Are Macroeconomic Variables a Determinant of ETF Flow in South Africa Under Different Economic Conditions?
Abstract
1. Introduction
2. Literature Review
2.1. Theoretical Review
2.2. Empirical Review
2.3. Research Hypotheses
2.3.1. Consumer Price Index (CPI/Inflation)
2.3.2. Broad Money Supply (M2)
2.3.3. Long-Term Interest Rates (LT-INT)
2.3.4. Short-Term Interest Rates (ST-INT)
2.3.5. Real Effective Exchange Rate (REER)
2.3.6. Gross Domestic Product (GDP)
3. Data and Methodology
3.1. Data Collection and Sampling
3.2. Model Specification
- ΔCPI: inflation rate growth rate;
- ΔM2: money supply growth rate;
- ΔST_INT: short-term interest growth rate;
- ΔLT_INT: long-term interest growth rate;
- ΔGDP: gross domestic product growth rate;
- ΔREER: real effective exchange growth rate.
4. Empirical Results
4.1. Descriptive Statistics
4.2. Unconditional Correlation Results
4.3. Empirical Model Results
4.3.1. Markov Regime-Switching Results
4.3.2. Transition Probabilities and Expected Duration Results
4.3.3. Smooth Regime Probabilities Results
5. Discussion of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADF | Augmented Dickey–Fuller |
AMH | Adaptive market hypothesis |
CAPM | Capital asset pricing model. |
CPI | Consumer price index |
ETF | Exchange traded funds |
ETFSWX | Invest SWIX 40 ETF |
ETFT40 | Invest Top 40 ETF |
GDP | Gross domestic product |
JSE | Johannesburg stock exchange |
KPSS | Kwiatkowski–Phillips–Schmidt–Shin |
LT-INT | Long-term interest rate |
M2 | Money supply |
NAV | Net asset value |
REER | Real effective exchange rate |
ST-INT | Short-term interest rate |
STX40 | SWIX Top 40 ETF |
U.S. | United States |
VIF | Variance inflation factor |
1 | It should be noted that relating return chasing behaviour in sector ETFs to only behavioural biases is not unproblematic since return chasing behaviour in investing in passively managed sector ETFs can also be a rational active strategy for investors given the evidence for the profitability of industry momentum strategies (e.g., Moskowitz & Grinblatt, 1999). |
2 | In a broader overview of the explanations for the low-volatility anomaly, Blitz et al. (2019) relate it to the assumptions of the CAPM from different aspects and consider leverage constraints and short selling restrictions as reasons for the existence of the anomaly. |
References
- Agapova, A. (2011). Conventional mutual index funds versus exchange-traded funds. Journal of Financial Markets, 14(2), 323–343. [Google Scholar] [CrossRef]
- Aggarwal, R., & Schofield, L. (2014). The growth of global ETFs and regulatory challenges. In Advances in financial economics (pp. 77–102). Emerald Group Publishing Limited. [Google Scholar]
- Arayssi, D. (2020). The developing countries: Challenges in the global economy. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3589489 (accessed on 6 March 2025).
- Arslanalp, S., Claessens, S., & Puy, D. (2020). Drivers of emerging market capital flows: The role of global risk and uncertainty (IMF Working Paper WP/20/35). Federal Reserve Bank of Kansas City. [Google Scholar]
- Badinger, H., & Reuter, W. H. (2017). The case for fiscal rules. Economic Modelling, 60(1), 334–343. [Google Scholar] [CrossRef]
- Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66(1), 47–78. [Google Scholar] [CrossRef]
- Baker, H. K., Filbeck, G., & Kiymaz, H. (Eds.). (2015). Mutual funds and exchange-traded funds: Building blocks to wealth. Oxford University Press. [Google Scholar]
- Baker, M., Bradley, B., & Wurgler, J. (2011). Benchmarks as limits to arbitrage: Understanding the low-volatility anomaly. Financial Analysts Journal, 67(1), 40–54. [Google Scholar] [CrossRef]
- Barber, B. M., Odean, T., & Zheng, L. (2005). Out of sight, out of mind: The effects of expenses on mutual fund flows. Journal of Business, 78(6), 2095–2120. [Google Scholar] [CrossRef]
- Bekaert, G., & Wang, X. (2010). Inflation risk and the inflation risk premium. Economic Policy, 25(64), 755–806. [Google Scholar] [CrossRef]
- Ben-David, I., Franzoni, F. A., & Moussawi, R. (2014). Do ETFs increase volatility? SSRN Scholarly Paper ID 1967599. Social Science Research Network. [Google Scholar]
- Blitz, D., Van Vliet, P., & Baltussen, G. (2019). The volatility effect revisited. The Journal of Portfolio Management, 46(2), 102–121. [Google Scholar] [CrossRef]
- Blitz, D., & Vidojevic, M. (2019). The performance of exchange-traded funds. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3458275 (accessed on 1 April 2025).
- Bouri, E., Jain, A., Roubaud, D., & Kristoufek, L. (2021). Does geopolitical risk matter for exchange-traded fund flows in emerging markets? Finance Research Letters, 40, 101703. [Google Scholar] [CrossRef]
- Box, T., Davis, R. L., & Fuller, K. P. (2019). ETF competition and market quality. Financial Management, 48(3), 873–916. [Google Scholar] [CrossRef]
- Brown, D. C., Davies, S. W., & Ringgenberg, M. C. (2021). ETF arbitrage, non-fundamental demand, and return predictability. Review of Finance, 25(4), 937–972. [Google Scholar] [CrossRef]
- Charteris, A. (2013). The price efficiency of South African exchange traded funds. Investment Analysts Journal, 42(78), 1–11. [Google Scholar] [CrossRef]
- Chen, N. F., Roll, R., & Ross, S. A. (1986). Economic forces and the stock market. Journal of Business, 5(4), 383–403. [Google Scholar] [CrossRef]
- Chiu, J., Chung, H., Ho, K. Y., & Wang, G. H. (2012). Funding liquidity and equity liquidity in the subprime crisis period: Evidence from the ETF market. Journal of Banking & Finance, 36(9), 2660–2671. [Google Scholar] [CrossRef]
- Clifford, C. P., Fulkerson, J. A., & Jordan, B. D. (2014). What drives ETF flows? Financial Review, 49(3), 619–642. [Google Scholar] [CrossRef]
- Converse, N., Levy-Yeyati, E., & Williams, T. (2023). How ETFs amplify the global financial cycle in emerging markets. The Review of Financial Studies, 36(9), 3423–3462. [Google Scholar] [CrossRef]
- Davies, W. (2013). When is a market not a market?: ‘Exemption’, ‘externality’ and ‘exception’ in the case of European state aid rules. Theory, Culture & Society, 30(2), 32–59. [Google Scholar] [CrossRef]
- Dlamini, C. S. (2017). The relationship between macroeconomic indicators and stock returns: Evidence from the JSE sectoral indices [Master’s dissertation, University of the Witwatersrand]. [Google Scholar]
- Elton, E. J., Gruber, M. J., & De Souza, A. (2019). Passive mutual funds and ETFs: Performance and comparison. Journal of Banking & Finance, 106, 265–275. [Google Scholar] [CrossRef]
- Fama, E. F., & French, K. R. (1989). Business conditions and expected returns on stocks and bonds. Journal of Financial Economics, 25(1), 23–49. [Google Scholar] [CrossRef]
- Frazzini, A., & Pedersen, L. H. (2014). Betting against beta. Journal of Financial Economics, 111(1), 1–25. [Google Scholar] [CrossRef]
- Fulkerson, J. A., Jordan, S. D., & Riley, T. B. (2014). Predictability in bond ETF returns. The Journal of Fixed Income, 23(3), 50. [Google Scholar] [CrossRef]
- Fulkerson, J. A., Jordan, S. D., & Travis, D. H. (2017). Bond ETF arbitrage strategies and daily cash flow. The Journal of Fixed Income, 27(1), 49. [Google Scholar] [CrossRef]
- Gastineau, G. L. (2004). The benchmark index ETF performance problem. The Journal of Portfolio Management, 30(2), 96–103. [Google Scholar] [CrossRef]
- Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2), 357–384. [Google Scholar] [CrossRef]
- Hoang, K. K. (2018). Risky investments: How local and foreign investors finesse corruption-rife emerging markets. American Sociological Review, 83(4), 657–685. [Google Scholar] [CrossRef]
- Hopman, C. (2007). Do supply and demand drive stock prices? Quantitative Finance, 7(1), 37–53. [Google Scholar] [CrossRef]
- Höfler, P., Schlag, C., & Schmeling, M. (2023). Passive investing and market quality. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4567751 (accessed on 21 May 2025).
- Islamiah, N. (2025). Macroeconomics and social inequality: Examining the role of purchasing power in affecting income and poverty levels. Golden Ratio of Data in Summary, 5(1), 38–45. [Google Scholar] [CrossRef]
- Jame, R., & Tong, Q. (2014). Industry-based style investing. Journal of Financial Markets, 19, 110–130. [Google Scholar] [CrossRef]
- Johannesburg Stock Exchange. (2022). Remarks by Lesetja Kganyago, Governor of the South African reserve bank, at the JSE/NYSE market close event, New York. Available online: https://furtherafrica.com/2022/10/14/jse-nyse-to-collaborate-on-dual-listings-etfs-and-digital-assets/ (accessed on 5 December 2024).
- Kalaycıoğlu, S. (2004). Exchange traded fund flows. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=881108 (accessed on 21 May 2025).
- Kittur, C. S., Madhhivanan, S., Kumar, K. R., & Sivakumar, B. N. (2025). Do the Macroeconomic variables influence Exchange Traded Funds (ETFs)? Journal of Informatics Education and Research, 5(1), 34–48. [Google Scholar] [CrossRef]
- Koepke, R. (2018). Fed policy expectations and portfolio flows to emerging markets. Journal of International Financial Markets, Institutions and Money, 55, 170–194. [Google Scholar] [CrossRef]
- Koop, G., & Korobilis, D. (2013). Large time-varying parameter VARs. Journal of Econometrics, 177(2), 185–198. [Google Scholar] [CrossRef]
- Krause, T., Ehsani, S., & Lien, D. (2014). Exchange-traded funds, liquidity and volatility. Applied Financial Economics, 24(24), 1617–1630. [Google Scholar] [CrossRef]
- Kunjal, D. (2022). The effect of disaggregated country risk on the quality of the South African exchange traded fund market [Unpublished Ph.D. dissertation, University of KwaZulu-Natal]. [Google Scholar]
- Kunjal, D., Peerbhai, F., & Muzindutsi, P. F. (2021). The performance of South African exchange traded funds under changing market conditions. Journal of Asset Management, 22(5), 350–359. [Google Scholar] [CrossRef]
- Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53, 1315–1335. [Google Scholar] [CrossRef]
- Laopodis, N. T. (2010). Dynamic linkages between monetary policy and the stock market. Review of Quantitative Finance and Accounting, 35(3), 271–293. [Google Scholar] [CrossRef]
- Laubscher, P. (2020). A history of South Africa’s modern business cycle. In W. Boshoff (Ed.), Business cycles and structural change in South Africa (pp. 111–166). Springer. [Google Scholar]
- Lee, C. M., & Swaminathan, B. (2000). Price momentum and trading volume. The Journal of Finance, 55(5), 2017–2069. [Google Scholar] [CrossRef]
- Lerner, P. (2022). The market drives ETFs or ETFs the market: Causality without Granger. arXiv, arXiv:2204.03760. [Google Scholar] [CrossRef]
- Lesmeister, S., Limbach, P., Rau, P. R., & Sonnenburg, F. (2022). Indexing and the performance-flow relation of actively managed mutual funds. University of Cologne, Centre for Financial Research (CFR). [Google Scholar]
- Levy, B., Hirsch, A., Naidoo, V., & Nxele, M. (2021). South Africa: When strong institutions and massive inequalities collide. Carnegie. [Google Scholar]
- Lo, A. W. (2004). The adaptive market hypothesis. Journal of Portfolio Management, 30(5), 15–29. [Google Scholar] [CrossRef]
- Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. The Review of Financial Studies, 1(1), 41–66. [Google Scholar] [CrossRef]
- Lubik, T. A., & Matthes, C. (2015). Time-varying parameter vector autoregressions: Specification, estimation, and an application. Federal Reserve Bank of Richmond Economic Quarterly, 101(4), 323–352. [Google Scholar] [CrossRef]
- Mofokeng, T., & Moodley, F. (2025). The effects of changing macroeconomic conditions on the commercial bank returns in South Africa. International Journal of Economics and Financial Issues, 15(2), 76–86. [Google Scholar] [CrossRef]
- Moodley, F., Ferreira-Schenk, S., & Matlhaku, K. (2024). Effect of market-wide investor sentiment on South African Government bond indices of varying maturities under changing market conditions. Economies, 12(10), 265. [Google Scholar] [CrossRef]
- Moodley, F., Nzimande, N., & Muzindutsi, P. F. (2022). Stock returns indices and changing macroeconomic conditions: Evidence from the Johannesburg securities exchange. The Journal of Accounting and Management, 12(3), 147–161. [Google Scholar]
- Moskowitz, T. J., & Grinblatt, M. (1999). Do industries explain momentum? The Journal of Finance, 54(4), 1249–1290. [Google Scholar] [CrossRef]
- Nadler, D., & Schmidt, A. B. (2015). Impact of macroeconomic announcements on ETF trading volumes. Journal of Trading, 10, 31–35. [Google Scholar] [CrossRef]
- Nakajima, J. (2023). The impact of macroeconomic uncertainty on the relationship between financial volatility and real economic activity. Applied Economics, 56, 5591–5604. [Google Scholar] [CrossRef]
- Narend, S. (2014). Performance of ETFs and index funds: A comparative analysis (Vol. 1, p. 17). National Stock Exchange of India Ltd. [Google Scholar]
- Nkomo, T., & Moodley, F. (2025). Do geopolitical risk and market conditions drive JSE sector returns? Management and Economics Review, 10(2), 324–341. [Google Scholar] [CrossRef]
- Peltomäki, J. (2017). Beta as a determinant of investor activity in sector exchange-traded funds. The Quarterly Review of Economics and Finance, 65, 137–145. [Google Scholar] [CrossRef]
- Rapach, D. E., Strauss, J. K., & Zhou, G. (2013). International stock return predictability: What is the role of the United States? The Journal of Finance, 68(4), 1633–1662. [Google Scholar] [CrossRef]
- Rompotis, G. G. (2011). Predictable patterns in ETFs’ return and tracking error. Studies in Economics and Finance, 28(1), 14–35. [Google Scholar] [CrossRef]
- Shenjere, P. A., Ferreira-Schenk, S., & Moodley, F. (2025). Does investor sentiment influence South African ETF flows during different market conditions? Economies, 13(1), 10. [Google Scholar] [CrossRef]
- South African Reserve Bank. (2020). Quarterly bulletin—Financial markets developments. SARB. [Google Scholar]
- World Bank. (2020). South Africa economic update: From containment to recovery. World Bank. [Google Scholar]
- Wu, C., Xiong, X., & Gao, Y. (2021). Performance comparisons between ETFs and traditional index funds: Evidence from China. Finance Research Letters, 40, 101740. [Google Scholar] [CrossRef]
Variable | Abbreviation | Description | Start Date |
---|---|---|---|
Panel A: ETF Returns | |||
Invest Top 40 ETF | ETFT40 | Tracks the JSE Top 40 index by market capitalization | 10/2010 |
Invest SWIX 40 ETF | ETFSWX | Tracks the JSE All-share index | 10/2010 |
Satrix SWIX Top 40 ETF | STX40 | Tracks the JSE shareholders-weighted Top 40 index | 11/2000 |
Sygnia Itrix Top 40 ETF | STXSWX | Tracks the JSE Top 40 index by market return | 04/2006 |
Panel B: Macroeconomic Variables | |||
Inflation rate | - | ||
Money supply (M2) | - | ||
Short-term interest | - | ||
Long-term interest | - | ||
Gross domestic product | - | ||
Real effective exchange rate | - |
ETFSWX | ETFT40 | STX40 | STXSWX | CPI | M2 | ST_INT | LT_INT | GDP | REER | |
---|---|---|---|---|---|---|---|---|---|---|
Panel A: Descriptive Statistics | ||||||||||
Mean | 0.005208 | 0.006121 | 0.006089 | 0.005286 | 0.227292 | 0.519338 | 0.292776 | 0.257333 | 0.513162 | −0.101130 |
Median | 0.007910 | 0.008045 | 0.007479 | 0.006297 | 0.184866 | 0.364786 | 0.190949 | −0.055930 | 0.556007 | −0.421891 |
Maximum | 0.147044 | 0.134321 | 0.130207 | 0.137503 | 1.454139 | 6.286221 | 13.73013 | 17.73520 | 24.35332 | 7.171398 |
Minimum | −0.134555 | −0.110446 | −0.118299 | −0.142629 | −1.753214 | −3.108036 | −24.20321 | −10.12012 | −20.06378 | −6.451613 |
Std. Dev. | 0.043501 | 0.042012 | 0.040596 | 0.040321 | 0.470916 | 1.445621 | 3.849770 | 3.270099 | 2.802903 | 2.862607 |
Skewness | −0.126812 | 0.107617 | 0.191046 | −0.079885 | −0.454532 | 0.409115 | −1.475902 | 1.255815 | 1.378176 | 0.098581 |
Kurtosis | 4.005053 | 3.294102 | 3.634838 | 4.063675 | 5.955277 | 3.786117 | 13.95119 | 9.445005 | 52.56926 | 2.532677 |
Jarque–Bera | 7.073506 | 0.874409 | 3.614339 | 7.616470 | 62.93706 | 8.475909 | 846.8911 | 314.9886 | 16226.00 | 1.693655 |
Probability | 0.029108 | 0.645839 | 0.164118 | 0.022187 | 0.000000 | 0.014437 | 0.000000 | 0.000000 | 0.000000 | 0.428773 |
Observations | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 | 158 |
Panel B: Variance Inflation Factor Test | ||||||||||
VIF Stat | - | - | - | - | 1.061424 | 1.103670 | 1.090984 | 1.152434 | 1.112297 | 1.177853 |
Panel C: Unit Root and Stationarity Tests | ||||||||||
ADF | −14.95804 *** | −14.47077 *** | −14.15896 *** | −14.30402 *** | −6.594083 *** | −14.065538 *** | −5.935803 *** | −10.79380 *** | −8.114136 *** | −10.28854 *** |
KPSS | 0.223656 | 0.102027 | 0.104296 | 0.231754 | 0.292826 | 0.310934 | 0.153746 | 0.059044 | 0.150203 | 0.117962 |
ADF Break | −16.07975 *** | −15.21584 *** | −15.12700 *** | −15.57749 *** | −8.814163 *** | −13.66101 *** | −10.47896 *** | −11.92506 *** | −12.77315 *** | −11.20548 *** |
Variables | ETFSWX | ETFT40 | STX40 | STXSWX |
---|---|---|---|---|
CPI | −0.021282 * | −0.083164 | −0.066460 *** | −0.028252 ** |
(0.0907) | (0.2989) | (0.0067) | (0.0246) | |
M2 | −0.077552 | −0.021709 *** | −0.067581 *** | −0.055524 *** |
(0.3328) | (0.0066) | (0.0088) | (0.0084) | |
ST_INT | −0.033329 * | −0.034433 * | −0.037689 | −0.041607 *** |
(0.0776) | (0.0676) | (0.6382) | (0.0037) | |
LT_INT | −0.281338 *** | −0.231347 *** | −0.281262 *** | −0.265631 *** |
(0.0003) | (0.0034) | (0.0003) | (0.0007) | |
GDP | −0.031104 * | −0.052772 ** | −0.053672 | −0.061432 ** |
(0.0980) | (0.0102) | (0.5030) | (0.0432) | |
REER | −0.091519 * | −0.130053 | −0.127628 ** | −0.114478 |
(0.0528) | (0.1034) | (0.0100) | (0.1521) |
ETFSWX | ETFT40 | STX40 | STXSWX | |
---|---|---|---|---|
Panel A: Bull Regime | ||||
C | 0.036534 * | 0.010367 *** | 0.008060 ** | 0.002519 |
CPI | 0.063551 * | 0.028374 *** | −0.002166 * | 0.008454 |
M2 | −0.013067 | −0.059574 *** | −0.001047 | −0.002923 |
ST_INT | 0.017883 * | 0.030833 *** | 0.000278 | 0.002746 *** |
LT_INT | −0.006992 *** | −0.030854 *** | −0.004717 *** | −0.003955 *** |
GDP | 0.002230 | 0.002190 *** | −0.002569 | 0.002473 * |
REER | −0.004261 *** | −0.007413 *** | −0.002981 ** | −0.002808 ** |
−3.178687 *** | −1.493026 *** | −3.258975 *** | −3.391161 *** | |
Panel B: Bear Regime | ||||
C | −0.028047 * | −0.007904 * | 0.014071 *** | 0.026780 *** |
CPI | −0.050439 | −0.012527 | 0.012067 *** | −0.068065 *** |
M2 | 0.001128 ** | 0.003023 | 0.005385 *** | 0.030410 *** |
ST_INT | −0.001890 | −0.000236 | 0.001108 *** | −0.005635 *** |
LT_INT | 0.006153 | −0.003118 ** | −0.003297 *** | −0.007997 *** |
GDP | −0.001852 ** | −0.001935 | 0.001110 *** | 0.005509 *** |
REER | 0.002242 | −0.001948 | −0.005293 *** | −0.003836 *** |
−3.772294 *** | −6.203929 *** | −8.571630 *** | −4.932839 *** | |
Panel C: Diagnostic Tests | ||||
DW-STAT | 2.318232 | 2.305209 | 2.219954 | 2.308811 |
LM-Stat | 1.352684 | 3.466846 | 4.017731 | 3.786891 |
p Value | 0.1253 | 0.1650 | 0.1341 | 0.1506 |
ETFSWX | ETFT40 | STX40 | STXSWX | |
---|---|---|---|---|
Panel A: Bull Regime | ||||
P11 | 0.950437 | 0.136046 | 0.933164 | 0.810897 |
T11 | 20.17642 | 1.157469 | 14.96205 | 5.288122 |
Panel B: Bear Regime | ||||
P22 | 0.766983 | 0.857261 | 0.156015 | 9.30 × 10−9 |
T22 | 4.291526 | 7.005816 | 1.184855 | 1.000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moodley, F.; Lawrence, B.; Tabash, M.I. Are Macroeconomic Variables a Determinant of ETF Flow in South Africa Under Different Economic Conditions? Economies 2025, 13, 260. https://doi.org/10.3390/economies13090260
Moodley F, Lawrence B, Tabash MI. Are Macroeconomic Variables a Determinant of ETF Flow in South Africa Under Different Economic Conditions? Economies. 2025; 13(9):260. https://doi.org/10.3390/economies13090260
Chicago/Turabian StyleMoodley, Fabian, Babatunde Lawrence, and Mosab I. Tabash. 2025. "Are Macroeconomic Variables a Determinant of ETF Flow in South Africa Under Different Economic Conditions?" Economies 13, no. 9: 260. https://doi.org/10.3390/economies13090260
APA StyleMoodley, F., Lawrence, B., & Tabash, M. I. (2025). Are Macroeconomic Variables a Determinant of ETF Flow in South Africa Under Different Economic Conditions? Economies, 13(9), 260. https://doi.org/10.3390/economies13090260