Gauging the Impact of Digital Finance on Financial Stability in the Presence of Multiple Unknown Structural Breaks: Evidence from Developing Economies
Abstract
1. Introduction
2. Literature Review
3. Methodology
3.1. The Principal Component Analysis (PCA)
3.2. Data Measurement, Sources and Scope
3.3. Cross-Sectional Dependency Test
3.4. Slope Homogeneity and Panel Unit Root Tests
3.5. Quantile Regression Model Specification
Structural Break in Quantile Regression Model Specification
4. Results and Discussion
4.1. Breakpoint Testing and Estimation
4.2. Quantile Regression Analyses Under Detected Multiple Structural Breaks
5. Conclusions and Policy Recommendation
Weakness/Limitation of the Study and Areas for Further Studies
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
1 | Note only the digital finance variables (INTB and MB) were allowed to be breaking in this study because they are specific to the banking sector and situational to the crises being investigated. On the other hand, GDPG and FD are more general to the economy. |
2 | Bank Z-score is a metric used to assess bank’s financial stability in a given region. It measures the distance a bank capital is from bankruptcy. |
3 | Note that the three crises dummies were not significant under model 16 which is the 10th quantile, consequently the constant value only represents the average level of financial stability. |
4 | Note that the interactive effects of digital finance with the three dummies are not significant under the 10th quantile; hence, αi × δi = 0. In the 50th quantile, only α1 × δ2 ≠ α2 × δ2 ≠ α1 × δ3 ≠ 0 whereas only α2 × δ2 ≠ α1 × δ3 ≠ 0 in the 90th quantile. |
References
- Ahmad, D. (2018). Financial inclusion and financial stability: Survey of the Nigeria’s financial system. International Journal of Research in Finance and Management, 1(2), 47–54. [Google Scholar] [CrossRef]
- Akinsola, F. A. (2016). Implication of financial crises, financial regulation and business cycle for bank lending in South Africa [Ph.D. thesis, Stellenbosch University]. [Google Scholar]
- Anton, S., & Afloarei Nucu, A. E. (2024). The impact of digital finance and financial inclusion on banking stability: International evidence. Oeconomia Copernicana, 15(2), 563–593. [Google Scholar] [CrossRef]
- Antwi, F., & Kong, Y. (2023). Investigating the impacts of digital finance technology on financial stability of the banking sector: New insights from developing market economies. Cogent Business & Management, 10(3), 2284738. [Google Scholar]
- Arner, D. W., Barberis, J. N., Walker, J., Buckley, R. P., Dahdal, A. M., & Zetzsche, D. A. (2020, April 16). Digital finance & the COVID-19 crisis. Available online: https://ssrn.com/abstract=3558889 (accessed on 5 May 2025). [CrossRef]
- Bączyk, M. (2021). Are technologies contagious among countries? A worldwide analysis of infrastructural technology adoption [Master’s thesis, Utrecht University]. [Google Scholar]
- Bai, J., & Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica, 66, 47–78. [Google Scholar] [CrossRef]
- Banna, H., & Alam, M. R. (2021). Impact of digital financial inclusion on ASEAN banking stability: Implications for the post-COVID-19 era. Studies in Economics and Finance, 38(2), 504–523. [Google Scholar] [CrossRef]
- Batuo, M., Mlambo, K., & Asongu, S. (2018). Linkages between financial development, financial instability, financial liberalisation and economic growth in Africa. Research in International Business and Finance, 45, 168–179. [Google Scholar] [CrossRef]
- Bayar, Y., Ozkaya, M. H., Herta, L., & Gavriletea, M. D. (2021). Financial development, financial inclusion and primary energy use: Evidence from the European Union transition economies. Energies, 14(12), 3638. [Google Scholar] [CrossRef]
- Boldea, O., Drepper, B., & Gan, Z. (2020). Change point estimation in panel data with time-varying individual effects. Journal of Applied Econometrics, 35(6), 712–727. [Google Scholar] [CrossRef]
- Caballero, R. J., & Simsek, A. (2013). Fire sales in a model of complexity. The Journal of Finance, 68(6), 2549–2587. [Google Scholar] [CrossRef]
- Ditzen, J., Karavias, Y., & Westerlund, J. (2025). Multiple structural breaks in interactive effects panel data models. Journal of Applied Econometrics, 40(1), 74–88. [Google Scholar] [CrossRef]
- Gai, P., & Kapadia, S. (2010). Contagion in financial networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2120), 2401–2423. [Google Scholar] [CrossRef]
- Hashemizadeh, A., Ashraf, R. U., Khan, I., & Zaidi, S. A. H. (2023). Digital financial inclusion, environmental quality, and economic development: The contributions of financial development and investments in OECD countries. Environmental Science and Pollution Research, 30(54), 116336–116347. [Google Scholar] [CrossRef] [PubMed]
- Hordofa, D. F. (2024). Impact of digital transformation on financial stability in emerging markets: Evidence from Ethiopia. Discover Sustainability, 5(1), 309. [Google Scholar] [CrossRef]
- International Monetary Fund (IMF). (2009). Impact of the global financial crisis on Sub-Saharan Africa. International Monetary Fund. [Google Scholar]
- Ismael, D. M., & Ali, S. S. (2021). Measuring digital and traditional financial inclusion in Egypt: A new index. International Journal of Applied Research in Management and Economics, 4(2), 13–34. [Google Scholar] [CrossRef]
- Jackson, H. E., & Schwarcz, S. L. (2021). Protecting financial stability: Lessons from the COVID-19 pandemic. Harvard Business Law Review, 11, 193. [Google Scholar]
- Joseph, T., Awolaja, O., & Ajibola, O. (2024). Measuring Sub-Saharan Africa economic resilience to external shocks: The role of adaptive policy space. Applied Journal of Economics, Management and Social Sciences, 5(1), 1–28. [Google Scholar]
- Kaddoura, Y., & Westerlund, J. (2023). Estimation of panel data models with random interactive effects and multiple structural breaks when T is Fixed. Journal of Business & Economic Statistics, 41(3), 778–790. [Google Scholar]
- Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics, 90(1), 1–44. [Google Scholar] [CrossRef]
- Karanovic, G., & Karanovic, B. (2015). Developing an aggregate index for measuring financial stability in the Balkans. Procedia Economics and Finance, 33, 3–17. [Google Scholar] [CrossRef]
- Karavias, Y., Narayan, P. K., & Westerlund, J. (2023). Structural breaks in interactive effects panels and the stock market reaction to COVID-19. Journal of Business & Economic Statistics, 41(3), 653–666. [Google Scholar]
- Kaya, H. D. (2017). The impact of the global crisis on the stability of the financial system. Journal of Applied Economic Sciences (JAES), 12(49), 698–708. [Google Scholar]
- Kebede, J. G. (2022). Financial inclusion and its effects on financial stability, income inequality and monetary policy effectiveness: The case of Africa [Ph.D. thesis, Griffith University]. [Google Scholar]
- Li, D., Qian, J., & Su, L. (2016). Panel data models with interactive fixed effects and multiple structural breaks. Journal of the American Statistical Association, 111(516), 1804–1819. [Google Scholar] [CrossRef]
- Liang, G., Xia, Q., & Zhang, L. (2025). Nonlinear influence of digital finance on green economic efficiency. International Review of Financial Analysis, 101, 104031. [Google Scholar] [CrossRef]
- Lone, S. A., & Ahmad, A. (2020). COVID-19 pandemic–An African perspective. Emerging Microbes & Infections, 9(1), 1300–1308. [Google Scholar]
- Lumingkewas, C. F. (2024). The relationship effect of digital finance on financial stability. YUME: Journal of Management, 7(2), 158–166. [Google Scholar]
- Lundvall, B. Å. (2016). The learning economy and the economics of hope. Anthem Press. [Google Scholar]
- Meniago, C. (2025). Digital financial inclusion and economic growth: The Moderating role of institutions in SADC countries. International Journal of Financial Studies, 13(1), 4. [Google Scholar] [CrossRef]
- Morgan, P. J., & Zhang, Y. (2017). Mortgage lending, banking crises, and financial stability in Asia and Europe. Asia Europe Journal, 15(4), 463–482. [Google Scholar] [CrossRef]
- Mpofu, F. Y. (2024). Industry 4.0 in finance, digital financial services and digital financial inclusion in developing countries: Opportunities, challenges, and possible policy responses. International Journal of Economics and Financial Issues, 14(2), 120–135. [Google Scholar] [CrossRef]
- Oanh, T. T. K., & Dinh, L. Q. (2024). Digital financial inclusion, financial stability, and sustainable development: Evidence from a quantile-on-quantile regression and wavelet coherence. Sustainable Development, 32(6), 6324–6338. [Google Scholar] [CrossRef]
- Okoli, T. T. (2024). Financial technology adoption and bank stability among African economies: Is the relationship monotonic? Investment Management and Financial Innovations, 21(4), 385–399. [Google Scholar] [CrossRef]
- Olaosebikan, O., Olaniyi, R. B., & Ojekunle, F. J. (2022). Impact of capital market performance on capital formation in Nigeria. Fuoye Journal of Finance and Contemporary Issues, 3(2). Available online: https://fjfci.fuoye.edu.ng/index.php/fjfci/article/view/60 (accessed on 2 May 2025).
- Oprea, O. (2017). Financial integration and financial contagion, a problem for financial stability? Journal of Public Administration, Finance and Law, (11), 121–136. [Google Scholar]
- Osband, K., & Van Rijckeghem, C. (2000). Safety from currency crashes. IMF Staff Papers, 47(2), 238–258. [Google Scholar] [CrossRef]
- Ozili, P. K. (2018). Impact of digital finance on financial inclusion and stability. Borsa Istanbul Review, 18(4), 329–340. [Google Scholar] [CrossRef]
- Pazarbasioglu, C., Mora, A. G., Uttamchandani, M., Natarajan, H., Feyen, E., & Saal, M. (2020). Digital financial services. World Bank, 54(1), 1–54. [Google Scholar]
- Pedroni, P. (2004). Panel cointegration: Asymptotic and finite sample properties of pooled time series test with an application to the PPP hypothesis. Econometric Theory, 20(3), 597–625. [Google Scholar] [CrossRef]
- Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. Economics, 1240(1), 1. [Google Scholar] [CrossRef]
- Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of applied econometrics, 22(2), 265–312. [Google Scholar] [CrossRef]
- Pesaran, M. H. (2021). General diagnostic tests for cross-sectional dependence in panels. Empirical economics, 60(1), 13–50. [Google Scholar] [CrossRef]
- Ramli, Y. (2020). Adopting digital payment based on the features and benefits provided by the application. European Journal of Business and Management Research, 5(3). [Google Scholar] [CrossRef]
- Reyes, M. J. A., & Minoiu, M. C. (2011). A network analysis of global banking: 1978–2009 (No. 2011/074). International Monetary Fund. [Google Scholar]
- Risman, A., Mulyana, B., Silvatika, B., & Sulaeman, A. (2021). The effect of digital finance on financial stability. Management Science Letters, 11(7), 1979–1984. [Google Scholar] [CrossRef]
- Sarma, M. (2008). Index of financial inclusion, indian council for research on international economic relations (ICRIER). Indian Council for Research on International Economic Relations. [Google Scholar]
- Sarma, M. (2016). Measuring financial inclusion for Asian economies. In Financial inclusion in Asia: Issues and policy concerns (pp. 3–34). Palgrave Macmillan. [Google Scholar]
- Sere-Ejembi, A., Udom, I. S., Salihu, A., Atoi, N. V., & Yaaba, B. N. (2014). Developing banking system stability index for Nigeria. CBN Journal of Applied Statistics (JAS), 5(1), 4. [Google Scholar]
- Shahbaz, M., Çetin, M., Avcı, P., Sarıgül, S. S., & Topcu, B. A. (2023). The impact of ICT on financial sector development under structural break: An empirical analysis of the Turkish economy. Global Business Review, 09721509221143632. [Google Scholar] [CrossRef]
- Shipalana, P., & O’Riordan, A. (2022). Impact of COVID-19 on financial stability in Africa. South African Institute of International Affairs. [Google Scholar]
- Syed, A. A., Özen, E., & Kamal, M. A. (2022). Do digital financial services influence banking stability and efficiency: An ARDL analysis of a developed and a developing economy. In The new digital era: Digitalisation, emerging risks and opportunities (pp. 13–30). Emerald Publishing Limited. [Google Scholar]
- United Nations (2022). The sustainable development goals report. Available online: https://unstats.un.org/sdgs/report/2022 (accessed on 2 May 2025).
- Wullweber, J. (2020, September 7). The COVID-19 financial crisis, global financial instabilities and transformations in the financial system. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3688453 (accessed on 5 May 2025).
- Xia, Y. C., Qiao, Z., & Xie, G. H. (2022). Corporate resilience to the COVID-19 pandemic: The role of digital finance. Pacific-Basin Finance Journal, 74, 101791. [Google Scholar] [CrossRef]
- Yang, Y., Lin, Z., Xu, Z., & Liu, S. (2024). The impact of digital finance on regional economic resilience. Pacific-Basin Finance Journal, 85, 102353. [Google Scholar] [CrossRef]
- Yen Hai Dang, N., & Dao Thieu Thi, H. (2022). Impact of financial inclusion on banking stability in ASEAN countries–threshold financial inclusion. In Macroeconomics and finance in emerging market economies (pp. 1–18). Taylor & Francis. [Google Scholar]
- Zhu, H., Sarafidis, V., & Silvapulle, M. J. (2020). A new structural break test for panels with common factors. The Econometrics Journal, 23(1), 137–155. [Google Scholar] [CrossRef]
Variables | Measurements | Sources | Expected Sign |
---|---|---|---|
Financial Stability Index (FS) | A bank Z-score, bank liquid reserve to assets ratio, bank non-performing loan to total loan ratio and bank capital to assets ratio | World Bank development Indicator and international Monetary fund Websites | Dependent Variable |
Internet banking Digital finance (INTB) | Individuals using internet % of population | World Bank development Indicator Websites | Positive |
Mobile banking Digital finance (MB) | Mobile Cellular Subscription | World Bank development Indicator Websites | Positive |
Economic growth/Real Sector Variable (G) | GDP growth rate | World Bank development Indicator Websites | Positive |
Financial Development (FD) | Credit to Private Sector % of GDP | World Bank development Indicator Websites | Positive |
Dummy Variable for Structural Break (D) | Taking 1 for periods of break and 0 otherwise | Negative |
Variables | Obs | Mean | Std. Dev. | Min | Max | Skew | Kurt. | JB Stat | CD |
---|---|---|---|---|---|---|---|---|---|
FS | 820 | 0.372 | 0.191 | 0 | 1 | 1.067 | 3.74 | 174.4 *** | 101.24 *** |
INTB | 820 | 20.476 | 21.396 | 0.155 | 89.9 | 1.196 | 3.522 | 205.0 *** | 115.25 *** |
MB | 820 | 69.584 | 43.345 | 0.207 | 191.508 | 0.346 | 2.383 | 29.4 *** | 110.28 *** |
GDPG | 820 | 4.317 | 4.622 | −20.81 | 37.999 | −0.063 | 12.296 | 2953.0 *** | 29.04 *** |
FD | 820 | 37.077 | 26.632 | 0.015 | 159.949 | 1.455 | 4.845 | 405.6 *** | 47.63 *** |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
(1) FS | 1.000 | ||||
(2) INTB | 0.812 * | 1.000 | |||
(0.000) | |||||
(3) MB | 0.764 * | 0.757 * | 1.000 | ||
(0.000) | (0.000) | ||||
(4) GDPG | −0.325 * | −0.201 * | −0.169 * | 1.000 | |
(0.000) | (0.000) | (0.000) | |||
(5) FD | 0.655 * | 0.607 * | 0.489 * | −0.132 * | 1.000 |
(0.000) | (0.000) | (0.000) | (0.000) |
Vari. | CIPS I(0) | CIPS I(1) | CADF I(0) | CADF I(1) | Test | Statistics |
---|---|---|---|---|---|---|
FS | −2.450 | −4.485 *** | −1.714 | −1.757 ** | Pesaran CD | 4.407 *** |
INTB | −2.325 | −3.705 *** | −2.170 | −2.132 *** | Friedman | 47.751 |
MB | −3.162 *** | −4.075 *** | −2.176 *** | −2.898 *** | Frees’ Q distribution | 5.543 |
GDPG | −3.423 *** | −5.273 *** | −1.990 * | −2.537 *** | Slope Heterogeneity Test | 18.458 *** |
FD | −2.458 | −4.328 *** | −2.150 *** | −2.864 *** | Slope Heterog. Test (ADJ) | 22.062 *** |
Pedroni Co-Integration Test | Kao Co-Integration Test | ||||||
---|---|---|---|---|---|---|---|
Statistic | Prob. | Weighted Statistic | Prob. | t-Statistic | Prob. | ||
Panel v-Statistic | −1037.25 | 1.000 | −2.98871 | 0.999 | ADF | −6.476567 | 0.000 |
Panel rho-Statistic | 0.70414 | 0.759 | 2.77917 | 0.997 | Residual variance | 0.000475 | |
Panel PP-Statistic | −10.5006 | 0.000 | −6.67877 | 0.000 | HAC variance | 0.000338 | |
Panel ADF-Statistic | −4.23714 | 0.000 | −8.14987 | 0.000 |
Bai and Perron Critical Values for Breaks in INTB | Bai and Perron Critical Values for Breaks in MB | ||||||||
---|---|---|---|---|---|---|---|---|---|
Test Statistics | 1% Crit. Value | Break Date | [95% Conf. Interval] | Test Statistics | 1% Crit. Value | Break Date | [95% Conf. Interval] | ||
Zmax | 18.47 | 12.37 | Zmax | 149.72 | 12.37 | ||||
F(1/0) | 18.07 | 12.29 | 2007 | 2006–2008 | F(1/0) | 149.72 | 12.29 | 2008 | 2007–2009 |
F(2/1) | 19.43 | 13.89 | 2010 | 2009–2011 | F(2/1) | 35.72 | 13.89 | 2014 | 2013–2015 |
F(3/2) | 27.02 | 14.80 | 2014 | 2012–2016 | F(3/2) | 22.50 | 14.80 | 2019 | 2017–2021 |
F(4/3) | 26.15 | 15.28 | 2019 | 2017–2021 | |||||
Detected No of Breaks 4 | 3 |
Model (1) | Model (2) | Model (3) | Model (4) | Model (5) | |
---|---|---|---|---|---|
FS (0.10) | FS (0.25) | FS (0.5) | FS (0.75) | FS (0.90) | |
Constant () | 0.148 *** | 0.154 *** | 0.161 *** | 0.181 *** | 0.229 *** |
(0.023) | (0.008) | (0.012) | (0.016) | (0.023) | |
Dummy 1 (δ1) | −0.012 | −0.017 * | −0.016 | −0.048 *** | −0.073 *** |
(0.027) | (0.01) | (0.014) | (0.019) | (0.027) | |
Int. Banking (α1) | 0.004 | 0.002 ** | 0.001 | −0.0003 | −0.003 |
(0.003) | (0.001) | (0.002) | (0.002) | (0.003) | |
Mobile Banking (α2) | 0.001 * | 0.001 *** | 0.002 *** | 0.003 *** | 0.003 *** |
(0.001) | (0.0002) | (0.0003) | (0.0004) | (0.001) | |
GDP Growth Rate (α3) | −0.006 *** | −0.006 *** | −0.006 *** | −0.005 *** | −0.006 *** |
(0.002) | (0.001) | (0.001) | (0.001) | (0.001) | |
Financial Dev. (α4) | 0.001 | 0.001 *** | 0.002 *** | 0.002 *** | 0.003 *** |
(0.0003) | (0.0001) | (0.0002) | (0.0002) | (0.0003) | |
Int. Banking × Dum 1 (α1 × δ1) | −0.001 | 0.001 | 0.003 * | 0.005 ** | 0.007 ** |
(0.003) | (0.001) | (0.002) | (0.002) | (0.003) | |
Mobile Banking × Dum 2 (α2 × δ1) | 0.001 | 0.0002 | −0.001 *** | −0.001 ** | −0.001 |
(0.001) | (0.0002) | (0.0003) | (−0.0004) | (0.001) | |
Observations | 820 | 820 | 820 | 820 | 820 |
Pseudo R2 | 0.4525 | 0.5409 | 0.5845 | 0.6219 | 0.6414 |
Model (6) | Model (7) | Model (8) | Model (9) | Model (10) | |
---|---|---|---|---|---|
FS (0.10) | FS (0.25) | FS (0.5) | FS (0.75) | FS (0.90) | |
Constant () | 0.1442 *** | 0.1485 *** | 0.1638 *** | 0.1688 *** | 0.1969 *** |
(0.0146) | (0.0062) | (0.0073) | (0.0123) | (0.0183) | |
Dummy 2 (δ2) | −0.0189 | −0.0133 | −0.0398 ** | −0.0573 ** | −0.0911 ** |
(0.0332) | (0.0142) | (0.0165) | (0.0281) | (0.0416) | |
Int. Banking (α1) | 0.0032 *** | 0.0036 *** | 0.0042 *** | 0.0041 *** | 0.0033 *** |
(0.0005) | (0.0002) | (0.0002) | (0.0004) | (0.0006) | |
Mobile Banking (α2) | 0.0011 *** | 0.0011 *** | 0.001 *** | 0.002 *** | 0.0019 *** |
(0.0002) | (0.0001) | (0.0001) | (0.0002) | (0.0003) | |
GDP Growth Rate (α3) | −0.0057 *** | −0.005 *** | −0.0059 *** | −0.0049 *** | −0.0056 *** |
(0.0012) | (0.0005) | (0.0006) | (0.001) | (0.0015) | |
Financial Dev. (α4) | 0.0007 ** | 0.0011 *** | 0.0015 *** | 0.0019 *** | 0.0028 *** |
(0.0003) | (0.0001) | (0.0001) | (0.0002) | (0.0003) | |
Int. Banking × Dum 2 (α1 × δ2) | −0.0011 | 0.001 * | 0.0004 | 0.0007 | −0.0911 |
(0.0012) | (0.0005) | (0.0006) | (0.001) | (0.0015) | |
Mobile Banking × Dum 2 (α1 × δ2) | 0.0006 | 0.0001 | 0.0006 ** | 0.0005 | 0.0012 * |
(0.0006) | (0.0002) | (0.0003) | (0.0004) | (0.0007) | |
Observations | 820 | 820 | 820 | 820 | 820 |
Pseudo R2 | 0.4527 | 0.5439 | 0.5871 | 0.6111 | 0.6345 |
Model (11) | Model (12) | Model (13) | Model (14) | Model (15) | |
---|---|---|---|---|---|
FS (0.1) | FS (0.25) | FS (0.5) | FS (0.75) | FS (0.9) | |
Constant () | 0.1396 *** | 0.1506 *** | 0.157 *** | 0.1718 *** | 0.2025 *** |
(0.0193) | (0.0067) | (0.0083) | (0.0106) | (0.0221) | |
Dummy 3 (δ3) | 0.0077 | −0.024 | −0.0307 | −0.0563 ** | −0.1015 ** |
(0.044) | (0.0152) | (0.0189) | (0.0242) | (0.0502) | |
Int. Banking (α1) | 0.0026 *** | 0.0035 *** | 0.0041 *** | 0.0042 *** | 0.0033 *** |
(0.0007) | (0.0002) | (0.0003) | (0.0004) | (0.0007) | |
Mobile Banking (α2) | 0.001 *** | 0.0013 *** | 0.0013 *** | 0.0019 *** | 0.002 *** |
(0.0003) | (0.0001) | (0.0001) | (0.0002) | (0.0003) | |
GDP Growth Rate (α3) | −0.0058 *** | −0.0059 *** | −0.0061 *** | −0.0057 *** | −0.0057 *** |
(0.0016) | (0.0006) | (0.0007) | (0.0009) | (0.0019) | |
Financial Dev. (α4) | 0.0007 * | 0.001 *** | 0.0017 *** | 0.0018 *** | 0.0025 *** |
(0.0004) | (0.0001) | (0.0002) | (0.0002) | (0.0004) | |
Int. Banking × Dum 3 (α1 × δ3) | 0.0012 | 0.0006 | 0.0005 | 0.0016 ** | 0.003 ** |
(0.0012) | (0.0004) | (0.0005) | (0.0007) | (0.0014) | |
Mobile Banking × Dum3 (α2 × δ3) | −0.0008 | −0.0001 | −0.0001 | −0.0004 | −0.0004 |
(0.0007) | (0.0002) | (0.0003) | (0.0004) | (0.0007) | |
Observations | 820 | 820 | 820 | 820 | 820 |
Pseudo R2 | 0.4505 | 0.5421 | 0.5867 | 0.6196 | 0.6373 |
Model (16) | Model (17) | Model (18) | |
---|---|---|---|
FS (0.1) | FS (0.5) | FS (0.9) | |
Constant () | 0.14 *** | 0.182 *** | 0.24 *** |
(0.026) | (0.01) | (0.026) | |
Financial Crisis Dum 1 (δ1) | −0.007 | −0.037 *** | −0.061 * |
(0.031) | (0.012) | (0.031) | |
Subprime Mort. Crisis Dum 2 (δ2) | −0.015 | −0.053 *** | −0.138 *** |
(0.044) | (0.016) | (0.044) | |
Br-Exit and COVID 19 Dum 3 (δ3) | 0.007 | −0.056 *** | −0.139 *** |
(0.045) | (0.017) | (0.045) | |
Int. Banking (α1) | 0.003 *** | 0.004 *** | 0.004 *** |
(0.001) | (0) | (0.001) | |
Mobile Banking (α2) | 0.001 ** | 0.001 *** | 0.002 *** |
(0.001) | (0) | (0.001) | |
GDP Growth Rate (α3) | −0.006 *** | −0.006 *** | −0.006 *** |
(0.002) | (0.001) | (0.002) | |
Financial Dev. (α4) | 0.001 * | 0.001 *** | 0.002 *** |
(0) | (0) | (0) | |
Int. Banking × Dum 1 (α1 × δ1) | −0.002 | 0 | 0.001 |
(0.002) | (0.001) | (0.002) | |
Mobile Banking × Dum 1 (α2 × δ1) | 0.001 | 0.001 *** | 0.001 |
(0.001) | (0) | (0.001) | |
Int. Banking × Dum 2 (α1 × δ2) | −0.001 | 0.001 * | 0 |
(0.002) | (0.001) | (0.002) | |
Mobile Banking × Dum 2 (α2 × δ2) | 0.001 | 0.001 *** | 0.002 ** |
(0.001) | (0) | (0.001) | |
Int. Banking × Dum 3 (α1 × δ3) | 0.001 | 0.001 ** | 0.003 * |
(0.001) | (0.001) | (0.001) | |
Mobile Banking × Dum 3 (α2 × δ3) | 0 | 0 | 0 |
(0.001) | (0) | (0.001) | |
Observations | 820 | 820 | 820 |
Pseudo R2 | 0.4598 | 0.6099 | 0.6512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoli, T.T. Gauging the Impact of Digital Finance on Financial Stability in the Presence of Multiple Unknown Structural Breaks: Evidence from Developing Economies. Economies 2025, 13, 187. https://doi.org/10.3390/economies13070187
Okoli TT. Gauging the Impact of Digital Finance on Financial Stability in the Presence of Multiple Unknown Structural Breaks: Evidence from Developing Economies. Economies. 2025; 13(7):187. https://doi.org/10.3390/economies13070187
Chicago/Turabian StyleOkoli, Tochukwu Timothy. 2025. "Gauging the Impact of Digital Finance on Financial Stability in the Presence of Multiple Unknown Structural Breaks: Evidence from Developing Economies" Economies 13, no. 7: 187. https://doi.org/10.3390/economies13070187
APA StyleOkoli, T. T. (2025). Gauging the Impact of Digital Finance on Financial Stability in the Presence of Multiple Unknown Structural Breaks: Evidence from Developing Economies. Economies, 13(7), 187. https://doi.org/10.3390/economies13070187