Productivity of Services in the Countries of Central and Eastern Europe: Analysis Using Malmquist Indices
Abstract
:1. Introduction
2. Literature Review
3. Data and Methodology
3.1. Data Description
3.2. Methodological Issues
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | A summary of the main theoretical contributions on the relationship between the services sector and the evolution of aggregate productivity can be found in Cuadrado and Maroto (2012); however, a more detailed review of these contributions can be found in Maroto (2009). |
2 | Some empirical contributions in this regard in Europe can be found in O’Mahony and van Ark (2003) and van Ark and Piatkowski (2004). For their part, some works such as those by Stiroh (2002) and Triplett and Bosworth (2006) focus on the American case. |
3 | The Malmquist productivity index, which is a multi-factor productivity index, comprises three indices, namely technology change index, technical efficiency change index and scale efficiency change index, and is a robust and appropriate measure of sustainable, multifactor productivity (Ambarkhane et al. 2019). |
4 | |
5 | In Section 3, the decomposition of the MI that was used in this work is exposed, as well as its meaning and interpretation. |
6 | The results and conclusions obtained in the case of production per worker are essentially the same, as is also indicated in the work of Cuadrado and Maroto (2007). |
7 | Farrell (1957) divided efficiency into technical and price efficiency. The former reflects the ability of a firm to obtain maximal output from a given set of inputs, while the latter shows the ability of a firm to use the inputs in optimal proportions, given their respective prices and the current production technology. The sum of both types of efficiency is called global economic efficiency. |
8 | The reason for choosing an output-oriented DEA model is based on the fact that the efficiency of the service sector would reside in obtaining the maximization of production in the provision of the different services without modifying the amount of input used, which would be determined by the needs of each activity. In this context, it would not make sense to evaluate the services from the point of view of minimizing the input with the same level of output. |
9 | Some representative works that have used different techniques and/or have proposed some decomposition of the Malmquist index to allow the analysis of its sources of growth are those of Färe et al. (1992), Ray and Desli (1997), Coelli et al. (1998), Balk (2001), Rossi (2001), Fuentes et al. (2001), Orea (2002), Lovell (2003), Grosskopf (2003) and Pantzios et al. (2011), among others. |
10 | The data of the rows of Table 1 and the following ones correspond to the different countries of Central and Eastern Europe, although at the end of each of the data tables presented, it was decided to include, in addition to the average of this block of countries (CEECs), the one corresponding to those who were in the EU before the incorporation of these 13, excluding the United Kingdom, since it already left the EU; the average of all the countries belonging to the current European Union (EU27) is also offered. |
11 | When referring to a more specific activity in the service sector, such as hotel establishments, the meaning of each of the components of the Malmquist index would be as follows Frančeškin and Bojnec (2022): Technical change (TC) involves the application of new technologies to production that increase productivity; these are the increases that occur in output due to innovations introduced in the process. Pure technical efficiency change (PETC) reveals investment in organisational factors associated with hotel management, such as marketing initiatives, quality improvements and a better balance between inputs and outputs. The change in scale efficiency (SEC) reveals changes in the size of hotel companies. Finally, the change in technical efficiency (TEC) represents the improvement in efficiency due to the two previous factors. |
12 | In accordance with the A10 classification, NACE Rev.2, section C, the manufacturing industry will be considered as industry and sections ranging from G to U, both inclusive, as services. |
References
- Afsharian, Mohsen, and Heinz Ahn. 2015. The overall Malmquist index: A new approach for measuring productivity changes over time. Annals of Operations Research 226: 1–27. [Google Scholar] [CrossRef]
- Ali, Agha Iqbal, and Lawrence M. Seiford. 1993. Computational accuracy and infinitesimals in data envelopment analysis. INFOR: Information Systems and Operational Research 31: 290–97. [Google Scholar] [CrossRef]
- Ambarkhane, Dilip, Ardhendu Shekhar Singh, and Bhama Venkataramani. 2019. Measuring total factor productivity change of microfinance institutions in India using Malmquist productivity index. Indian Growth and Development Review 12: 105–30. [Google Scholar] [CrossRef]
- Balk, Bert M. 2001. Scale Efficiency and Productivity Change. Journal of Productivity Analysis 15: 159–83. [Google Scholar] [CrossRef]
- Banker, Rajiv D., Abraham Charnes, and William W. Cooper. 1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science 30: 1078–92. [Google Scholar] [CrossRef] [Green Version]
- Baumol, William J. 1967. Macroeconomics of unbalanced growth: The anatomy of urban crisis. American Economic Review 57: 415–26. Available online: https://www.jstor.org/stable/1812111 (accessed on 20 January 2023).
- Baumol, William J. 1986. Productivity growth, convergence, and welfare: What the long-run data show. American Economic Review 76: 1072–85. [Google Scholar] [CrossRef]
- Baumol, William J. 2000. Services as leaders and the leader of the services. Inaugural lecture. Paper presented at the International Conference on the Economics and Socio-Economics of Services, Lille, France, June 22–23; pp. 22–23. [Google Scholar]
- Baumol, William J. 2001. Paradox of the services. exploding costs, persistent demand. In The Growth of Service Industries. The Paradox of Exploding Costs and Persistent Demand. Edited by T. Ten Raa and R. Schettkat. Cheltenham: Edward Elgar, pp. 3–28. [Google Scholar]
- Baumol, William J., Sue A. Blackman, and Edward N. Wolff. 1989. Productivity and American Leadership. The Long View. Cambridge: MIT Press. [Google Scholar]
- Bongers, Anelí, and José L. Torres. 2020. Factores determinantes del crecimiento económico: Una comparativa a nivel mundial. Papeles de Economía Española 164: 15–40. [Google Scholar]
- Brynjolfsson, Erik, and Lorin Hitt. 1993. Is information systems spending productive? New evidence and new results. ICIS 1993 Proceedings 43: 47–64. Available online: https://aisel.aisnet.org/icis1993/43 (accessed on 20 January 2023).
- Carlaw, Kenneth I., and Richard G. Lipsey. 2003. Productivity, technology and economic growth: What is the relationship? Journal of Economic Surveys 17: 457–95. [Google Scholar] [CrossRef]
- Caves, Douglas W., Laurits R. Christensen, and W. Erwin Diewert. 1982. The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica 50: 1393–414. [Google Scholar] [CrossRef]
- Charnes, Abraham, William W. Cooper, and Edwardo Rhodes. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2: 429–44. [Google Scholar] [CrossRef]
- Clark, Colin. 1940. The Conditions of Economic Progress. Londres: MacMillan. [Google Scholar]
- Coelli, Timothy J., D. S. Prasada Rao, and George E. Battese. 1998. An Introduction to Efficiency and Productivity Analysis. Boston: Kluwer Academic Publishers, Boston. [Google Scholar]
- Coll-Serrano, Vicente, Vicente Bolos, and Rafael Benitez Suarez. 2022. deaR: Conventional and Fuzzy Data Envelopment Analysis. R Package Version 1.3.3. Available online: https://CRAN.R-project.org/package=deaR (accessed on 20 January 2023).
- Cooper, William W., Lawrence M. Seiford, and Kaoru Tone. 2002. Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References, and DEA-Solver Software. Norwell: Kluwer Academic Publishers. [Google Scholar]
- Cuadrado, Juan Ramón. 2016. Service industries and regional analysis. New directions and challenges. Investigaciones Regionales 36: 107–27. [Google Scholar]
- Cuadrado, Juan Ramón, and Andrés Maroto. 2007. El Crecimiento en los Servicios. ¿Obstáculo o Impulsor del Crecimiento de la Productividad? Un Análisis Comparado. Serie Documentos de Trabajo 04/2007. Alcalá de Henares: Instituto Universitario de Análisis Económico y Social, Universidad de Alcalá. [Google Scholar]
- Cuadrado, Juan Ramón, and Andrés Maroto. 2012. El Problema de la Productividad en España: Causas Estructurales, Cíclicas y Sectoriales. Madrid: Fundación de las Cajas de Ahorros. [Google Scholar]
- Cuadrado, Juan Ramón, and Clemente Del Río. 1993. Los Servicios en España. Madrid: Pirámide. [Google Scholar]
- Cullmann, Astrid, and Christian Von Hirschhausen. 2008. From transition to competition Dynamic efficiency analysis of Polish electricity distribution companies. Economics of Transition 16: 335–57. [Google Scholar] [CrossRef] [Green Version]
- David, Paul. 1990. The dynamo and the computer: An historical perspective on the modern productivity paradox. American Economic Review 80: 355–61. [Google Scholar]
- Del Gatto, Massimo, Adriana Di Liberto, and Carmelo Petraglia. 2011. Measuring productivity. Journal of Economic Surveys 25: 952–1008. [Google Scholar] [CrossRef]
- Djellal, Faridah, and Faïz Gallouj. 2008. Measuring and Improving Productivity in Services. Issues, Strategies and Challenges. Cheltenham: Edward Elgar. Available online: https://www.jstor.org/stable/2006600 (accessed on 20 January 2023).
- Djellal, Faridah, and Faïz Gallouj. 2010. Beyond productivity strategies in services. Journal of Innovation Economics & Management 5: 89–104. [Google Scholar] [CrossRef] [Green Version]
- European Commission. 2004. European Competitiveness Report, 2003. Brussels: European Commission. [Google Scholar]
- Färe, Rolf, Shawna Grosskopf, Björn Lindgren, and Jean Pierre Poullier. 1997. Productivity growth in health-care delivery. Medical Care 35: 354–66. Available online: http://www.jstor.org/stable/3766577 (accessed on 20 January 2023).
- Färe, Rolf, Shawna Grosskopf, Björn Lindgren, and Pontus Roos. 1989. Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach. Discussion Paper nº 89-3. Carbondale: Southern Illinois University. [Google Scholar]
- Färe, Rolf, Shawna Grosskopf, Björn Lindgren, and Pontus Roos. 1992. Productivity changes in Swedish Pharmacies 1980–1989: A nonparametric Malmquist Approach. Journal of Productivity Analysis 3: 85–101. [Google Scholar] [CrossRef]
- Färe, Rolf, Shawna Grosskopf, Mary Norris, and Zhongyang Zhang. 1994. Productivity Growth, Technical Progress, and Efficiency Changes in Industrialised Countries. American Economic Review 84: 66–83. Available online: http://www.jstor.org/stable/2117971 (accessed on 20 January 2023).
- Farrell, Michael J. 1957. The measurement of productive efficiency. Journal of the Royal Statistical Society 120: 253–90. [Google Scholar] [CrossRef]
- Fixler, Dennis J., and Donald Siegel. 1999. Outsourcing and productivity growth in services. Structural Change and Economic Dynamics 10: 177–94. [Google Scholar] [CrossRef]
- Fourastié, Jean. 1949. Le Grand Espoir du XXe Siecle. Paris: Presses Universitaires de France. [Google Scholar]
- Frančeškin, Jan, and Štefan Bojnec. 2022. Total factor productivity of the Slovenian hotel companies. Economic Research-Ekonomska Istraživanja, 1–13. [Google Scholar] [CrossRef]
- Fuentes, Hugo J., Emili Grifell-Tatjé, and Sergio Perelman. 2001. A Parametric Distance Function Approach for Malmiquist Productivity Index Estimation. Journal of Productivity Analysis 15: 79–94. [Google Scholar] [CrossRef]
- Gadrey, Jean. 1996. Services: La Productivité en Question. París: Desclée de Brouwer. [Google Scholar]
- Grifell-Tatjé, Emili, and C. A. Knox Lovell. 1995. A note on the Malmquist productivity index. Economics Letters 47: 169–75. [Google Scholar] [CrossRef]
- Grifell-Tatjé, Emili, and C. A. Knox Lovell. 1996. Deregulation and productivity decline: The case of Spanish savings banks. European Economic Review 40: 1281–303. [Google Scholar] [CrossRef]
- Grosskopf, Shawna. 2003. Some Remarks on Productivity and its Decompositions. Journal of Productivity Analysis 20: 459–74. [Google Scholar] [CrossRef]
- Kox, Henk. 2002. Growth Challenges for the Dutch Business Services Industry: International Comparison and Policy Issues. La Haya: CPB Netherlands Bureau for Economic Policy Analysis. [Google Scholar]
- Krugman, Paul. 1990. The Age of Diminished Expectations. Cambridge: MIT Press. [Google Scholar]
- Lichtenberg, Frank. 1995. The Output Contributions of Computer Equipment and Personnel: A Firm Level Analysis. Economics of Innovation and New Technology 3: 201–18. [Google Scholar] [CrossRef] [Green Version]
- Lovell, C. A. Knox. 2003. The Decomposition of Malmquist Productivity Indexes. Journal of Productivity Analysis 20: 437–458. [Google Scholar] [CrossRef]
- Madden, Gary, and Scott J. Savage. 1999. Telecommunications productivity, catch-up and innovation. Telecommunications Policy 23: 65–81. [Google Scholar] [CrossRef]
- Mahlberg, Bernhard, and Thomas Url. 2003. Effects of the single market on the Austrian insurance industry. Empirical Economics 28: 813–38. [Google Scholar] [CrossRef] [Green Version]
- Maroto, Andrés. 2009. La Productividad en el Sector Servicios de la Economía Española. Colección Economía y Empresa. Madrid: Marcial Pons, p. 29. [Google Scholar]
- Nusbaumer, Jacques. 1987. The Service Economy. Lever to Growth. Boston: Kluwer. [Google Scholar]
- O’Donnell, Christopher J. 2012. An aggregate quantity framework for measuring and decomposing productivity change. Journal of Productivity Analysis 38: 255–72. [Google Scholar] [CrossRef]
- O’Mahony, Mary, and Bart van Ark. 2003. EU Productivity and Competitiveness: An Industry Perspective. Can Europe Resume the Catching-Up Process? Bruselas: Enterprise publications, Comisión Europea. [Google Scholar]
- Odeck, James. 2008a. How efficient and productive are road toll companies? Evidence from Norway. Transport Policy 15: 232–41. [Google Scholar] [CrossRef]
- Odeck, James. 2008b. The effect of mergers on efficiency and productivity of public transport services. Transportation Research Part A: Policy and Practice 42: 696–708. [Google Scholar] [CrossRef]
- Orea, Luis. 2002. Parametric Decomposition of a Generalized Malmquist Productivity Index. Journal of Productivity Analysis 18: 5–22. [Google Scholar] [CrossRef]
- Pantzios, Christos J., Giannis Karagiannis, and Vangelis Tzouvelekas. 2011. Parametric decomposition of the input-oriented Malmquist productivity index: With an application to Greek aquaculture. Journal of Productivity Analysis 36: 21–31. [Google Scholar] [CrossRef]
- Parteka, Aleksandra, and Joanna Wolszczak-Derlacz. 2013. Dynamics of productivity in higher education: Cross-European evidence based on bootstrapped Malmquist indices. Journal of Productivity Analysis 40: 67–82. [Google Scholar] [CrossRef] [Green Version]
- Peyrache, Antonio. 2014. Hicks-Moorsteen versus Malmquist: A connection by means of a radial productivity index. Journal of Productivity Analysis 41: 435–42. [Google Scholar] [CrossRef]
- Pilat, Dirk. 2005. The ICT Productivity Paradox: Insights from Micro Data. OECD Economic Studies 2004: 37–65. [Google Scholar] [CrossRef]
- Portela, Maria C., and Emmanuel Thanassoulis. 2010. Malmquist-type indices in the presence of negative data: An application to bank branches. Journal of banking and Finance 34: 1472–83. [Google Scholar] [CrossRef]
- Prior, Diego. 2006. Efficiency and total quality management in health care organizations: A dynamic frontier approach. Annals of Operations Research 145: 281–99. [Google Scholar] [CrossRef]
- Raa, Tijs T., and Edward Wolff. 2001. Outsourcing of Services and the Productivity Recovery in US Manufacturing in the 1980s and 1990s. Journal of Productivity Analysis 16: 149–65. [Google Scholar] [CrossRef]
- Ray, Subhash C., and Evangelia Desli. 1997. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment. American Economic Review 87: 1033–39. Available online: http://www.jstor.org/stable/2951340 (accessed on 20 January 2023).
- Rong, Yaohua, Muyu Li, Weihu Cheng, and Xianyu Chang. 2018. Efficiency, Technology and Productivity Change of Higher Educational Institutions Directly under the Ministry of Education of China in 2007–2012. Procedia Computer Science 139: 598–604. [Google Scholar] [CrossRef]
- Rossi, Martín A. 2001. Technical Change and Efficiency Measures: The Post-privatisation in the Gas Distribution Sector in Argentina. Energy Economics 23: 295–304. [Google Scholar] [CrossRef]
- Rubalcaba, Luis. 1999. Business Services in European Industry. Growth, Employment and Competitiveness. Brussels: European Comission. [Google Scholar]
- Shair, Faluk, Sun Shaorong, Hafiz Wagas Kamran, Muhammed Sajjad Hussain, Muhammad Atif Nawaz, and Van Chien Nguyen. 2021. Assessing the efficiency and total factor productivity growth of the banking industry: Do environmental concerns matters? Environmental Science and Pollution Research 28: 20822–38. [Google Scholar] [CrossRef]
- Stiroh, Kevin J. 2002. Information Technology and the U.S. Productivity Revival: What Do the Industry Data Say? American Economic Review 92: 1559–76. [Google Scholar] [CrossRef] [Green Version]
- Thanassoulis, Emmanuel, Mika Kortelainen, Geraint Johnes, and Jill Johnes. 2011. Costs and efficiency of higher education institutions in England: A DEA analysis. Journal of the Operational Research Society 62: 1282–97. [Google Scholar] [CrossRef] [Green Version]
- Triplett, Jack E., and Barry P. Bosworth. 2006. Baumol’s Disease’has been cured: IT and multifactor productivity in US services industries. The New Economy and Beyond: Past, Present, and Future, 34–71. [Google Scholar] [CrossRef] [Green Version]
- van Ark, Bart, and Marcin Piatkowski. 2004. Productivity, innovation and ICT in Old and New Europe. IEEP 1: 215–46. [Google Scholar] [CrossRef]
- Walheer, Barnabé. 2022. Global Malmquist and cost Malmquist indexes for group comparison. Journal of Productivity Analysis 58: 75–93. [Google Scholar] [CrossRef]
- Wolff, Edward N. 1999. The productivity paradox: Evidence from indirect indicators of service sector productivity growth. The Canadian Journal of Economics/Revue Canadienne d’Economique 32: 281–308. [Google Scholar] [CrossRef]
- Wölfl, Anita. 2003. Productivity Growth in Services Industries: An Assessment of Recent Patterns and the Role of Measurement. OECD STI Working Paper 7: 1–66. [Google Scholar] [CrossRef] [Green Version]
- Yu, Ming-Miin. 2008. Productivity change and the effects of the enhancement of the mass transportation programme on the bus transit system in Taiwan. Transport Reviews 28: 573–92. [Google Scholar] [CrossRef]
- Yu, Ming-Miin, and Chia-Chu Hsu. 2012. Service productivity and biased technological change of domestic airports in Taiwan. International Journal of Sustainable Transportation 6: 1–25. [Google Scholar] [CrossRef]
- Zrelli, Houyem, Abdullah H. Alsharif, and Iskander Tlili. 2020. Malmquist indexes of productivity change in Tunisian manufacturing industries. Sustainability 12: 1367. [Google Scholar] [CrossRef] [Green Version]
Country/Area | Production | Employment | Capital |
---|---|---|---|
Bulgaria | 4.70 | 0.50 | 0.90 |
Croatia | 2.36 | 0.25 | 5.81 |
Cyprus | 3.22 | 1.78 | 3.31 |
Czech | 3.84 | 0.26 | 2.90 |
Estonia | 4.97 | 0.04 | 6.76 |
Hungary | 3.31 | 0.11 | 1.51 |
Latvia | 4.88 | −0.79 | 0.54 |
Lithuania | 6.02 | −0.02 | 3.58 |
Malta | 6.35 | 3.12 | 2.32 |
Poland | 5.37 | 0.44 | 4.39 |
Romania | 5.80 | −1.15 | 2.58 |
Slovakia | 5.65 | 0.66 | 1.78 |
Slovenia | 3.20 | 0.37 | 0.91 |
CEECs | 4.71 | 0.01 | 2.99 |
EU14 | 1.44 | 0.43 | 1.32 |
EU27 | 1.68 | 0.32 | 1.46 |
Country/Area | MI | TEC | TC | PETC | SEC |
---|---|---|---|---|---|
Bulgaria | 1.025 | 1.041 | 0.984 | 1.033 | 1.008 |
Croatia | 0.986 | 0.996 | 0.990 | 0.997 | 0.999 |
Cyprus | 1.002 | 1.000 | 1.002 | 1.000 | 1.000 |
Czech | 1.010 | 1.010 | 1.000 | 1.008 | 1.003 |
Estonia | 1.002 | 1.003 | 1.000 | 0.994 | 1.009 |
Hungary | 1.017 | 1.019 | 0.998 | 1.015 | 1.005 |
Latvia | 1.034 | 1.037 | 0.997 | 1.037 | 1.000 |
Lithuania | 1.020 | 1.023 | 0.997 | 1.023 | 1.000 |
Malta | 1.022 | 1.019 | 1.003 | 1.000 | 1.019 |
Poland | 1.009 | 1.017 | 0.993 | 1.005 | 1.012 |
Romania | 1.018 | 1.035 | 0.984 | 1.020 | 1.015 |
Slovakia | 1.025 | 1.024 | 1.001 | 1.026 | 0.997 |
Slovenia | 1.019 | 1.016 | 1.003 | 1.015 | 1.001 |
CEECs | 1.015 | 1.018 | 0.996 | 1.013 | 1.005 |
EU14 | 1.005 | 1.000 | 1.005 | 1.000 | 1.000 |
EU27 | 1.005 | 1.023 | 0.983 | 1.013 | 1.010 |
Country/Area | MI | TEC | TC | PETC | SEC |
---|---|---|---|---|---|
Bulgaria | 1.606 | 2.161 | 0.743 | 1.854 | 1.165 |
Croatia | 0.765 | 0.931 | 0.822 | 0.943 | 0.986 |
Cyprus | 1.033 | 0.992 | 1.042 | 1.000 | 0.992 |
Czech | 1.205 | 1.212 | 0.994 | 1.156 | 1.049 |
Estonia | 1.048 | 1.058 | 0.991 | 0.893 | 1.185 |
Hungary | 1.377 | 1.443 | 0.954 | 1.322 | 1.092 |
Latvia | 1.883 | 1.995 | 0.943 | 2.009 | 0.993 |
Lithuania | 1.450 | 1.528 | 0.949 | 1.537 | 0.994 |
Malta | 1.520 | 1.435 | 1.059 | 1.000 | 1.435 |
Poland | 1.192 | 1.370 | 0.870 | 1.096 | 1.249 |
Romania | 1.416 | 1.906 | 0.743 | 1.446 | 1.318 |
Slovakia | 1.592 | 1.562 | 1.019 | 1.640 | 0.953 |
Slovenia | 1.431 | 1.341 | 1.067 | 1.325 | 1.012 |
CEECs | 1.315 | 1.412 | 0.932 | 1.282 | 1.101 |
EU14 | 1.106 | 1.000 | 1.106 | 1.000 | 1.000 |
EU27 | 1.108 | 1.529 | 0.724 | 1.273 | 1.201 |
Country/Area | Production | Employment | Capital | |||
---|---|---|---|---|---|---|
Man | Ser | Man | Ser | Man | Ser | |
Bulgaria | 5.98 | 5.52 | −1.25 | 1.42 | 4.16 | 2.09 |
Croatia | 8.45 | 3.16 | −0.28 | 0.75 | 4.68 | 1.80 |
Cyprus | 6.76 | 4.59 | −0.27 | 0.68 | 9.70 | 2.74 |
Czech | 0.93 | 3.03 | −1.26 | 1.31 | −0.07 | 3.76 |
Estonia | 0.91 | 3.91 | −1.05 | 2.65 | −0.09 | 2.71 |
Hungary | 3.19 | 4.92 | −0.25 | −0.32 | 3.05 | 0.58 |
Latvia | 9.18 | 5.46 | −1.45 | 1.07 | 4.27 | 4.56 |
Lithuania | 3.35 | 3.47 | −0.42 | 1.06 | 5.51 | 1.68 |
Malta | 0.29 | 8.98 | −0.67 | 8.73 | 1.00 | 4.27 |
Poland | 12.52 | 4.86 | −0.24 | 1.09 | 4.84 | 3.78 |
Romania | 5.94 | 5.58 | −1.41 | 1.70 | 1.54 | 1.98 |
Slovakia | 4.45 | 3.18 | −1.19 | 1.86 | 0.29 | 0.38 |
Slovenia | 18.85 | 3.34 | −0.73 | 1.10 | 4.54 | 1.68 |
CEECs | 7.86 | 4.35 | −0.81 | 1.17 | 3.74 | 2.49 |
EU14 | 1.29 | 1.66 | −0.65 | 1.06 | 0.66 | 1.11 |
EU27 | 1.74 | 1.85 | −0.70 | 1.09 | 0.93 | 1.21 |
Country/Area | MI | TEC | TC | PETC | SEC | |||||
---|---|---|---|---|---|---|---|---|---|---|
Man | Ser | Man | Ser | Man | Ser | Man | Ser | Man | Ser | |
Bulgaria | 1.009 | 1.020 | 1.009 | 1.012 | 1.001 | 1.008 | 1.009 | 1.015 | 0.999 | 0.998 |
Croatia | 1.009 | 0.998 | 1.009 | 0.988 | 1.001 | 1.010 | 1.006 | 0.991 | 1.003 | 0.997 |
Cyprus | 1.009 | 1.008 | 1.010 | 0.999 | 0.999 | 1.008 | 1.016 | 1.000 | 0.995 | 0.999 |
Czech | 1.019 | 1.011 | 1.019 | 1.000 | 1.001 | 1.010 | 1.015 | 1.003 | 1.003 | 0.997 |
Estonia | 0.989 | 1.014 | 0.990 | 1.003 | 0.998 | 1.011 | 0.991 | 1.000 | 1.000 | 1.003 |
Hungary | 1.010 | 1.015 | 1.000 | 1.003 | 1.010 | 1.012 | 1.000 | 1.004 | 1.000 | 0.999 |
Latvia | 1.002 | 1.032 | 1.000 | 1.020 | 1.002 | 1.011 | 1.000 | 1.021 | 1.000 | 0.999 |
Lithuania | 1.023 | 1.007 | 1.021 | 0.997 | 1.002 | 1.010 | 1.023 | 1.000 | 0.998 | 0.998 |
Malta | 0.994 | 1.013 | 0.993 | 1.008 | 1.000 | 1.005 | 1.000 | 1.000 | 0.993 | 1.008 |
Poland | 1.032 | 1.007 | 1.037 | 0.998 | 0.995 | 1.009 | 1.011 | 1.000 | 1.025 | 0.998 |
Romania | 1.027 | 1.021 | 1.026 | 1.010 | 1.001 | 1.010 | 1.024 | 1.013 | 1.002 | 0.998 |
Slovakia | 1.051 | 1.012 | 1.052 | 1.002 | 0.999 | 1.010 | 1.051 | 1.004 | 1.001 | 0.997 |
Slovenia | 1.030 | 1.020 | 1.029 | 1.009 | 1.001 | 1.010 | 1.026 | 1.009 | 1.003 | 1.001 |
CEECs | 1.016 | 1.013 | 1.015 | 1.004 | 1.001 | 1.010 | 1.013 | 1.005 | 1.002 | 0.999 |
EU14 | 1.006 | 1.005 | 1.004 | 1.000 | 1.001 | 1.005 | 1.000 | 1.000 | 1.004 | 1.000 |
EU27 | 1.011 | 1.007 | 1.063 | 1.012 | 0.951 | 0.995 | 1.038 | 1.007 | 1.023 | 1.006 |
Country/Area | MI | TEC | TC | PETC | SEC | |||||
---|---|---|---|---|---|---|---|---|---|---|
Man | Ser | Man | Ser | Man | Ser | Man | Ser | Man | Ser | |
Bulgaria | 1.194 | 1.467 | 1.176 | 1.262 | 1.015 | 1.162 | 1.194 | 1.317 | 0.985 | 0.958 |
Croatia | 1.194 | 0.954 | 1.179 | 0.791 | 1.012 | 1.206 | 1.117 | 0.841 | 1.056 | 0.941 |
Cyprus | 1.193 | 1.154 | 1.216 | 0.985 | 0.981 | 1.171 | 1.348 | 1.000 | 0.902 | 0.985 |
Czech | 1.434 | 1.222 | 1.418 | 1.003 | 1.011 | 1.218 | 1.328 | 1.053 | 1.068 | 0.953 |
Estonia | 0.806 | 1.299 | 0.832 | 1.055 | 0.970 | 1.231 | 0.838 | 1.000 | 0.992 | 1.055 |
Hungary | 1.199 | 1.323 | 1.000 | 1.063 | 1.199 | 1.244 | 1.000 | 1.085 | 1.000 | 0.980 |
Latvia | 1.045 | 1.804 | 1.000 | 1.463 | 1.045 | 1.234 | 1.000 | 1.495 | 1.000 | 0.978 |
Lithuania | 1.536 | 1.144 | 1.490 | 0.953 | 1.031 | 1.200 | 1.552 | 0.992 | 0.960 | 0.960 |
Malta | 0.887 | 1.276 | 0.883 | 1.166 | 1.004 | 1.095 | 1.000 | 1.000 | 0.883 | 1.166 |
Poland | 1.823 | 1.140 | 1.995 | 0.963 | 0.914 | 1.184 | 1.240 | 1.000 | 1.609 | 0.963 |
Romania | 1.653 | 1.471 | 1.620 | 1.218 | 1.020 | 1.208 | 1.556 | 1.275 | 1.041 | 0.955 |
Slovakia | 2.556 | 1.252 | 2.614 | 1.031 | 0.978 | 1.214 | 2.575 | 1.082 | 1.015 | 0.953 |
Slovenia | 1.749 | 1.444 | 1.725 | 1.191 | 1.014 | 1.213 | 1.634 | 1.178 | 1.056 | 1.011 |
CEECs | 1.341 | 1.289 | 1.323 | 1.076 | 1.013 | 1.198 | 1.282 | 1.090 | 1.032 | 0.987 |
EU14 | 1.114 | 1.090 | 1.089 | 1.000 | 1.023 | 1.090 | 1.000 | 1.000 | 1.089 | 1.000 |
EU27 | 1.221 | 1.141 | 3.173 | 1.266 | 0.385 | 0.902 | 2.050 | 1.132 | 1.548 | 1.118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcalá-Ordóñez, A.; Alcalá-Olid, F.; Cárdenas-García, P.J. Productivity of Services in the Countries of Central and Eastern Europe: Analysis Using Malmquist Indices. Economies 2023, 11, 91. https://doi.org/10.3390/economies11030091
Alcalá-Ordóñez A, Alcalá-Olid F, Cárdenas-García PJ. Productivity of Services in the Countries of Central and Eastern Europe: Analysis Using Malmquist Indices. Economies. 2023; 11(3):91. https://doi.org/10.3390/economies11030091
Chicago/Turabian StyleAlcalá-Ordóñez, Alejandro, Francisco Alcalá-Olid, and Pablo Juan Cárdenas-García. 2023. "Productivity of Services in the Countries of Central and Eastern Europe: Analysis Using Malmquist Indices" Economies 11, no. 3: 91. https://doi.org/10.3390/economies11030091
APA StyleAlcalá-Ordóñez, A., Alcalá-Olid, F., & Cárdenas-García, P. J. (2023). Productivity of Services in the Countries of Central and Eastern Europe: Analysis Using Malmquist Indices. Economies, 11(3), 91. https://doi.org/10.3390/economies11030091