Does the Average Payment Period Play a Relevant Role in Explaining the Portuguese Municipalities’ Financial Distress?
Abstract
:1. Introduction
2. Material and Methods
- APP ≤ 30: Portuguese municipalities’ levels of APP not higher than 30 days to identify those that comply with the threshold defined by the European Union Directive;
- APP > 30: Portuguese municipalities’ levels of APP higher than 30 days to identify those that do not comply with the threshold defined by the European Union Directive.
- Small: Portuguese municipalities with up to 20,000 inhabitants;
- Other: Portuguese municipalities with more than 20,000 inhabitants.
- M1 includes all the independent variables, i.e., the main explanatory one (APP) and those used for control purposes (BAL, DS, and POP);
- M2, for comparison purposes, only includes the control variables (BAL, DS, and POP).
- From 2011 to 2015, with historical APP figures from 2011 to 2014 (as independent variables), using 2015 as the current year for FD (the dependent one);
- From 2015 to 2019, with historical APP figures from 2015 to 2018 (as independent variables), using 2019 as the current year for FD (the dependent one).
3. Results
3.1. Descriptive Statistics
3.2. Bivariate and Multivariate Regression Analysis
3.3. Robustness and Additional Analyses
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Administrative Decision 9870/2009. 2009. Approves the Model of the Monitoring Report to Be Used in the Quarterly Monitoring of the Evolution of Average Payment Periods, Lisbon. April 13.
- Alaminos, David, Sergio M. Fernández, Francisca García, and Manuel A. Fernández. 2018. Data mining for municipal financial distress prediction. Advances in Data Mining. Applications and Theoretical Aspects 10933: 296–308. [Google Scholar]
- Araujo, Joaquim Filipe Ferraz Esteves de, and Francisca Tejedo-Romero. 2016. Local government transparency index: Determinants of municipalities’ rankings. International Journal of Public Sector Management 29: 327–47. [Google Scholar] [CrossRef]
- Balaguer-Coll, Maria Teresa, and Mariya Ivanova-Toneva. 2019. La importancia de los efectos espaciales en la deuda municipal. Revista de Contabilidad-Spanish Accounting Review 22: 61–72. [Google Scholar] [CrossRef]
- Baleiras, Rui Nuno, Rui Dias, and Miguel Almeida. 2018. Local Finance: Economic Principles, Institutions and the Portuguese Experience since 1987. Coleção Livros do CFP. Available online: https://www.cfp.pt/uploads/publicacoes_ficheiros/cfp-2018-livro-financas-locais.pdf (accessed on 2 February 2023).
- Barros, Lucas, F. Henrique Castro, Alexandre Di Miceli Da Silveira, and Daniel Reed Bergmann. 2020. Endogeneity in panel data regressions: Methodological guidance for corporate finance researchers. Review of Business Management 22: 437–61. [Google Scholar] [CrossRef]
- Benito, Bernardino, María-Dolores Guillamón, and Francisco Bastida. 2015. Non-fulfilment of debt limits in Spanish municipalities. Fiscal Studies 36: 75–98. [Google Scholar] [CrossRef]
- Bolívar, Manuel Pedro Rodríguez, Andrés Navarro-Galera, Laura Alcaide Muñoz, and María Deseada López Subirés. 2014. Factors Influencing Local Government Financial Sustainability: An Empirical Study. Lex Localis 12: 31–54. [Google Scholar]
- Bolívar, Manuel Pedro Rodríguez, Andrés Navarro-Galera, Laura Alcaide Muñoz, and María Deseada López Subirés. 2016. Risk Factors and Drivers of Financial Sustainability in Local Government: An Empirical Study. Local Government Studies 42: 29–51. [Google Scholar] [CrossRef]
- Cabaleiro, Roberto, Enrique Buch, and Antonio Vaamonde. 2013. Developing a method to assessing the municipal financial health. The American Review of Public Administration 43: 729–51. [Google Scholar] [CrossRef]
- Cabasés, Fermín, Pedro Pascual, and Jaime Vallés. 2007. The effectiveness of institutional borrowing restrictions: Empirical evidence from Spanish municipalities. Public Choice 131: 293–313. [Google Scholar] [CrossRef]
- Campello, Murillo. 2003. Capital structure and product markets interactions: Evidence from business cycles. Journal of Financial Economics 68: 353–78. [Google Scholar] [CrossRef]
- Canadian Institute of Chartered Accountants (CICA). 2009. Public Sector Statements of Recommended Practice (SORP) 4. Indicators of Financial Condition. Toronto: CICA. [Google Scholar]
- Carvalho, João, Maria José Fernandes, and Pedro Camões. 2018. Anuário Financeiro dos Municípios Portugueses—2017. Lisboa: Ordem dos Contabilistas Certificados. [Google Scholar]
- Christiaens, Johan, Brecht Reyniers, and Caroline Rollé. 2010. Impact of IPSAS on reforming governmental financial information systems: A comparative study. International Review of Administrative Sciences 76: 537–54. [Google Scholar] [CrossRef] [Green Version]
- Cohen, Sandra, and Sotirios Karatzimas. 2015. Debate: Reforming Greek government accounting. Public Money & Management 35: 178–80. [Google Scholar]
- Controller and Auditor-General of New Zealand. 2013. Public Sector Financial Sustainability. Wellington: Office of the Auditor-General New Zealand. [Google Scholar]
- da Rosa München, Douglas. 2022. The effect of financial distress on capital structure: The case of Brazilian banks. The Quarterly Review of Economics and Finance 86: 296–304. [Google Scholar] [CrossRef]
- Decree-Law 62/2013. 2013. Establishes Measures against Delays in the Payment of Commercial Transactions and Transposes Directive 2011/7/EU of the European Parliament and the Council of 16 February 2011, Lisbon. May 10.
- Directive 2011/7/EU. 2011. Directive 2011/7/EU of the European Parliament and of the Council of 16 February 2011 on Combating Late Payment in Commercial Transactions. Brussels: Official Journal of the European Union. [Google Scholar]
- Ehalaiye, Dimu, Nives Botica-Redmayne, and Fawzi Laswad. 2017. Financial determinants of local government debt in New Zealand. Pacific Accounting Review 29: 512–33. [Google Scholar] [CrossRef]
- European Commission. 2019. Fiscal Sustainability Report 2018. Luxembourg: Publications Office of the European Union. [Google Scholar]
- European Commission. 2023. Government Finance Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Government_finance_statistics#Introduction (accessed on 20 April 2023).
- Green, Bert F., Jr., and John W. Tukey. 1960. Complex Analyses of Variance: General Problems. Psychometrika 25: 127–52. [Google Scholar] [CrossRef]
- He, Yu, and Huan Zheng. 2022. Do environmental regulations affect firm financial distress in China? Evidence from stock markets. Applied Economics 54: 4384–401. [Google Scholar]
- Hermansen, Mikkel, and Oliver Röhn. 2015. Economic Resilience: The Usefulness of Early Warning Indicators in OECD Countries. OECD Economics Department Working Papers, No. 1250. Paris: OECD Publishing. [Google Scholar]
- International Federation of Accountants. 2014. Handbook of International Public Sector Accounting Pronouncements. New York: IFAC. [Google Scholar]
- International Monetary Fund (IMF). 2013. Staff Guidance Note for Public Debt Sustainability Analysis in Market-Access Countries; Washington: IMF. Available online: https://www.imf.org/external/np/pp/eng/2013/050913.pdf (accessed on 28 November 2019).
- International Monetary Fund (IMF). 2021. Review of the Debt Sustainability Framework for Market Access Countries. Washington: International Monetary Fund. Available online: https://www.imf.org/en/Publications/Policy-Papers/Issues/2021/02/03/Review-of-The-Debt-Sustainability-Framework-For-Market-Access-Countries-50060 (accessed on 15 December 2022).
- International Public Sector Accounting Standards Board. 2013. Reporting on the Long-Term Sustainability of an Entity’s Finances. Available online: https://www.ipsasb.org/projects/reporting-long-term-sustainability-public-finances (accessed on 6 March 2023).
- Irwin, Timothy. 2012. Accounting Devices and Fiscal Illusions. Washington: International Monetary Fund. [Google Scholar]
- Jacoby, Gady, Jialong Li, and Mingzhi Liu. 2019. Financial distress, political affiliation and earnings management: The case of politically affiliated private firms. The European Journal of Finance 25: 508–23. [Google Scholar] [CrossRef]
- João, Vadim Manuel. 2014. Estudo Comparativo das Leis de Finanças Locais n.ºs 2/2007 e 73/2013: O Endividamento das Autarquias Locais. Working papers. Braga: Universidade do Minho—Escola de Direito da Universidade do Minho. [Google Scholar]
- Jorge, Susana, Pedro Cerqueira, and Sofia Furtado. 2022. Municipal revenue over-budgeting: A dynamic analysis of its determinants. Local Government Studies 49: 1–32. [Google Scholar]
- Law 73/2013. 2013. Establishes the Financial Regime of Local Authorities and Inter-Municipal Entities. Lisbon: The Portuguese Republic, September 3. [Google Scholar]
- Letelier, Leonardo. 2010. Theory and evidence of municipal borrowing in Chile. Public Choice 146: 395–411. [Google Scholar] [CrossRef]
- Lim, Sung Il, and Seobeen Hong. 2012. Analysing the determinants of local borrowings in Korea. The Korean Journal of Local Finance 17: 83–106. [Google Scholar]
- Ma, Jun, and Hana Brixi. 2002. Monitoring Fiscal Risks of Subnational Governments, World Bank. Available online: https://openknowledge.worldbank.org/entities/publication/50d3d097-ade0-5385-a8c3-985a0c747182 (accessed on 18 April 2023).
- Navarro-Galera, Andrés, Manuel Pedro Rodríguez-Bolívar, Laura Alcaide-Muñoz, and María Deseada López-Subires. 2016. Measuring the financial sustainability and its influential factors in local governments. Applied Economics 48: 3961–75. [Google Scholar] [CrossRef]
- Office of Auditor General of Canada. 2015. Indicators of Financial Condition. Nova Scotia: Office of Auditor General of Canada. Available online: https://oag-ns.ca/audit-reports/february-2015-report/chapter-3 (accessed on 23 January 2023).
- Olmo, Jorge, and Isabel Brusca. 2021. Determinants of the municipal average payment period and effectiveness of the commercial debt sustainability principle. Revista de Contabilidad/Spanish Accounting Review 24: 1–18. [Google Scholar]
- Organic Law 2/2012. 2012. Fiscal Stability and Financial Sustainability. Madrid, Spain: The Head of State Spanish Official Gazette (BOE), April 27. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD). 2021. Government at a Glance 2021. Paris: OECD Publishing. [Google Scholar]
- Pons, Manuel. 2017. Estudio descriptivo del Periodo Medio de Pago (APP) en las Entidades Locales para el período septiembre 2014 a septiembre 2016. Auditoría pública: Revista de los Órganos Autónomos de Control Externo 69: 115–28. [Google Scholar]
- Prašnikar, Janez, Marko Pahor, and Andreja Cirman. 2004. Late Payments in Accession Countries: Causes and International Comparison. Journal of Entrepreneurial Finance and Business Ventures 9: 51–72. [Google Scholar] [CrossRef]
- Resolution of the Ministers Council 34/2008. 2008. The Pay on Time and Hours Programme, Lisbon. February 22.
- Santos, Paula Gomes, and Carla Martinho. 2021. Measures to Assess the Payment Behavior of the Portuguese Subnational Governments. In Eurasian Economic Perspectives. Eurasian Studies in Business and Economics. Edited by B. H. Bilgin, H. Danis, E. Demir and S. Vale. Berlin/Heidelberg: Springer, vol. 16, pp. 37–53. [Google Scholar]
- Santos, Paula Gomes, Carla Martinho, and Fábio Albuquerque. 2021. Is the Commercial Debt Default Ratio a reliable indicator of the Short-Term Financial Sustainability of Portuguese Local Governments? Polish Journal of Management Studies 24: 322–36. [Google Scholar] [CrossRef]
- Saura, Juan José. 2013. Problemas prácticos (y algunas soluciones) para el endeudamiento local. Presupuesto y Gasto Público 73: 179–95. [Google Scholar]
- Shon, Jongmin, and Junghack Kim. 2019. The impact of revenue diversification on municipal debts: Comparing short-term and long-term debt levels. Local Government Studies 45: 241–61. [Google Scholar] [CrossRef]
- Ter-Minassian, Teresa. 2007. Fiscal Rules for Subnational Governments: Can They Promote Fiscal Discipline? OECD Journal on Budgeting 6: 1–11. [Google Scholar] [CrossRef]
- Turley, Gerard, Geraldine Robbins, and Stephen McNena. 2015. A Framework to Measure the Financial Performance of Local Governments. Local Government Studies 41: 401–20. [Google Scholar] [CrossRef]
- Tymowski, Jan. 2018. Directive 2011/7/EU on Late Payments in Commercial Transactions. European Implementation Assessment. Available online: http://www.europarl.europa.eu/RegData/etudes/IDAN/2018/621842/EPRS_IDA(2018)621842_EN.pdf (accessed on 24 January 2023).
- Veiga, José. 2014. Da Lei das Finanças Locais à Recuperação Financeira Municipal. Apresentação efetuada no âmbito da Recuperação Financeira Municipal e o Fundo de Apoio Municipal. Braga: Universidade do Minho. [Google Scholar]
- Wooldridge, Jeffrey. 2010. Econometric Analysis of Cross Section and Panel Data. London: MIT Press. [Google Scholar]
- World Bank. 2022. International Debt Report 2022: Updated International Debt Statistics. Washington: World Bank. Available online: http://hdl.handle.net/10986/38045 (accessed on 26 April 2023).
- Yoo, Wonsuk, Robert Mayberry, Sejong Bae, Karan Singh, Qinghua Peter He, and James W. Lillard Jr. 2014. A study of effects of multicollinearity in the multivariable analysis. International Journal of Applied Science and Technology 4: 9. [Google Scholar]
- Zafra-Gómez, José Luis, Antonio Manuel López-Hernández, and Agustín Hernández-Bastida. 2009. Developing an alert system for local governments in financial crisis. Public Money & Management 29: 175–81. [Google Scholar]
- Zhao, Yinglan, Yi Li, Chen Feng, Chi Gong, and Hongru Tan. 2022. Early Warning of Systemic Financial Risk of Local Government Implicit Debt Based on BP Neural Network Model. Systems 10: 207. [Google Scholar] [CrossRef]
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|---|---|---|
APP ≤ 30 | 20% | 25% | 33% | 46% | 60% | 61% | 64% | 65% | 63% |
Small | 14% | 18% | 21% | 28% | 37% | 37% | 37% | 37% | 36% |
Other | 6% | 7% | 12% | 19% | 23% | 24% | 27% | 27% | 27% |
APP > 30 | 80% | 75% | 67% | 54% | 40% | 39% | 36% | 35% | 37% |
Small | 45% | 42% | 39% | 32% | 23% | 23% | 24% | 23% | 25% |
Other | 35% | 33% | 28% | 22% | 17% | 16% | 13% | 12% | 12% |
FD | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|---|---|
APP ≤ 30 | −1 | −1 | −7 | −14 | −16 | −19 | −23 | −27 | −29 |
Small | −1 | 0 | −3 | −5 | −6 | −7 | −5 | −8 | −9 |
Other | −3 | −4 | −14 | −29 | −30 | −38 | −47 | −52 | −55 |
APP > 30 | −2 | −1 | −2 | −4 | −6 | −10 | −11 | −11 | −15 |
Small | 0 | 0 | −1 | −1 | −2 | −4 | −3 | −6 | −6 |
Other | −4 | −3 | −4 | −8 | −12 | −18 | −25 | −22 | −35 |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|---|---|---|
In FD | 14% | 12% | 25% | 21% | 15% | 10% | 13% | 8% | 7% |
APP ≤ 30 | 2% | 2% | 3% | 4% | 4% | 2% | 6% | 3% | 3% |
APP > 30 | 12% | 9% | 22% | 17% | 11% | 8% | 6% | 5% | 5% |
Not in FD | 86% | 88% | 75% | 79% | 85% | 90% | 87% | 92% | 93% |
APP ≤ 30 | 18% | 23% | 30% | 42% | 56% | 59% | 57% | 62% | 60% |
APP > 30 | 68% | 66% | 45% | 37% | 29% | 31% | 30% | 30% | 33% |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|---|---|---|
In FD | 14% | 12% | 25% | 21% | 15% | 10% | 13% | 8% | 7% |
Small | 9% | 8% | 13% | 12% | 8% | 6% | 9% | 5% | 5% |
Other | 5% | 3% | 11% | 9% | 7% | 5% | 4% | 3% | 3% |
Not in FD | 86% | 88% | 75% | 79% | 85% | 90% | 87% | 92% | 93% |
Small | 50% | 51% | 46% | 48% | 52% | 55% | 51% | 56% | 57% |
Other | 37% | 37% | 29% | 31% | 33% | 35% | 36% | 37% | 36% |
APP (in Days) | FD (in 106 Euros) | Bal (in 106 Euros) | DS (in 106 Euros) | POP (in 103) | |
---|---|---|---|---|---|
Total (N = 2772) | |||||
Mean | 86 | −12 | 3 | 3 | 34 |
Median | 32 | −5 | 1 | 1 | 14 |
Std. Deviation | 178 | 34 | 12 | 9 | 55 |
Min. | 0 | −680 | −6 | 0 | 0.4 |
Max. | 3411 | 137 | 371 | 360 | 558 |
APP (in Days) | FD (in 106 Euros) | BAL (in 106 Euros) | DS (in 106 Euros) | POP (in 103) | |
---|---|---|---|---|---|
APP ≤ 30 (N = 1346) | |||||
Mean | 13 | −18 | 5 | 2 | 35 |
Median | 13 | −9 | 2 | 1 | 12 |
Std. Deviation | 8 | 41 | 16 | 6 | 60 |
Min. | 0 | −680 | −6 | 0 | 0.4 |
Max. | 30 | 55 | 371 | 117 | 558 |
APP > 30 (N = 1426) | |||||
Mean | 155 | −6 | 1 | 3 | 33 |
Median | 88 | −2 | 0 | 1 | 15 |
Std. Deviation | 227 | 23 | 4 | 11 | 50 |
Min. | 31 | −232 | −3 | 0 | 2 |
Max. | 3411 | 137 | 75 | 360 | 537 |
APP (in Days) | FD (in 106 Euros) | BAL (in 106 Euros) | DS (in 106 Euros) | POP (in 103) | |
---|---|---|---|---|---|
Small (N = 1663) | |||||
Mean | 85 | −4 | 1 | 1 | 9 |
Median | 32 | −4 | 0 | 1 | 7 |
Std. Deviation | 179 | 8 | 1 | 2 | 5 |
Min. | 0 | −29 | −3 | 0 | 0.4 |
Max. | 3411 | 137 | 13 | 29 | 20 |
Other (N = 1109) | |||||
Mean | 87 | −24 | 6 | 5 | 71 |
Median | 32 | −11 | 2 | 3 | 47 |
Std. Deviation | 176 | 50 | 18 | 14 | 72 |
Min. | 0 | −680 | −6 | 0 | 20 |
Max. | 3347 | 130 | 371 | 360 | 558 |
APP | BAL | DS | POP | |
---|---|---|---|---|
Total (N = 2772) | 0.185 ** | −0.754 ** | −0.255 ** | −0.652 ** |
By APP threshold | ||||
APP ≤ 30 (N = 1346) | 0.049 | −0.815 ** | −0.453 ** | −0.761 ** |
APP > 30 (N = 1426) | 0.234 ** | −0.519 ** | −0.195 ** | −0.493 ** |
By size | ||||
Size Small (N = 1663) | 0.251 ** | −0.252 ** | 0.302 ** | −0.133 ** |
Size Other (N = 1109) | 0.253 ** | −0.752 ** | −0.219 ** | −0.630 ** |
Independent Variables | M1 (APP, BAL, DS, and POP) | M2 (BAL, DS, and POP) |
---|---|---|
APP | *** 18,385.05 | |
BAL | *** −1.503 | *** −1.519 |
DS | *** 0.533 | *** 0.555 |
POP | *** −266.837 | *** −268.190 |
(Constant) | ** −1,160,515 | 462,734.7 |
Adjusted R2 | 0.691 | 0.682 |
F-statistic | 0.000 | 0.000 |
Independent Variables | M1 (APP, BAL, DS, and POP) | M2 (BAL, DS, and POP) |
---|---|---|
APP ≤ 30 | ||
APP | −39,393.68 | |
BAL | *** −1.428 | *** −1.424 |
DS | *** 1.462 | *** 1.463 |
POP | *** −363.348 | *** −364.139 |
(Constant) | 1,287,572 | *** −1,805,089 |
Adjusted R2 | 0.788 | 0.788 |
F-statistic | 0.000 | 0.000 |
APP > 30 | ||
APP | *** 18,428.81 | |
BAL | *** −1.790 | *** −1.835 |
DS | *** 0.290 | *** 0.307 |
Pop | *** −196.850 | *** −199.795 |
(Constant) | −567,404.70 | *** 2,390,271 |
Adjusted R2 | 0.418 | 0.388 |
F-statistic | 0.000 | 0.000 |
Independent Variables | M1 (APP, BAL, DS, and POP) | M2 (BAL, DS, and POP) |
---|---|---|
Small | ||
APP | *** 6942.192 | |
BAL | *** −0.753 | *** −0.870 |
DS | *** 1.554 | *** 1.659 |
POP | *** −324.937 | *** −305.283 |
(Constant) | *** −2,484,813 | *** −2,065,609 |
Adjusted R2 | 0.270 | 0.250 |
F-statistic | 0.000 | 0.000 |
Others | ||
APP | *** 33,478.98 | |
BAL | *** −1.407 | *** −1.421 |
DS | *** 0.524 | *** 0.551 |
POP | *** −295.090 | *** −300.319 |
(Constant) | 625,277.7 | ** 3,874,450 |
Adjusted R2 | 0.701 | 0.688 |
F-statistic | 0.000 | 0.000 |
Independent Variables | M1 (APP, BAL, DS, and POP) | M2 (BAL, DS, and POP) |
---|---|---|
From 2011 to 2014 | ||
APP | *** 11,962.27 | |
BAL | *** −1.752 | *** −1.868 |
DS | 0.019 | 0.031 |
POP | *** −113.182 | *** −111.665 |
(Constant) | 659,300.5 | *** 2,262,534 |
Adjusted R2 | 0.438 | 0.413 |
F-statistic | 0.000 | 0.000 |
From 2015 to 2019 | ||
APP | *** 36,587.65 | |
BAL | *** −1.273 | *** −1.302 |
DS | *** 1.737 | *** 1.861 |
Pop | *** −452.028 | *** −457.794 |
(Constant) | *** −3,627,579 | *** −1,705,891 |
Adjusted R2 | 0.764 | 0.755 |
F-statistic | 0.000 | 0.000 |
All (N = 308) | Small (N = 189) | Others (N = 119) | |
---|---|---|---|
Constant | −1,665,199 | *** −7,748,537 | 9,088,704 |
APP_2011 | 15,996 | ** 12,662 | −22,991 |
APP_2012 | −6704 | *** −9107 | 26,627 |
APP_2013 | ** 22,206 | *** 18,596 | 4904 |
APP_2014 | 5593 | ||
APP_2015 | |||
APP_2016 | −6106 | *** −34,661 | 41,316 |
APP_2017 | 58,730 | *** 60,981 | 32,010 |
APP_2018 | −21,418 | * 23,103 | 87,234 |
POP | *** −821 | *** −487 | *** −901 |
VIF (Max) | 5.3 | 6.2 | 5.5 |
Adjusted R2 | 0.779 | 0.423 | 0.774 |
Sig. ANOVA | 0.001 | 0.001 | 0.001 |
Durbin–Watson | 1.942 | 2.199 | 1.902 |
All (N = 308) | Small (N = 189) | Others (N = 119) | |
---|---|---|---|
Constant | *** −8,674,624 | *** −3,840,443 | *** −16,822,232 |
APP_2011 | ** 30,989 | *** 12,860 | 47,672 |
APP_2012 | −1691 | ** −4409 | 20,224 |
APP_2013 | 10,373 | *** 9469 | 9621 |
APP_2014 | *** 14,794 | *** 7257 | 17,247 |
POP | *** −294 | *** −406 | *** −276 |
VIF Max. | 2.3 | 2.0 | 4.4 |
Adjusted R2 | 0.415 | 0.345 | 0.383 |
Sig. ANOVA | 0.001 | 0.001 | 0.001 |
Durbin–Watson | 2.412 | 1.671 | 2.456 |
All (N = 308) | Small (N = 189) | Others (N = 119) | |
---|---|---|---|
Constant | 757,720 | *** −6,786,451 | * 9,848,144 |
APP_2015 | |||
APP_2016 | 11,217 | *** −42,774 | 42,411 |
APP_2017 | 84,119 | *** 80,297 | 66,435 |
APP_2018 | −27,984 | ** 30,099 | 81,632 |
POP | *** −820 | *** −405 | *** −901 |
VIF Max. | 4.8 | 5.5 | 3.7 |
Adjusted R2 | 0.773 | 0.287 | 0.778 |
Sig. ANOVA | 0.001 | 0.001 | 0.001 |
Durbin–Watson | 1.650 | 1.829 | 1.729 |
M1 | |
---|---|
APP | *** 117,106.8 |
BAL | *** −1.441 |
DS | ** 0.416 |
POP | *** −254.812 |
(Constant) | *** −1.01 × 107 |
Wald chi2(4) | 296.20 |
Prob > chi2 | 0.0000 |
R2 | 0.4657 |
Root MSE | 2.5 × 107 |
Independent Variables | M1 (APP, BAL, DS, and POP) | M2 (BAL, DS, and POP) |
---|---|---|
Less developed | ||
APP | *** 9360.166 | |
BAL | *** −0.645 | *** −0.783 |
DS | *** 0.968 | *** 1.020 |
POP | *** −248.867 | *** −241.145 |
(Constant) | *** −2,770,325 | *** −2,069,523 |
Adjusted R2 | 0.321 | 0.300 |
F-statistic | 0.000 | 0.000 |
More developed | ||
APP | *** 21,876.99 | |
BAL | *** −1.464 | ***−1.473 |
DS | *** 0.523 | *** 0.548 |
Pop | *** −277.880 | *** −283.371 |
(Constant) | −303,045.8 | ** 2,067,943 |
Adjusted R2 | 0.695 | 0.686 |
F-statistic | 0.000 | 0.000 |
Independent Variables | M1 (APP, BAL, DS, and POP) | M2 (BAL, DS, and POP) |
---|---|---|
Lower unemployment rates | ||
APP | *** 22,503.25 | |
BAL | *** −1.582 | *** −1.598 |
DS | *** 0.412 | *** 0.434 |
POP | *** −271.818 | *** −273.775 |
(Constant) | −939,499.4 | * 1,203,982 |
Adjusted R2 | 0.733 | 0.720 |
F-statistic | 0.000 | 0.000 |
Higher unemployment rates | ||
APP | *** 10,689.36 | |
BAL | *** −1.270 | *** −1.282 |
DS | *** 1.071 | *** 1.094 |
Pop | *** −304.973 | *** −306.574 |
(Constant) | ** −1,122,580 | −236,376.4 |
Adjusted R2 | 0.633 | 0.630 |
F-statistic | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dos Santos, P.G.; Albuquerque, F. Does the Average Payment Period Play a Relevant Role in Explaining the Portuguese Municipalities’ Financial Distress? Economies 2023, 11, 183. https://doi.org/10.3390/economies11070183
Dos Santos PG, Albuquerque F. Does the Average Payment Period Play a Relevant Role in Explaining the Portuguese Municipalities’ Financial Distress? Economies. 2023; 11(7):183. https://doi.org/10.3390/economies11070183
Chicago/Turabian StyleDos Santos, Paula Gomes, and Fábio Albuquerque. 2023. "Does the Average Payment Period Play a Relevant Role in Explaining the Portuguese Municipalities’ Financial Distress?" Economies 11, no. 7: 183. https://doi.org/10.3390/economies11070183
APA StyleDos Santos, P. G., & Albuquerque, F. (2023). Does the Average Payment Period Play a Relevant Role in Explaining the Portuguese Municipalities’ Financial Distress? Economies, 11(7), 183. https://doi.org/10.3390/economies11070183