The Impact of Globalization on Economic Growth in Sub-Saharan Africa: Evidence from the Threshold Effect Regression
Abstract
1. Introduction
Stylized Facts
2. Literature Review
2.1. Theoretical Underpinnings and Hypothesis Development
2.2. Snippet of the Previous Studies
3. Methodology
3.1. Data
3.2. Methods
3.2.1. Baseline Model
- represents the intercept where the base level of growth is considered; all the independent variables are set to zero;
- denotes the coefficient associated with globalization, signifying the effect of changes on economic growth;
- denotes the coefficient linked to knowledge spillover in FDI changes that affect economic growth;
- denotes the coefficient linked to knowledge spillover from trade changes that affect economic growth;
- denotes the coefficient associated with knowledge spillover. Patent innovation by resident changes affects economic growth;
- represents the coefficient connected to infrastructural development through urbanization dynamics that affect economic growth.
3.2.2. Robustness Checks
4. Results
4.1. Preliminary Data Analysis
4.2. Baseline Results
4.3. Supplementary Robustness Analysis
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. The Policy Implications of the Study
5.3. Future Research Direction and the Caveat
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Definitions | Source |
---|---|---|
GDPC | GDP per capita (constant 2015 US$) | WDI |
Globalization | KOF Globalization index (Aggregation of the three dimensions of globalization “Economic, Social and Political dimensions”) | KOF Swiss Economic Institute |
FDI | Foreign direct investment inflow (% of GDP) | WDI |
Trade Openness | Exports plus Imports (% of GDP) | WDI |
Innovations | Patent applications, residents | WDI |
Urbanization | Urban Population (% of total population) | WDI |
Variable | Obs | Mean | Std.Dev. | Min | Max |
---|---|---|---|---|---|
GDPC | 1034 | 5.791 | 1.309 | 0 | 6.919 |
Globalization | 1034 | 3.804 | 0.204 | 3.173 | 4.276 |
FDI | 1034 | 5.872 | 1.019 | 0 | 6.916 |
Trade openness | 1034 | 4.897 | 2.269 | 0 | 6.775 |
Innovations | 1034 | 0.807 | 1.505 | 0 | 4.595 |
Urbanization | 1034 | 3.597 | 0.452 | 2.11 | 4.504 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
(1) GDPC | 1.000 | |||||
(2) Globalization | 0.181 * | 1.000 | ||||
(3) FDI | 0.205 * | 0.263 * | 1.000 | |||
(4) Trade openness | 0.233 * | 0.164 * | 0.007 | 1.000 | ||
(5) Innovations | 0.102 * | 0.330 * | 0.122 * | −0.036 | 1.000 | |
(6) Urbanization | −0.103 * | 0.360 * | 0.132 * | 0.065 * | −0.026 | 1.000 |
1 | Recently, the newly tariff announcements by the United State of American President Donald Trump has added some spice to the debate. |
2 | Angola, Benin, Botswana, Burkina Faso, Burundi, Cabo Verde, Cameroon, Central African Republic, Chad, Comoros, Congo, Dem. Rep., Congo, Rep., Cote d’Ivoire, Equatorial Guinea, Eritrea, Eswatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, Nigeria, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, Sudan, Tanzania, Togo, Uganda, Zambia and Zimbabwe. |
3 | This approach followed closely to the coding from Hansen (1999) (see Abdulqadir & Asongu, 2022; Abdulqadir, 2021, 2022). |
References
- Abdulqadir, I. A. (2021). Growth threshold-effect on renewable energy consumption in major oil-producing countries in sub-Saharan Africa: A dynamic panel threshold regression estimation. International Journal of Energy Sector Management, 15(3), 496–522. [Google Scholar] [CrossRef]
- Abdulqadir, I. A. (2022). The nonlinearity of exchange rate pass-through on currency invoice: A quantile, generalized method of moments and threshold effect-test from sub-Sahara African economies. International Journal of Finance and Economics, 27(1), 1473–1494. [Google Scholar] [CrossRef]
- Abdulqadir, I. A. (2024). Urbanization, renewable energy, and carbon dioxide emissions: A pathway to achieving sustainable development goals (SDGs) in sub-Saharan Africa. International Journal of Energy Sector Management, 18, 248–270. [Google Scholar] [CrossRef]
- Abdulqadir, I. A., & Asongu, S. A. (2022). The asymmetric effect of Internet access on economic growth in sub-Saharan Africa. Economic Analysis and Policy, 73, 44–61. [Google Scholar] [CrossRef]
- Ahmad, S., & Civelli, A. (2016). Globalization and inflation: A threshold investigation. Journal of Macroeconomics, 48, 283–304. [Google Scholar] [CrossRef]
- Ajide, F. M., & Dada, J. T. (2024). Globalization and shadow economy: A panel analysis for Africa. Review of Economics and Political Science, 9(2), 166–189. [Google Scholar] [CrossRef]
- Aluko, O. A., Chen, G. S., & Opoku, E. E. O. (2023). Is foreign direct investment globalization-induced or a myth? A tale of Africa. International Journal of Finance and Economics, 28(3), 2651–2663. [Google Scholar] [CrossRef]
- Asongu, S. A. (2013). Globalization and Africa: Implications for human development. International Journal of Development Issues, 12(3), 213–238. [Google Scholar] [CrossRef]
- Asongu, S. A., Mensah, B., & Ngoungou, J. C. M. (2023). Thresholds of external flows in financial development for environmental sustainability in sub-Saharan Africa. Management of Environmental Quality: An International Journal, 35(1), 158–178. [Google Scholar] [CrossRef]
- Asongu, S. A., & Nnanna, J. (2021). Globalization, governance, and the green economy in sub-Saharan Africa: Policy thresholds. World Affairs, 184(2), 176–212. [Google Scholar] [CrossRef]
- Asongu, S. A., & Odhiambo, N. (2022). Foreign direct investment, information technology and total factor productivity dynamics in sub-Saharan Africa (pp. 1–16). European Xtramile Centre of African Studies WP/22/019. Available online: https://ssrn.com/abstract=4043846 (accessed on 18 December 2021).
- Asongu, S. A., & Odhiambo, N. M. (2021). Trade and FDI thresholds of CO2 emissions for a green economy in sub-Saharan Africa. International Journal of Energy Sector Management, 15(1), 227–245. [Google Scholar] [CrossRef]
- Asongu, S. A., & Odhiambo, N. M. (2023). Economic sectors and globalization channels to gender economic inclusion in sub-Saharan Africa. Women’s Studies International Forum, 98, 102729. [Google Scholar] [CrossRef]
- Awosusi, A. A., Ozdeser, H., Seraj, M., & Abbas, S. (2023). Can green resource productivity, renewable energy, and economic globalization drive the pursuit of carbon neutrality in the top energy transition economies? International Journal of Sustainable Development and World Ecology, 30(7), 745–759. [Google Scholar] [CrossRef]
- Bataka, H. (2019). De jure, de facto globalization and economic growth in sub-Saharan Africa. Journal of Economic Integration, 34(1), 1–9. [Google Scholar] [CrossRef]
- Bilal, A., Li, X., Zhu, N., Sharma, R., & Jahanger, A. (2022). Green technology innovation, globalization, and CO2 emissions: Recent insights from the OBOR economies. Sustainability, 14(1), 236. [Google Scholar] [CrossRef]
- Brambor, T., Clark, W. R., & Golder, M. (2006). Understanding interaction models: Improving empirical analyses. Political Analysis, 14(1), 63–82. [Google Scholar] [CrossRef]
- Chernozhukov, V., Galvao, A. F., He, X., & Xiao, Z. (2019). Quantile regression. Journal of Econometrics, 213(1), 1–3. [Google Scholar] [CrossRef]
- De Castro, L., Galvao, A. F., Kaplan, D. M., & Liu, X. (2019). Smoothed GMM for quantile models. Journal of Econometrics, 213(1), 121–144. [Google Scholar] [CrossRef]
- Dreher, A. (2006). Does globalization affect growth? Evidence from a new index of globalization. Applied Economics, 38(10), 37–41. [Google Scholar] [CrossRef]
- Elvis, S. W., & Ewane, E. B. (2023). The dynamics of economic globalization and income inequality in sub-Saharan African countries: An empirical insight from two stage least square and fixed effect approach. South Asian Journal of Social Studies and Economics, 18(2), 33–46. [Google Scholar] [CrossRef]
- Fatima, N., Yanting, Z., & Guohua, N. (2023). Interrelationship among environmental policy stringency, financial globalization in OECD countries, and CO2 emission with the role of technological innovation and financial development. Environmental Science and Pollution Research, 30(12), 34085–34100. [Google Scholar] [CrossRef] [PubMed]
- FOCUS2030. (2023). A new global financing pact. Available online: https://focus2030.org/Summit-for-a-New-Global-Financing-Pact-conclusions-and-next-steps (accessed on 18 December 2021).
- Fotio, H. K., Adams, S., Nkengfack, H., & Poumie, B. (2023). Achieving sustainable development goal 7 in Africa: Does globalization matter for electricity access, renewable energy consumption, and energy efficiency? Utilities Policy, 82, 101545. [Google Scholar] [CrossRef]
- Galvao, A. F., Gu, J., & Volgushev, S. (2020). On the unbiased asymptotic normality of quantile regression with fixed effects. Journal of Econometrics, 218(1), 178–215. [Google Scholar] [CrossRef]
- Galvao, A. F., & Kato, K. (2017). Quantile regression methods for longitudinal data. In Handbook of quantile regression (1st ed., p. 18). Chapman and Hall/CRC. [Google Scholar]
- Galvao, A. F., Lamarche, C., & Lima, L. R. (2013). Estimation of censored quantile regression for panel data with fixed effects. Journal of the American Statistical Association, 108(503), 1075–1089. [Google Scholar] [CrossRef]
- Galvao, A. F., & Montes-Rojas, G. (2015). On bootstrap inference for quantile regression panel data: A Monte Carlo study. Econometrics, 3(3), 654–666. [Google Scholar] [CrossRef]
- Galvao, A. F., Parker, T., & Xiao, Z. (2024). Bootstrap inference for panel data quantile regression. Journal of Business & Economic Statistics, 42(2), 628–639. [Google Scholar] [CrossRef]
- Gossel, S. (2024). FDI and inequality in sub-Saharan Africa: Does democracy matter? International Journal of Emerging Markets, 19(1), 33–55. [Google Scholar] [CrossRef]
- Grossman, G. M., & Helpman, E. (1991a). Innovation and growth in the global economy. MIT Press. [Google Scholar]
- Grossman, G. M., & Helpman, E. (1991b). Trade, knowledge spillovers, and growth. European Economic Review, 35(2–3), 517–526. [Google Scholar] [CrossRef]
- Grossman, G. M., & Helpman, E. (2014). Growth, trade and inequality (National Bureau of Economic Research Working Paper Series 20502). National Bureau of Economic Research. [Google Scholar]
- Grossman, G. M., & Helpman, E. (2015). Globalization and growth. American Economic Review, 105(5), 100–104. [Google Scholar] [CrossRef]
- Gu, J., & Volgushev, S. (2019). Panel data quantile regression with grouped fixed effects. Journal of Econometrics, 213(1), 68–91. [Google Scholar] [CrossRef]
- Gygli, S., Haelg, F., Potrafke, N., & Sturm, J. E. (2019). The KOF globalisation index—Revisited. Review of International Organizations, 14(3), 543–574. [Google Scholar] [CrossRef]
- Hansen, B. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics, 93(93), 345–368. [Google Scholar] [CrossRef]
- Helpman, E. (2004). The mystery of economic growth. Belknap by Harvard University Press. [Google Scholar]
- Isayev, M., Irani, F., & Attarzadeh, A. (2024). Asymmetric effects of monetary policy on non-bank financial intermediation (NBFI) assets: A panel quantile regression approach. Journal of Economic Studies, 51(3), 631–648. [Google Scholar] [CrossRef]
- Jahanger, A., Yang, B., Huang, W. C., Murshed, M., Usman, M., & Radulescu, M. (2022). Dynamic linkages between globalization, human capital, and carbon dioxide emissions: Empirical evidence from developing economies. Environment, Development and Sustainability, 25, 9307–9335. [Google Scholar] [CrossRef]
- Keller, W. (2010). International trade, foreign direct investment, and technology spillovers. In B. H. Hall, & N. Rosenberg (Eds.), Handbook of the economics of innovation (Vol. 2, pp. 793–829). Elsevier B.V. [Google Scholar]
- Khurshid, N., Fiaz, A., Ali, K., & Rashid, M. (2024). Unleashing the effect of energy efficiency, knowledge spillover, and globalization on environmental sustainability: An VECM analysis for policy empirics. Environment, Development and Sustainability, 26(3), 6027–6049. [Google Scholar] [CrossRef]
- Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis, 91(1), 74–89. [Google Scholar] [CrossRef]
- Koenker, R. (2005). Quantile regression. Cambridge University Press. [Google Scholar]
- Koenker, R., & Bassett, G. (1978). Regression Quantiles. Econometrica, 46(1), 33–50. [Google Scholar] [CrossRef]
- Machado, J. A. F., & Silva, J. M. C. S. (2019). Quantiles via moments. Journal of Econometrics, 213(1), 145–173. [Google Scholar] [CrossRef]
- Ohene Kwatia, B., Amewu, G., & Armah, M. (2024). Religiosity and financial development in Africa: Evidence from panel quantile regression. Cogent Business and Management, 11(1), 2315313. [Google Scholar] [CrossRef]
- Onifade, S. T., Erdoğan, S., & Alola, A. A. (2023). The role of alternative energy and globalization in decarbonization prospects of the oil-producing African economies. Environmental Science and Pollution Research, 30(20), 58128–58141. [Google Scholar] [CrossRef]
- Parker, T. (2019). Asymptotic inference for the constrained quantile regression process. Journal of Econometrics, 213(1), 174–189. [Google Scholar] [CrossRef]
- Patel, N., & Mehta, D. (2023). The asymmetry effect of industrialization, financial development and globalization on CO2 emissions in India. International Journal of Thermofluids, 20, 100397. [Google Scholar] [CrossRef]
- Pejović, B. (2023). The impact of globalization on economic growth in transition countries. Ekonomicky Casopis, 71(8–9), 560–575. [Google Scholar] [CrossRef]
- Rehman, A., Alam, M. M., Ozturk, I., Alvarado, R., Murshed, M., Işık, C., & Ma, H. (2023). Globalization and renewable energy use: How are they contributing to upsurge the CO2 emissions? A global perspective. Environmental Science and Pollution Research, 30(4), 9699–9712. [Google Scholar] [CrossRef]
- Rocha, O., Kamphambale, D., Macmahon, C., & Coetzer, J. (2023). The power of education in a globalised world: Challenging geoeconomic inequalities the power of education in a globalised world: Challenging geoeconomic inequalities. Peace Review, 35(4), 708–723. [Google Scholar] [CrossRef]
- Singh, S. K., Sharma, P., & Sharma, S. (2024). The nonlinear relationship between poverty and financial globalisation: A panel quantile regression approach. The World Economy, 47(2), 664–708. [Google Scholar] [CrossRef]
- Sultana, T., Hossain, M. S., Voumik, L. C., & Raihan, A. (2023). Does globalization escalate the carbon emissions? Empirical evidence from selected next-11 countries. Energy Reports, 10, 86–98. [Google Scholar] [CrossRef]
- Tariq, G., Sun, H., Fernandez-Gamiz, U., Mansoor, S., Pasha, A. A., Ali, S., & Khan, M. S. (2023). Effects of globalization, foreign direct investment and economic growth on renewable electricity consumption. Heliyon, 9(3), e14635. [Google Scholar] [CrossRef]
- Wang, M., Hossain, M. R., Si Mohammed, K., Cifuentes-Faura, J., & Cai, X. (2023). Heterogenous effects of circular economy, green energy and globalization on CO2 emissions: Policy based analysis for sustainable development. Renewable Energy, 211, 789–801. [Google Scholar] [CrossRef]
- Zhang, Y., Judy, H., & Zhu, Z. (2019). Quantile-regression-based clustering for panel data. Journal of Econometrics, 213(1), 54–67. [Google Scholar] [CrossRef]
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Variables | Fixed Effects | Q25 | Q40 | Q50 | Q75 | Q90 |
0.903 ** | 0.548 | 0.115 | 0.459 * | 0.610 *** | 0.289 *** | |
(0.431) | (0.523) | (0.327) | (0.259) | (0.0851) | (0.0875) | |
0.153 *** | 0.335 *** | 0.134 ** | 0.0920 *** | 0.0733 *** | −0.0158 * | |
(0.0340) | (0.0735) | (0.0553) | (0.0353) | (0.0284) | (0.00940) | |
0.306 *** | 0.0763 * | 0.0631 *** | 0.0534 *** | 0.0319 *** | 0.00407 | |
(0.0243) | (0.0422) | (0.0175) | (0.0155) | (0.0104) | (0.00583) | |
0.0641 ** | 0.0360 | 0.0448 ** | 0.00933 | −0.0385 *** | −0.0119 | |
(0.0294) | (0.0278) | (0.0206) | (0.0212) | (0.0118) | (0.00900) | |
−1.349 *** | −0.962 *** | −0.319 *** | −0.323 *** | −0.101 *** | −0.0867 *** | |
(0.431) | (0.126) | (0.0809) | (0.0758) | (0.0314) | (0.0240) | |
Constant | 4.758 *** | 4.344 *** | 5.532 *** | 4.783 *** | 4.064 *** | 6.086 *** |
(1.235) | (1.658) | (1.085) | (0.793) | (0.389) | (0.331) | |
R-squared | 0.178 | |||||
Pseudo R2 | 0.0536 | 0.0346 | 0.0307 | 0.0289 | 0.0141 | |
Observations | 1034 | 1034 | 1034 | 1034 | 1034 | 1034 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | Q25 | Q40 | Q50 | Q75 | Q90 |
77.56 *** | 20.82 | 4.719 | 4.221 ** | 0.400 | |
(23.93) | (13.26) | (6.648) | (2.002) | (2.596) | |
−10.16 *** | −2.791 | −0.565 | −0.484 * | −0.0137 | |
(3.112) | (1.750) | (0.908) | (0.266) | (0.333) | |
0.276 *** | 0.134 ** | 0.103 *** | 0.0545 * | −0.0157 | |
(0.0843) | (0.0570) | (0.0385) | (0.0307) | (0.00967) | |
0.0768 ** | 0.0620 *** | 0.0549 *** | 0.0324 *** | 0.00403 | |
(0.0349) | (0.0181) | (0.0175) | (0.00946) | (0.00547) | |
0.0566 ** | 0.0362 ** | 0.00395 | −0.0324 *** | −0.0119 | |
(0.0244) | (0.0180) | (0.0218) | (0.0103) | (0.0106) | |
−0.723 *** | −0.355 *** | −0.295 *** | −0.0942 *** | −0.0873 *** | |
(0.0958) | (0.0959) | (0.0884) | (0.0307) | (0.0248) | |
Constant | −141.8 *** | −32.64 | −3.397 | −2.569 | 5.862 |
(45.94) | (25.06) | (12.26) | (3.676) | (5.057) | |
Net effect | 39.42 | na | na | 1.385 | na |
Threshold | 3.817 | na | na | 4.361 | na |
Pseudo R2 | 0.0868 | 0.0405 | 0.0310 | 0.0307 | 0.0141 |
Observations | 1034 | 1034 | 1034 | 1034 | 1034 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | Q25 | Q40 | Q50 | Q75 | Q90 |
0.539 | 0.254 | 0.330 | 0.625 *** | 0.326 *** | |
(0.527) | (0.351) | (0.314) | (0.0625) | (0.0967) | |
−0.572 | −0.577 | −0.477 | −0.511 *** | −0.174 | |
(0.446) | (0.358) | (0.298) | (0.174) | (0.108) | |
× | 0.0846 ** | 0.0717 ** | 0.0575 ** | 0.0548 *** | 0.0168 |
(0.0412) | (0.0341) | (0.0292) | (0.0152) | (0.0115) | |
0.0812 ** | 0.0492 *** | 0.0499 *** | 0.0329 *** | 0.00641 | |
(0.0400) | (0.0145) | (0.0180) | (0.00824) | (0.00628) | |
0.0402 | 0.0355 * | 0.0238 | −0.0313 *** | −0.0142 | |
(0.0321) | (0.0213) | (0.0200) | (0.00836) | (0.00878) | |
−0.929 *** | −0.408 *** | −0.302 *** | −0.125 *** | −0.0879 *** | |
(0.138) | (0.0859) | (0.0800) | (0.0378) | (0.0274) | |
Constant | 6.588 *** | 7.009 *** | 6.504 *** | 5.576 *** | 6.257 *** |
(1.888) | (1.453) | (1.415) | (0.545) | (0.327) | |
Net effect | na | na | na | 0.133 | na |
Threshold | na | na | na | 4.662 | na |
Pseudo R2 | 0.0592 | 0.0410 | 0.0344 | 0.0369 | 0.0173 |
Observations | 1034 | 1034 | 1034 | 1034 | 1034 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variables | Q25 | Q40 | Q50 | Q75 | Q90 |
0.403 | −0.0217 | 0.380 | 0.627 *** | 0.309 *** | |
(0.507) | (0.450) | (0.288) | (0.0740) | (0.0888) | |
0.334 *** | 0.140 ** | 0.116 *** | 0.0553 * | −0.0119 | |
(0.0723) | (0.0554) | (0.0319) | (0.0301) | (0.0119) | |
−0.0666 | −0.0814 | −0.129 ** | −0.0676 | 0.0253 | |
(0.111) | (0.0849) | (0.0596) | (0.0492) | (0.0285) | |
× | 0.0239 | 0.0196 * | 0.0294 *** | 0.0151 ** | −0.00322 |
(0.0155) | (0.0119) | (0.00851) | (0.00718) | (0.00393) | |
0.0438 * | 0.0261 | −0.00853 | −0.0334 *** | −0.0177 * | |
(0.0264) | (0.0183) | (0.0199) | (0.0113) | (0.00903) | |
−0.892 *** | −0.359 *** | −0.334 *** | −0.130 *** | −0.0960 *** | |
(0.152) | (0.118) | (0.0749) | (0.0320) | (0.0234) | |
Constant | 4.700 *** | 6.302 *** | 5.050 *** | 4.253 *** | 6.014 *** |
(1.591) | (1.490) | (0.935) | (0.326) | (0.338) | |
Net effect | na | na | 0.159 | na | na |
Threshold | na | na | 2.194 | na | na |
Pseudo R2 | 0.0555 | 0.0375 | 0.0373 | 0.0315 | 0.0148 |
Observations | 1034 | 1034 | 1034 | 1034 | 1034 |
Full Sample | Highest Quintile | Median Quintile | Lower Quintile | |||||
---|---|---|---|---|---|---|---|---|
Dependent Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
GDPC | First Regime | Second Regime | First Regime | Second Regime | First Regime | Second Regime | First Regime | Second Regime |
Threshold | 3.2717 | 3.9883 | 4.2707 | 3.9612 | 3.9683 | 3.8759 | 3.2717 | 3.4204 |
F-statistics (Prob) | 0.0333 | 0.1667 | 0.0067 | 0.2467 | 0.6933 | 0.8433 | 0.0133 | 0.9070 |
95% confidence interval 1% | 96.0361 | 106.5524 | 70.7158 | 317.7137 | 72.9712 | 32.2538 | 55.3728 | 81.7284 |
95% confidence interval 5% | 61.6668 | 64.8621 | 40.6924 | 196.3496 | 44.3947 | 25.4639 | 42.0971 | 59.0936 |
95% confidence interval 10% | 48.7549 | 47.0529 | 25.9035 | 98.5263 | 36.6459 | 22.6006 | 35.6088 | 50.3844 |
0.108 *** | 0.102 *** | 0.0892 | 0.146 | 0.0165 | 0.00822 | 0.153 *** | 0.213 *** | |
(0.0337) | (0.0331) | (0.0923) | (0.0895) | (0.0359) | (0.0358) | (0.0447) | (0.0445) | |
0.260 *** | 0.278 *** | 0.140 * | 0.0895 | −0.0591 ** | −0.0483 | 0.385 *** | 0.402 *** | |
(0.0244) | (0.0242) | (0.0737) | (0.0717) | (0.0295) | (0.0294) | (0.0314) | (0.0315) | |
0.0707 ** | 0.0506 * | 0.0121 | 0.0469 | 0.00396 | 0.00745 | 0.0545 | 0.0271 | |
(0.0286) | (0.0284) | (0.0519) | (0.0505) | (0.0230) | (0.0229) | (0.0515) | (0.0521) | |
−1.627 *** | −2.181 *** | 7.831 *** | 7.330 *** | 0.660 * | 0.495 | −4.782 *** | −3.719 *** | |
(0.421) | (0.425) | (1.214) | (1.165) | (0.397) | (0.393) | (0.639) | (0.678) | |
Test for the number of p-values | ||||||||
0._ No threshold | 0.0463 | −0.0179 | 1.388 | −0.770 | 1.114 *** | 0.499 | 0.641 | 3.408 *** |
(0.434) | (0.427) | (1.065) | (1.201) | (0.393) | (0.483) | (0.615) | (0.763) | |
1._Atleast one threshold | 0.814 * | 0.770 * | 0.698 | −0.585 | 1.043 *** | 0.556 | 1.390 ** | 3.139 *** |
(0.419) | (0.413) | (1.055) | (1.172) | (0.393) | (0.470) | (0.600) | (0.721) | |
2._Atmost two thresholds | 0.969 ** | −1.250 | 0.501 | 2.909 *** | ||||
(0.413) | (1.160) | (0.468) | (0.716) | |||||
Constant | 6.613 *** | 8.620 *** | −32.26 *** | −22.24 *** | −0.445 | 2.392 | 14.77 *** | 4.137 * |
(1.226) | (1.256) | (3.883) | (4.752) | (1.267) | (1.748) | (1.723) | (2.223) | |
Observations | 1034 | 1034 | 110 | 110 | 352 | 352 | 572 | 572 |
R-squared | 0.223 | 0.248 | 0.699 | 0.730 | 0.094 | 0.106 | 0.371 | 0.362 |
Number of country | 47 | 47 | 5 | 5 | 16 | 16 | 26 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhtar, M.; Abdulqadir, I.A. The Impact of Globalization on Economic Growth in Sub-Saharan Africa: Evidence from the Threshold Effect Regression. Economies 2025, 13, 251. https://doi.org/10.3390/economies13090251
Mukhtar M, Abdulqadir IA. The Impact of Globalization on Economic Growth in Sub-Saharan Africa: Evidence from the Threshold Effect Regression. Economies. 2025; 13(9):251. https://doi.org/10.3390/economies13090251
Chicago/Turabian StyleMukhtar, Mustapha, and Idris Abdullahi Abdulqadir. 2025. "The Impact of Globalization on Economic Growth in Sub-Saharan Africa: Evidence from the Threshold Effect Regression" Economies 13, no. 9: 251. https://doi.org/10.3390/economies13090251
APA StyleMukhtar, M., & Abdulqadir, I. A. (2025). The Impact of Globalization on Economic Growth in Sub-Saharan Africa: Evidence from the Threshold Effect Regression. Economies, 13(9), 251. https://doi.org/10.3390/economies13090251