The Effects of Geopolitical Uncertainties on Growth: Econometric Analysis on Selected Turkic Republican Countries and Neighboring States
Abstract
:1. Introduction
2. Literature Review
3. Methodology
- -
- GDP is the main indicator of economic growth and the well-being of the population. The impact of geopolitical uncertainties on this indicator reflects how a country’s economy withstands or reacts to external shocks.
- -
- CI allows the assessment of how external shocks influence investment decisions and, implicitly, the potential for economic growth.
- -
- EL reflects the size of the active population, having a direct impact on the potential for economic growth. Declining investment and trade due to uncertainty can lead to reduced demand for labor and slowed economic growth.
- -
- XM measures the integration of the analyzed economies in international trade. Previous studies show that geopolitical uncertainties can lead to increased protectionism and decreased trade flows, affecting economic growth.
4. Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abakah, E. J. A., Caporale, G. M., & Gil-Alana, L. A. (2020). Economic policy uncertainty persistence and cross-country linkages. Cesifo Working Papers, 58, 101442. [Google Scholar] [CrossRef]
- Akadiri, S. S., Eluwoleb, K. K., Akadiric, A. C., & Avcı, T. (2020). Does causality between geopolitical risk, tourism and economic growth matter? Evidence from Turkey. Journal of Hospitality and Tourism Management, 43(1), 273–277. [Google Scholar] [CrossRef]
- Alptürk, Y., Sezal, L., & Gürsoy, S. (2021). Türkiye’de risk ile CDS primleri arasindaki ilişki: Asimetrik nedensellik analizi. Çukurova University İİBF Dergisi, 25(1), 107–126. [Google Scholar]
- Anselin, L. (2001). Spatial Econometrics. In B. Baltagi (Ed.), A companion to theoretical econometrics. Blackwell. [Google Scholar]
- Baker, S. R., Bloom, N., & Davis, S. J. (2012). Policy uncertainty: A new indicator (No. 362). Centre for Economic Performance, LSE. Available online: https://cep.lse.ac.uk/pubs/download/cp362.pdf (accessed on 12 January 2025).
- Bezgin, M. S. (2019, January 4–6). Türkiye’nin jeopolitik riski’nin borsa istanbul endeks getirileri üzerine etkisinin incelenmesi. 18th International Business Congress (pp. 2565–2574), Singapore. [Google Scholar]
- Bossman, A., Gubareva, M., & Teplova, T. (2023). Economic policy uncertainty, geopolitical risk, market sentiment, and regional stocks: Asymmetric analyses of the EU sectors. Eurasian Economic Review, 13, 321–372. [Google Scholar] [CrossRef]
- Bouri, E., Gupta, R., & Vo, X. V. (2020). Jumps in geopolitical risk and the cryptocurrency market: The singularity of bitcoin. Defence and Peace Economics, 33, 150–161. [Google Scholar] [CrossRef]
- Breusch, T. S., & Pagan, A. R. (1980). The lagrange multiplier test and its application to model specification in econometrics. Review of Economic Studies, 47, 239–253. [Google Scholar] [CrossRef]
- Caldara, D., & Iacoviello, M. (2018). Measuring geopolitical risk (International Finance Discussion Papers. No: 1222, pp. 1–64); Board of Governors of the Federal Reserve System. Available online: https://www.federalreserve.gov/econres/ifdp/files/ifdp1222.pdf (accessed on 12 January 2025).
- Cheng, C. H. J., & Chiu, C. W. J. (2018). How important are global geopolitical risks to emerging countries? International Economics, 156, 305–325. [Google Scholar] [CrossRef]
- Das, D., Kannadhasan, M., & Bhattacharyya, M. (2019). Do the emerging stock markets react to international economic policy uncertainty, geopolitical risk and financial stress alike? The North American Journal of Economics and Finance, 48, 1–19. [Google Scholar] [CrossRef]
- Daştan, M., & Karabulut, K. (2022). Effects of global economic policy uncertainty on macroeconomic activity: The case of Turkey. Trends in Business and Economics, 36(1), 132–141. [Google Scholar] [CrossRef]
- Davis, S. J. (2016). An index of global economic policy uncertainty (No. w22740). National Bureau of Economic Research. Available online: https://www.nber.org/system/files/working_papers/w22740/w22740.pdf (accessed on 12 January 2025).
- Doğan, E., & Afşar, A. (2021). Politik ve jeopolitik riskler hisse senedi piyasalarini nasil etkiler: Yükselen piyasa ekonomilerinden ampirik kanitlar. Eskişehir Osmangazi University Journal of Economics and Administrative Sciences, 16(3), 688–704. [Google Scholar] [CrossRef]
- Doğan, E., & Doğan Özarslan, B. (2021). Jeopolitik riskin ekonomik büyüme üzerindeki etkisi: Kırılgan beşli ülkelerinden ampirik kantlar. Ömer Halisdemir University Journal of Economics and Administrative Sciences, 14(3), 978–990. [Google Scholar]
- Enamul Hoque, M., Soo Wah, L., & Azlan Shah Zaidi, M. (2019). Oil price shocks, global economic policy uncertainty, geopolitical risk, and stock price in Malaysia: Factor augmented VAR approach. Economic Research-Ekonomska Istraživanja, 32(1), 3701–3733. [Google Scholar] [CrossRef]
- Eren, M. V. (2019). MENA ülkelerinde sektörel kadin istihdami ve kalkinma arasindaki ilişkinin ampirik analizi. Journal of Management and Economics Research, 17(4), 106–127. [Google Scholar]
- Eriçok, R. E. (2020). Küresel ekonomik yavaşlama: Riskler, belirsizlikle ve Türkiye ekonomisine etkileri. Journal of Turkish Court of Accounts, 31(116), 33–64. [Google Scholar]
- Gemici, E. (2020). Ekonomi politika belirsizliği ile G7 ülke borsalari arasindaki ilişki. Journal of Bingöl University Institute of Social Sciences, 20, 353–372. [Google Scholar]
- Görgün, G. (2020). Belirsizlik kavrami, belirsizlik ölçütleri ve belirsizliğin makroekonomik etkileri üzerine bir inceleme. Atatürk University Journal of Economics and Administrative Sciences, 34(1), 21–38. [Google Scholar] [CrossRef]
- Gürsoy, S. (2021). Küresel ekonomik politik belirsizliğin (GEPU) döviz kuru, enflasyon ve borsa etkisi: Türkiye’den kanitlar. Journal of Vocational and Social Sciences of Turkey, 5, 120–131. [Google Scholar]
- Hadri, K., & Kurozumi, E. (2012). A simple panel stationarity test in the presence of serial correlation and a common factor. Economics Letters, 115, 31–34. [Google Scholar]
- Hatemi-J, A. (2020). Hidden panel cointegration. Journal of King Saud University-Science, 32, 507–510. [Google Scholar]
- Hoque, M. E., & Zaidi, M. A. S. (2020). Global and country-specific geopolitical risk uncertainty and stock return of fragile emerging economies. Borsa Istanbul Review, 20(3), 197–213. [Google Scholar]
- Jawadi, F., Rozin, P., Gnegne, Y., & Cheffou, A. I. (2024). Geopolitical risks and business fluctuations in Europe: A sectorial analysis. European Journal of Political Economy, 85, 102585. [Google Scholar]
- Jha, S., Bhushan, S., & Nirola, N. (2024). Is geopolitical risk always detrimental to economic growth? Economic Change and Restructuring, 57, 25. [Google Scholar] [CrossRef]
- Keskin, H. İ., & Aksoy, E. (2019). OECD ve gelişmekte olan ülkelerde gelir artişi ve işgücüne katilim arasindaki ilişki: Panel eşbütünleşme analizi. Third Sector Journal of Social Economy, 54(1), 1–20. [Google Scholar]
- Keynes, J. M. (1936). The general theory of employment, interest and money. Macmillan. [Google Scholar]
- Khan, K., Khurshid, A., & Cifuentes-Faura, J. (2023). Investigating the relationship between geopolitical risks and economic security: Empirical evidence from central and Eastern European countries. Resources Policy, 85, 103872. [Google Scholar]
- Koçbulut, Ö., & Altıntaş, H. (2016). İkiz açiklar ve feldstein-horioka hipotezi: OECD ülkeleri üzerine yatay kesit bağimliliği altinda yapisal kirilmali panel eşbütünleşme analizi. Erciyes University Journal of Economics and Administrative Sciences, 48, 145–174. [Google Scholar]
- Menyah, K., Nazlıoğlu, Ş., & Wolde-Rufael, Y. (2014). Financial development, trade openness and economic growth in african countries: New insights from a panel causality approach. Economic Modelling, 37, 386–394. [Google Scholar]
- Pal, S., Mahalik, M. K., Zhao, Q., Liu, F., & Soliman, A. M. (2024). Boosting productive capacity in OECD countries: Unveiling the roles of geopolitical risk and globalization. Technological Forecasting and Social Change, 202, 123291. [Google Scholar]
- Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels (IZA Discussion Paper No. 1240). Institute for the Study of Labor (IZA). Available online: https://docs.iza.org/dp1240.pdf (accessed on 12 January 2025).
- Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265–312. [Google Scholar] [CrossRef]
- Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American Statistical Association, 94, 621–634. [Google Scholar] [CrossRef]
- Pesaran, M. H., Ullah, A., & Yamagata, T. (2008). A bias-adjusted LM test of error cross-section independence. The Econometrics Journal, 11(1), 105–127. [Google Scholar] [CrossRef]
- Phillips, P. C., & Sul, D. (2003). Dynamic panel estimation and homogeneity testing under cross section dependence. The Econometrics Journal, 6(1), 217–259. [Google Scholar] [CrossRef]
- Rawat, A. S., & Arif, I. (2018). Does geopolitical risk drive equity price returns of BRIC economies? Evidence from quantile on quantile estimations. Journal of Finance and Economics Research, 3(2), 24–36. [Google Scholar] [CrossRef]
- Rice, A., Vehbi, T., & Wong, B. (2018). Measuring uncertainty and its impact on the New Zealand economy (Reserve Bank of New Zealand Analytical Note Series, No: AN2018/01, pp. 1–19). Reserve Bank of New Zealand. Available online: https://ideas.repec.org/p/nzb/nzbans/2018-01.html (accessed on 14 January 2025).
- Robertson, D., & Symons, J. (2000). Factor residuals in SUR regressions: Estimating panels allowing for cross sectional correlation. Centre for Economic Performance, London School of Economics and Political Science. [Google Scholar]
- Salisu, A. A., & Isah, K. O. (2017). Revisiting the oil price and stock market nexus: A nonlinear panel ARDL approach. Economic Modelling, 66, 258–271. [Google Scholar] [CrossRef]
- Sharif, A., Aloui, C., & Yarovaya, L. (2020). COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis, 70, 101496. [Google Scholar] [CrossRef]
- Shin, Y., Yu, B., & Greenwood-Nimmo, M. (2014). Modelling asymmetric co-integration and dynamic multipliers in a nonlinear ARDL framework. In W. Horrace, & R. Sickles (Eds.), Festchrift in honor of peter schmidt: Econometric methods and applications (pp. 281–314). Springer. [Google Scholar] [CrossRef]
- Soybilgen, B., Kaya, H., & Dedeoglu, D. (2019). Evaluating the effect of geopolitical risks on the growth rates of emerging countries. Economics Bulletin, 39(1), 717–725. [Google Scholar]
- Tatoğlu, F. Y. (2013). İleri panel veri analizi-stata uygulamali. Beta Publisher. [Google Scholar]
- Ünsal, E. (2007). İktisadi büyüme. İmaj Publisher. [Google Scholar]
- Varol, T. (2019). Panel birim kök testleriyle cari işlemler dengesi yakinsamasinin sinanmasi: OECD ülkeleri [Master’s thesis, Trakya Üniversitesi Sosyal Bilimler Enstitüsü]. [Google Scholar]
- Westerlund, J. (2008). Panel cointegration tests of the fisher effect. Journal of Applied Econometrics, 23(2), 193–233. [Google Scholar] [CrossRef]
- Yalçınkaya, Ö. (2019). Küresel ekonomik, politik ve jeopolitik belirsizliklerin makroekonomik etkileri: Türkiye ekonomisi üzerine svar analizi (1992:Q1–2018:Q2). Journal of Yasar University, 14(53), 56–73. [Google Scholar]
- Yalçınkaya, Ö., & Aydın, H. İ. (2017). Ekonomik ve politik belirsizliğin ekonomik büyüme üzerindeki etkileri: G-7+BRC ülkeleri üzerine bir panel veri analizi. Ege Akademik Review, 17(3), 419–430. [Google Scholar]
- Yalçınkaya, Ö., & Çelik, A. K. (2021). The impact of global uncertainties on economic growth: Evidence from the US economy (1996:Q1–2018:Q4). Journal of Economic Forecasting, Institute for Economic Forecasting, 2, 35–54. [Google Scholar]
Reference | Objective | Type of Analysis |
---|---|---|
Jawadi et al. (2024) | Analysis of the impact of geopolitical risks on euro-area economies for the period 2003–2024. | ARDL—autoregressive distributed lag stationarity model |
Pal et al. (2024) | Geopolitical risk assessment as an inhibitor on productive capacity in 20 OECD countries in the period 2000–2021. | Panel threshold regression |
Jha et al. (2024) | Measuring the impact of geopolitical risk for 41 countries in Central and Eastern Europe between 2000 and 2020. | FGLS (feasible generalized least square) |
Bossman et al. (2023) | Investigating the asymmetric effects of political uncertainties, geopolitical risk, and market sentiment on different economic sectors for the period 2013–2022. | Causality-in-quantile test quantile regression |
Khan et al. (2023) | Testing the causal relationship between geopolitical risks and economic security in several Central and Eastern European countries between 2000 and 2022. | Panel bootstrap Granger causality |
Doğan and Doğan Özarslan (2021) | Analysis of the impact of geopolitical risk on economic growth in the countries known as the “fragile five”: Turkey, Brazil, India, South Africa, and Indonesia between 1985 and 2017. | Panel data model |
Yalçınkaya and Çelik (2021) | Analysis of the impact of uncertainties created by economic, political, and geopolitical (EPG) events on the global economy on US economic growth. | The extension of Cobb–Douglas production function |
Alptürk et al. (2021) | The investigation of the relationship among geopolitical risk index and CDS for Turkey between March 2010 and October 2020. | The Lee–Strazicich unit root test; the Hatemi-J causality test |
Sharif et al. (2020) | Analyzing the impact of geopolitical risk on economic growth in fragile emerging economies, compared to G7 countries. | Panel estimates |
Akadiri et al. (2020) | The effects of geopolitical risk on economic growth and tourism sector in Turkey. | The Granger causality test |
Soybilgen et al. (2019) | Investigating the impact of geopolitical risks on the real GDP growth rate for 18 emerging economies between 1986 and 2016. | Panel regression |
Cheng and Chiu (2018) | Analysis of the impact of geopolitical shocks on economic cycles in emerging economies for 38 countries. | Vector autoregressive (VAR) models |
Caldara and Iacoviello (2018) | Analysis of the simultaneous effects of EPJ uncertainties on macroeconomic variables such as industrial production index, employment, interest rates, foreign trade, and economic confidence index. | Structural vector autoregressive (VAR) models |
Abbreviating Indicators | Definition of Indicators | Data Source of Indicators |
---|---|---|
GDP | Real GDP per Capita (2015-USD) | The World Bank (WB) World Development Indicators (WDI) |
CI | Real Fixed Capital Investments Per Capita (2015-USD) | |
EL | Total Workforce | |
XM | Outward Openness | |
GPR-GE | Global Geopolitical Risk Index | Economic Policy Uncertainty-2023 (www.PolicyUncertainty.com) (accessed on 12 January 2025) |
GPR-US | Geopolitical Risk Index of the United States | |
GPR-RS | Geopolitical Risk Index of the Russian Federation |
Statistics | Average | Median | Minimum | Maximum | Std. Dev. | Skewness | Kurtosis | JB |
---|---|---|---|---|---|---|---|---|
GDP | 7.8630 | 7.8562 | 5.9496 | 9.3955 | 0.9352 | −0.0818 | 1.8830 | 11.460 |
CI | 8.1870 | 8.4012 | 1.7066 | 13.031 | 2.1056 | −0.3804 | 3.1413 | 5.3922 |
EL | 3.7055 | 3.7328 | 3.1954 | 3.9795 | 0.2027 | −0.8518 | 3.1247 | 26.238 |
XM | 84.089 | 80.152 | 5.3837 | 181.59 | 31.522 | 0.4493 | 2.9469 | 7.2927 |
GPR | 96.540 | 90.082 | 50.914 | 176.30 | 29.690 | 1.3034 | 4.3340 | 77.157 |
GPR-US | 2.2245 | 1.8914 | 1.0539 | 4.3497 | 0.8060 | 1.3272 | 4.2635 | 77.781 |
GPR-RS | 0.7020 | 0.5470 | 0.3411 | 1.1407 | 0.2170 | 0.6629 | 2.4126 | 18.933 |
Observation | 217 | 217 | 217 | 217 | 217 | 217 | 217 | 217 |
Test Statistics (CT) | |||||||
---|---|---|---|---|---|---|---|
Variables | CD-LM1 | CD-LMadj | L | Model | CD-LM1 | CD-LMadj | L |
GDP | 84.34 a [0.000] | 65.24 a [0.000] | 2 | —— | —— | —— | — |
CI | 76.37 a [0.000] | 79.22 a [0.000] | 1 | —— | —— | —— | — |
EL | 103.42 a [0.000] | 53.33 a [0.000] | 2 | —— | —— | —— | — |
XM | 75.63 a [0.000] | 32.26 a [0.000] | 3 | —— | —— | —— | — |
GPR | 689.82 a [0.000] | 81.32 a [0.000] | 1 | Model 1 | 169.23 a [0.000] | 12.37 a [0.000] | 2 |
GPR-US | 462.22 a [0.000] | 81.32 a [0.000] | 1 | Model 2 | 168.22 a [0.000] | 11.44 a [0.000] | 2 |
GPR-RS | 429.12 a [0.000] | 81.32 a [0.000] | 1 | Model 3 | 174.42 a [0.003] | 11.82 a [0.000] | 2 |
Test Statistics (CT) | CIPS | ) | L | |||
---|---|---|---|---|---|---|
Variables | LV | FD | LV | FD | ||
GDP | −2.10 | −3.41 a | −2.12 [0.000] | −1.27 a [0.099] | 2 | |
CI | −3.28 a | 0.26 a [0.800] | — | 1 | ||
EL | −0.92 | −3.28 a | −1.07 [0.000] | −1.41 a [0.965] | 2 | |
XM | −1.96 | −3.43 a | −1.69 a [0.987] | — | 3 | |
GPR | −2.19 | −3.61 a | 2.63 a [0.917] | — | 1 | |
GPR-US | −2.73 | −4.08 a | 1.71 a [0.595] | — | 1 | |
GPR-RS | −2.21 | −3.16 a | 1.41 a [0.976] | — | 1 | |
Critical Values | 1% | −2.83 |
Test Statistics (CT) | |||||
---|---|---|---|---|---|
DH | HJ | ||||
Models | DHg | DHp | ( | () | |
Model 1 | 1.96 a [0.020] | 6.12 a [0.000] | 4.58 a [0.000] | 4.38 a [0.000] | −4.80 a |
Model 2 | 1.69 a [0.040] | 3.89 b [0.000] | 4.65 a [0.000] | 4.46 a [0.000] | −4.72 a |
Model 3 | 1.90 a [0.032] | 3.56 b [0.000] | 3.43 a [0.000] | 3.28 a [0.000] | −4.73 a |
Long-Term Coefficients | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | Coefficient | Standard Error | |
0.08042 a | 0.01359 [0.000] | 0.07922 a | 0.01420 [0.000] | 0.09542 a | 0.01520 [0.000] | |
1.46223 a | 0.20220 [0.000] | 1.41944 a | 0.20752 [0.000] | 1.52910 a | 0.21320 [0.000] | |
XM | 0.00094 a | 0.00044 [0.041] | 0.00113 b | 0.00041 [0.032] | 0.00199 a | 0.00059 [0.000] |
-GE | −0.00039 b | 0.00016 [0.041] | — | — | — | — |
— | — | −0.01523 b | 0.00736 [0.041] | — | — | |
— | — | — | — | 0.02562 | 0.03812 [0.511] | |
−0.19182 b | 0.08110 [0.010] | −0.18865 a | 0.07942 [0.012] | −0.21927 a | 0.06737 [0.001] | |
C | 0.37489 b | 0.10543 [0.041] | 0.36345 b | 0.10123 [0.031] | 0.31315 b | 0.13446 [0.046] |
Hausman_Sigmamore | 0.54 [0.916] | 1.57 [0.8130] | 2.41 [0.6534] | |||
Log Likelihooh | 458.9242 | 450.6123 | 452.9853 | |||
CSD | 8 | 8 | 8 | |||
Observation | 209 | 209 | 209 |
Long-Term Coefficients | Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Error | Coefficient | Standard Error | ||
0.07589 a | 0.01420 [0.000] | 0.27923 a | 0.0121 [0.000] | 0.18453 a | 0.0162 [0.000] | ||
1.44641 a | 0.21012 [0.000] | 0.22723 b | 0.1023 [0.036] | 0.61292 a | 0.1023 [0.000] | ||
0.00073 a | 0.00031 [0.000] | 0.11264 a | 0.0112 [0.000] | 0.09235 a | 0.0151 [0.000] | ||
−0.00048 b | 0.00021 [0.029] | — | — | — | — | ||
−0.00076 b | 0.00031 [0.042] | — | — | — | — | ||
— | — | 0.00762 a | 0.0021 [0.001] | — | — | ||
— | — | −0.00622 a | 0.0021 [0.002] | — | — | ||
— | — | 0.17491 a | 0.0311 [0.000] | ||||
— | — | −0.08485 a | 0.0257 [0.002] | ||||
−0.18142 b | 0.08139 [0.024] | −0.27232 a | 0.0522 [0.000] | −0.24562 a | 0.0327 [0.000] | ||
C | 0.33643 b | 0.1425 [0.048] | 1.53572 a | 0.1587 [0.000] | 0.86723 a | 0.1342 [0.000] | |
Hausman_Sigmamore | 1.22 [0.898] | 1.49 [0.933] | 2.29 [0.822] | ||||
Log Likelihooh | 452.3322 | 1480.023 | 1472.873 | ||||
CSD | 8 | 8 | 8 | ||||
Observation | 209 | 209 | 209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydin, H.İ.; Bălăcescu, A.; Căruntu, G.A. The Effects of Geopolitical Uncertainties on Growth: Econometric Analysis on Selected Turkic Republican Countries and Neighboring States. Economies 2025, 13, 83. https://doi.org/10.3390/economies13030083
Aydin Hİ, Bălăcescu A, Căruntu GA. The Effects of Geopolitical Uncertainties on Growth: Econometric Analysis on Selected Turkic Republican Countries and Neighboring States. Economies. 2025; 13(3):83. https://doi.org/10.3390/economies13030083
Chicago/Turabian StyleAydin, Halil İbrahim, Aniela Bălăcescu, and Genu Alexandru Căruntu. 2025. "The Effects of Geopolitical Uncertainties on Growth: Econometric Analysis on Selected Turkic Republican Countries and Neighboring States" Economies 13, no. 3: 83. https://doi.org/10.3390/economies13030083
APA StyleAydin, H. İ., Bălăcescu, A., & Căruntu, G. A. (2025). The Effects of Geopolitical Uncertainties on Growth: Econometric Analysis on Selected Turkic Republican Countries and Neighboring States. Economies, 13(3), 83. https://doi.org/10.3390/economies13030083