 ** (0.003) |
| CAGE | 0.002 (0.001) | 0.001 (0.001) |
| INT_COV | 0.003 * (0.002) | 0.001 (0.002) |
| Firm FE | Yes | Yes |
| Year FE | Yes | Yes |
| Observations | 31,845 | 27,267 |
| Countries | 7 | 8 |
| R-squared | 0.243 | 0.186 |
| Variables | Logit Model | Probit Model | Marginal Effects (Logit) |
|---|---|---|---|
| AI_Adoption | 0.128 *** (0.037) | 0.074 *** (0.021) | 0.032 *** (0.009) |
| ESG_Score | 0.214 ** (0.089) | 0.116 ** (0.053) | 0.054 ** (0.021) |
| CSIZE | 0.541 *** (0.140) | 0.312 *** (0.078) | 0.134 *** (0.035) |
| FLEV | −0.193 ** (0.082) | −0.109 ** (0.046) | −0.048 ** (0.020) |
| INT_COV | −0.026 * (0.015) | −0.015 * (0.009) | −0.007 * (0.004) |
| ROE | 0.011 (0.037) | 0.006 (0.021) | 0.003 (0.009) |
| F_AGE | −0.009 (0.021) | −0.005 (0.012) | −0.002 (0.005) |
| Year FE | Yes | Yes | - |
| Industry FE | Yes | Yes | - |
| Country FE | Yes | Yes | - |
| Pseudo R-squared | 0.197 | 0.183 | - |
| Variable | (1) Baseline (ln_AI_patent) | (2) Moderation (ln_AI_patent × ESG) |
|---|---|---|
| ln_AI_patent | 0.0121 *** (0.0029) | 0.0079 ** (0.0032) |
| ESG | 0.0048 ** (0.002) | 0.0204 *** (0.0068) |
| ln_AI_patent × ESG | - | 0.0106 ** (0.0042) |
| F_SIZE | 0.0197 *** (0.0003) | 0.0197 *** (0.0003) |
| F_AGE | −0.0005 (0.0008) | −0.0005 (0.0008) |
| ROE | −0.0159 ** (0.0076) | −0.0157 ** (0.0075) |
| FLEV | −0.0325 ** (0.0135) | −0.0318 ** (0.0129) |
| INT_COV | −0.0054 ** (0.0022) | −0.0053 ** (0.0021) |
| Constant | 0.0352 (0.0362) | 0.0310 (0.0346) |
| Year FE | Yes | Yes |
| Industry FE | Yes | Yes |
| Country FE | Yes | Yes |
| R-squared | 0.418 | 0.425 |
| Variable | Model 1 | Model 2 |
|---|---|---|
| Baseline | Moderation | |
| Intercept | 0.1014 (0.2681) | 0.9199 (0.1607) *** |
| AI | 0.4220 (0.1980) ** | 0.4333 (0.1186) *** |
| ESG | 0.223 (0.0277) *** | 0.3952 (0.1662) ** |
| AI × ESG | - | 0.2131 (0.0923) ** |
| CSIZE | 0.531 *** (0.130) | 0.312 *** (0.078) |
| FLEV | −0.183 ** (0.072) | −0.109 ** (0.046) |
| ROE | −0.1762 (0.3121) | −0.2547 (0.1870) |
| LEV | −0.0128 (0.1496) | 0.0514 (0.0896) |
| INT_COV | 0.0145 (0.0077) † | 0.0268 (0.0046) *** |
| Environmental Training | 0.6063 (0.0306) | 0.8026 (0.0184) *** |
| Emissions Score | 0.0022 (0.0015) | 0.0089 (0.0009) *** |
| Board Tenure | −0.0550 (0.0097) *** | 0.1040 (0.0097) *** |
| Board Gender Diversity | 0.0471 (0.0015) *** | 0.1001 (0.0009) *** |
| Year FE | Yes | Yes |
| Industry FE | Yes | Yes |
| Country FE | Yes | Yes |
| R-squared | 0.332 | 0.440 |
| Adjusted R-squared | 0.328 | 0.436 |
| Variables | Model i | Model ii | Model i | Model ii | ||||
|---|---|---|---|---|---|---|---|---|
| Capital-Intensive | Non-Capital-Intensive | High-Regulation | Low-Regulation | Capital-Intensive | Non-Capital-Intensive | High-Regulation | Low-Regulation | |
| AI_Adoption_Index | 0.231 *** (0.034) | 0.124 *** (0.028) | 0.210 *** (0.032) | 0.098 *** (0.029) | 0.216 *** (0.032) | 0.118 *** (0.027) | 0.198 *** (0.031) | 0.092 *** (0.028) |
| ESG_Score | 0.185 *** (0.030) | 0.103 *** (0.027) | 0.167 *** (0.029) | 0.094 *** (0.026) | 0.177 *** (0.028) | 0.098 *** (0.025) | 0.159 *** (0.027) | 0.089 *** (0.025) |
| AI × ESG | - | - | 0.129 *** (0.023) | 0.043 * (0.021) | - | - | 0.118 *** (0.022) | 0.039 * (0.020) |
| CSIZE | 0.045 ** (0.021) | 0.038 ** (0.019) | 0.042 ** (0.020) | 0.036 ** (0.018) | 0.046 ** (0.020) | 0.039 ** (0.018) | 0.043 ** (0.019) | 0.037 ** (0.017) |
| FLEV | −0.012 (0.018) | −0.006 (0.015) | −0.009 (0.017) | −0.004 (0.014) | −0.010 (0.017) | −0.004 (0.014) | −0.007 (0.016) | −0.003 (0.013) |
| INT_COV | 0.037 ** (0.017) | 0.031 * (0.016) | 0.034 ** (0.016) | 0.028 * (0.015) | 0.039 ** (0.016) | 0.033 * (0.015) | 0.036 ** (0.015) | 0.030 * (0.014) |
| ROE | 0.064 *** (0.020) | 0.047 ** (0.019) | 0.058 *** (0.018) | 0.041 ** (0.017) | 0.062 *** (0.019) | 0.045 ** (0.018) | 0.055 *** (0.017) | 0.039 ** (0.016) |
| F_AGE | −0.009 (0.012) | −0.004 (0.011) | −0.006 (0.011) | −0.003 (0.010) | −0.008 (0.011) | −0.003 (0.010) | −0.005 (0.010) | −0.002 (0.009) |
| R-squared | 0.328 | 0.294 | 0.319 | 0.287 | 0.335 | 0.299 | 0.326 | 0.292 |
| Variables | Baseline Model | Moderation Model |
|---|---|---|
| (AI → GIE) | (AI × ESG → GIE) | |
| AI_Adoption_Index | 0.030 *** (0.008) | 0.019 *** (0.007) |
| ESG_Score | 0.011 ** (0.005) | 0.014 ** (0.006) |
| AI × ESG | — | 0.015 ** (0.006) |
| CSIZE | 0.047 *** (0.014) | 0.049 *** (0.015) |
| FLEV | −0.028 ** (0.013) | −0.031 ** (0.014) |
| INT_COV | −0.004 * (0.002) | −0.005 ** (0.002) |
| ROE | 0.003 (0.006) | 0.002 (0.006) |
| F_AGE | −0.001 (0.004) | −0.001 (0.004) |
| IMR | 0.062 ** (0.026) | 0.058 ** (0.025) |
| Industry Fixed Effects | Yes | Yes |
| Year Fixed Effects | Yes | Yes |
| Country Fixed Effects | Yes | Yes |
| R-squared | 0.218 | 0.237 |
| Variables | PSM | |
|---|---|---|
| Model i | Model ii | |
| AI_Adoption_Index | 0.028 (3.49 ***) | 0.021 (2.85 ***) |
| ESG_Score | 0.011 (0.004 *) | 0.010 (2.33 **) |
| AI × ESG | — | 0.015 (2.78 ***) |
| CSIZE | 0.552 (6.42 ***) | 0.329 (5.22 ***) |
| FLEV | −0.55 (−6.42 ***) | −1.21 (−6.57 ***) |
| INT_COV | −0.008 (−2.11 **) | −0.006 (−1.98 **) |
| ROE | 0.154 (3.48 ***) | 0.035 (4.04 ***) |
| F_AGE | −0.069 (−3.01 ***) | −0.147 (−2.88 **) |
| Industry Fixed Effects | YES | YES |
| Year Fixed Effects | YES | YES |
| Country Fixed Effects | YES | YES |
| Pseudo-R2 | 10.4% | 18.55% |
| Variables | Model 1: Baseline | Model 2: Moderation (AI × ESG) |
|---|---|---|
| AI (Instrumented) | 0.024 (0.007) *** | 0.019 (0.007) *** |
| ESG Score | 0.012 (0.005) ** | 0.012 (0.005) ** |
| AI × ESG | — | 0.011 (0.004) ** |
| CSIZE | 0.019 (0.004) *** | 0.019 (0.004) *** |
| FLEV | –0.031 (0.014) ** | –0.031 (0.014) ** |
| INT_COV | –0.006 (0.002) ** | –0.006 (0.002) ** |
| ROE, F_AGE | Not significant | Not significant |
| Industry, Year, Country FE | Included | Included |
| First-stage F-statistic | 28.4 | 27.1 (AI), 18.4 (AI × ESG) |
| Durbin–Wu–Hausman (Endogeneity Test) | p < 0.05 | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mansour, M.; Zobi, M.A.; Alomair, M. Artificial Intelligence, ESG Governance, and Green Innovation Efficiency in Emerging Economies. Economies 2026, 14, 11. https://doi.org/10.3390/economies14010011
Mansour M, Zobi MA, Alomair M. Artificial Intelligence, ESG Governance, and Green Innovation Efficiency in Emerging Economies. Economies. 2026; 14(1):11. https://doi.org/10.3390/economies14010011
Chicago/Turabian StyleMansour, Marwan, Mo’taz Al Zobi, and Mohammed Alomair. 2026. "Artificial Intelligence, ESG Governance, and Green Innovation Efficiency in Emerging Economies" Economies 14, no. 1: 11. https://doi.org/10.3390/economies14010011
APA StyleMansour, M., Zobi, M. A., & Alomair, M. (2026). Artificial Intelligence, ESG Governance, and Green Innovation Efficiency in Emerging Economies. Economies, 14(1), 11. https://doi.org/10.3390/economies14010011

