A New Improvement Proposal to Estimate Regional Input–Output Structure Using the 2D-LQ Approach
Abstract
:1. Introduction
2. Methodological Review on Location Quotients
- What the differences between the estimated and the real matrices are.
- Which method can provide the most accurate estimation.
- How the estimates vary in response to changes in the parameters.
- The precision achieved with the proposals presented in this paper.
3. Data Source and Closeness of Fit
4. Results, Assessment, and Analysis
4.1. Proposal for Estimation of Parameter Values α and β
4.2. Application to the Case of Spanish Regions
5. Discussion and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
FLQ | ||||||
NAME | DELTA_FLQ | WAPE | ρ-SWAPE | WASE | IS | |
1. Gyeonggi-do | 0.545 | 41.1032 | 0.8938 | 4.0671 | 93.0768 | |
2. Seoul | 0.186 | 60.3231 | 0.8683 | 2.2427 | 92.7361 | |
3. Gyeongsangbuk-do | 0.353 | 55.7305 | 0.8606 | 4.3549 | 91.5913 | |
4. Chungcheongnam-do | 0.642 | 69.4134 | 0.7918 | 6.0804 | 85.0194 | |
5. Gyeongsangnam-do | 0.293 | 55.5216 | 0.8617 | 4.1643 | 91.2083 | |
6. Ulsan | 0.594 | 74.3943 | 0.7915 | 6.0399 | 77.363 | |
7. Incheon | 0.469 | 52.0759 | 0.8587 | 5.7447 | 86.6191 | |
8. Jeollanam-do | 0.288 | 66.1587 | 0.8451 | 6.0977 | 90.2414 | |
9. Busan | 0.281 | 50.2127 | 0.8747 | 3.8122 | 92.1465 | |
10. Chungcheongbuk-do | 0.487 | 72.7577 | 0.7842 | 6.5047 | 87.3664 | |
11. Jeollabuk-do | 0.335 | 63.2096 | 0.825 | 5.9123 | 89.5707 | |
12. Daegu | 0.26 | 59.2067 | 0.8503 | 6.1472 | 89.8076 | |
13. Gwangju | 0.345 | 69.6581 | 0.8096 | 7.6022 | 84.0692 | |
14. Gangwon-do | 0.284 | 67.2204 | 0.8177 | 10.323 | 88.5964 | |
15. Daejeon | 0.451 | 80.4275 | 0.7715 | 12.2237 | 76.8347 | |
16. Jeju-do | 0.208 | 70.6293 | 0.8275 | 7.3354 | 90.0979 | |
17. Sejong | 0.605 | 87.7021 | 0.6724 | 37.1736 | 68.1598 | |
2D-LQ | ||||||
NAME | ALPHA | BETA | WAPE | ρ-SWAPE | WASE | IS |
1. Gyeonggi-do | 0 | 0.5 | 37.1578 | 0.9014 | 3.9688 | 93.9211 |
2. Seoul | 2 | 0.52 | 74.775 | 0.7867 | 4.2657 | 88.0443 |
3. Gyeongsangbuk-do | 0.2 | 0.3 | 45.3338 | 0.8793 | 5.258 | 91.5255 |
4. Chungcheongnam-do | 0.1 | 0.37 | 58.7928 | 0.8319 | 5.5183 | 90.0182 |
5. Gyeongsangnam-do | 0.2 | 0.26 | 47.4954 | 0.8785 | 4.6861 | 90.935 |
6. Ulsan | 0.1 | 0.27 | 57.863 | 0.8429 | 5.3416 | 82.5661 |
7. Incheon | 0.5 | 0.32 | 47.3581 | 0.8757 | 5.1793 | 90.0882 |
8. Jeollanam-do | 0.1 | 0.26 | 56.4066 | 0.851 | 6.9385 | 92.8184 |
9. Busan | 0.7 | 0.23 | 43.8702 | 0.8882 | 3.7099 | 93.0696 |
10. Chungcheongbuk-do | 0 | 0.38 | 64.0712 | 0.8116 | 7.2195 | 88.1739 |
11. Jeollabuk-do | 0 | 0.26 | 56.5918 | 0.8504 | 6.0231 | 91.9699 |
12. Daegu | 0 | 0.24 | 58.1531 | 0.8486 | 6.1514 | 89.3814 |
13. Gwangju | 0.6 | 0.21 | 56.8449 | 0.8517 | 6.8713 | 87.796 |
14. Gangwon-do | 0 | 0.29 | 69.378 | 0.8042 | 11.0414 | 89.4621 |
15. Daejeon | 0 | 0.29 | 71.1432 | 0.8072 | 10.4659 | 86.4103 |
16. Jeju-do | 1.8 | 0.3 | 72.3739 | 0.7955 | 9.1072 | 90.0007 |
17. Sejong | 0 | 0.35 | 77.591 | 0.7506 | 33.0359 | 87.6514 |
NAME | ALPHA | BETA | WAPE | ρ-SWAPE | WASE | IS |
---|---|---|---|---|---|---|
1. Gyeonggi-do | 0.5881 | 0.5928 | 39.0869 | 0.8907 | 4.3296 | 93.6326 |
2. Seoul | 0.4712 | 0.4661 | 75.1024 | 0.7932 | 4.0248 | 88.2707 |
3. Gyeongsangbuk-do | 0.2837 | 0.2787 | 46.1892 | 0.8799 | 5.151 | 91.1619 |
4. Chungcheongnam-do | 0.3601 | 0.3543 | 60.7581 | 0.8288 | 5.4471 | 89.0829 |
5. Gyeongsangnam-do | 0.3251 | 0.3227 | 50.1645 | 0.861 | 5.3012 | 89.3275 |
6. Ulsan | 0.2728 | 0.2821 | 60.3819 | 0.8288 | 5.6868 | 80.2831 |
7. Incheon | 0.3336 | 0.3335 | 48.4683 | 0.8692 | 5.3418 | 90.6737 |
8. Jeollanam-do | 0.2292 | 0.2236 | 57.4244 | 0.8578 | 6.3423 | 92.7212 |
9. Busan | 0.2557 | 0.2635 | 47.6777 | 0.8717 | 4.1725 | 92.475 |
10. Chungcheongbuk-do | 0.3176 | 0.3247 | 65.2028 | 0.824 | 6.6471 | 88.5009 |
11. Jeollabuk-do | 0.2037 | 0.1973 | 60.1445 | 0.8585 | 5.1246 | 91.9652 |
12. Daegu | 0.1451 | 0.1522 | 64.4493 | 0.8582 | 4.9516 | 89.3686 |
13. Gwangju | 0.1256 | 0.1263 | 75.1186 | 0.8431 | 5.259 | 89.4027 |
14. Gangwon-do | 0.248 | 0.24 | 72.4061 | 0.821 | 9.7565 | 89.1708 |
15. Daejeon | 0.1194 | 0.1209 | 100.567 | 0.8146 | 7.1664 | 86.3329 |
16. Jeju-do | 0.0135 | 0.0133 | 151.002 | 0.7765 | 4.1075 | 86.9295 |
17. Sejong | 0.4475 | 0.4469 | 79.2421 | 0.7168 | 34.4763 | 87.8191 |
1 | Bakhtiari and Dehghanizadeh (2012) offer an alternative, called the adjusted interindustry location quotient (ACILQ), which consists of adjusting the CILQ quotient based on the size of the region whose table is to be estimated. , where y . Due to the tangential structure of the adjustment parameter K, it is guaranteed that this parameter takes values in the interval [0,1]. Although it is true that in the case study offered for the province of Yazd, in Iran, it improves the SLQ, CILQ, and FLQ ratios for all sectors, it is no less true that the methodology of comparing results based on absolute deviations from the mean or from the mean, without weighting, is not the one normally used in the discipline, so that this methodology, while certainly attractive, should be subjected to evaluation in other contexts, territories, and according to the commonly used goodness-of-fit statistics. |
References
- Arto, Iñaki, José M. Rueda-Cantuche, and Glen P. Peters. 2014. Comparing the Gtap-Mrio and Wiod Databases for Carbon Footprint Analysis. Economic Systems Research 26: 327–53. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiari, Sadegh, and Majid Dehghanizadeh. 2012. Proposing a new version of location quotients for estimating regional input-output coefficients: A case study of Iran’s Yazd province. African Journal of Business Management 6: 6903–9. [Google Scholar] [CrossRef]
- Bonfiglio, Andrea. 2009. On the parameterization of techniques for representing regional economic structures. Economic Systems Research 21: 115–27. [Google Scholar] [CrossRef]
- Flegg, Anthony T., and C. D. Webber. 1997. On the Appropriate Use of Location Quotients in Generating Regional Input-Output Tables: Reply. Regional Studies 31: 795–805. [Google Scholar] [CrossRef]
- Flegg, Anthony T., and C. D. Webber. 2000. Regional size, regional specialization and the FLQ formula. Regional Studies 34: 563–69. [Google Scholar] [CrossRef]
- Flegg, Anthony T., and Timo Tohmo. 2019. The regionalization of national input-output tables: A study of South Korean regions. Papers in Regional Science 98: 601–20. [Google Scholar] [CrossRef]
- Flegg, Anthony T., C. D. Webber, and M. V. Elliott. 1995. On the Appropriate Use of Location Quotients in Generating Regional Input-Output Tables. Regional Studies 29: 547–61. [Google Scholar] [CrossRef]
- Flegg, Anthony T., Guiseppe R. Lamonica, Francesco M. Chelli, Maria C. Recchioni, and Timo Tohmo. 2021. A new approach to modelling the input–output structure of regional economies using non-survey methods. Journal of Economic Structures 10: 12. [Google Scholar] [CrossRef]
- Flegg, Anthony T., Leonardo J. Mastronardi, and Carlos A. Romero. 2016. Evaluating the FLQ and AFLQ formulae for estimating regional input coefficients: Empirical evidence for the province of Córdoba, Argentina. Economic Systems Research 28: 21–37. [Google Scholar] [CrossRef]
- Flegg, Anthony T., Yongming Huang, and Timo Tohmo. 2014. Cross-Hauling and Regional Input-Output Tables: The Case of the Province of Hubei, China (No. 1310). Bristol: Department of Accounting, Economics and Finance, Bristol Business School, University of the West of England. [Google Scholar]
- Fujimoto, Takashi. 2019. Appropriate assumption on cross-hauling national input–output table regionalization. Spatial Economic Analysis 14: 106–28. [Google Scholar] [CrossRef]
- Jahn, Malte. 2017. Extending the FLQ formula: A location quotient-based interregional input–output framework. Regional Studies 51: 1518–29. [Google Scholar] [CrossRef]
- Kowalewski, Julia. 2015. Regionalization of National Input–Output Tables: Empirical Evidence on the Use of the FLQ Formula. Regional Studies 49: 240–50. [Google Scholar] [CrossRef]
- Lamonica, Giuseppe Ricciardo, and Francesco Maria Chelli. 2018. The performance of non-survey techniques for constructing sub-territorial input-output tables. Papers in Regional Science 97: 1169–202. [Google Scholar] [CrossRef]
- Lampiris, Georgios, Christos Karelakis, and Efstratios Loizou. 2019. Comparison of non-survey techniques for constructing regional input–output tables. Annals of Operations Research 294: 225–66. [Google Scholar] [CrossRef]
- López, Xesús Pereira, André Carrascal Incera, and Melchor Fernández Fernández. 2013. Cocientes de localización mediante una doble parametrización (Location Quotients Using a Double Parameterisation). IDEAS Working Paper Series from RePEc; Hamilton: RePEc. [Google Scholar]
- McCann, Philip, and John H. Ll Dewhurst. 1998. Regional size, industrial location and input-output expenditure coefficients. Regional Studies 32: 435–44. [Google Scholar] [CrossRef]
- Miller, Ronald E., and Peter D. Blair. 2009. Input-Output Analysis Foundations and Extensions, 2nd ed. New York: Cambrige Univesrity Press. [Google Scholar]
- Pereira-López, Xesús, André Carrascal-Incera, and Melchor Fernández-Fernández. 2020. A bidimensional reformulation of location quotients for generating input-output tables. Spatial Economic Analysis 15: 476–93. [Google Scholar] [CrossRef]
- Pereira-López, Xesús, Napoleón Guillermo Sánchez-Chóez, and Melchor Fernández-Fernández. 2021. Performance of bidimensional location quotients for constructing input–output tables. Journal of Economic Structures 10: 7. [Google Scholar] [CrossRef]
- Ramos, M. C. 1998. Indirect Estimation of Input-Output Coefficients. Working Paper 153/98. Oviedo: Faculty of Economics and Business Studies. [Google Scholar]
- Riddington, Geoff, Hervey Gibson, and John Anderson. 2006. Comparison of gravity model, survey and location quotient-based local area tables and multipliers. Regional Studies 40: 1069–81. [Google Scholar] [CrossRef]
- Romero, Carlos Adrian, Leonardo Javier Mastronardi, and Magal´ı Julieta Faye. 2012. Location Quotient Analysis. The Case of Cordoba State. In Munich Personal RePEc Archive. Available online: https://core.ac.uk/download/pdf/211602398.pdf (accessed on 1 September 2019).
- Round, Jeffery I. 1978. An interregional Input-Output approach to the evaluation of nonsurvey methods. Journal of Regional Science 18: 179–94. [Google Scholar] [CrossRef]
- Sargento, Ana L. M., Pedro Nogueira Ramos, and Geoffrey J. D. Hewings. 2012. Inter-regional trade flow estimation through non-survey models: An empirical assessment. Economic Systems Research 24: 173–93. [Google Scholar] [CrossRef]
- Schaffer, William A., and Kong Chu. 1969. Nonsurvey techniques for constructing regional interindustry models. Papers of the Regional Science Association 23: 83–101. [Google Scholar] [CrossRef]
- Tarancón, Miguel Ángel Tarancón. 2002. Metodología de ajuste y coherencia de tablas input-output. aplicación a la evaluación del impacto económico de la inversión en infraestructuras del transporte (Methodology of Adjustment and Coherence of Input-Output Tables. Application to the Evaluation of the Economic Impact of Investment in Transport Infrastructure). Doctoral thesis, University of Castilla La Mancha, Ciudad Real, Spain. [Google Scholar]
- Temurshoev, Umed, Colin Webb, and Norihiko Yamano. 2011. Projection of supply and use tables: Methods and their empirical assessment. Economic Systems Research 23: 91–123. [Google Scholar] [CrossRef]
- Valderas, Juan Manuel. 2015. Updating of Input-Output Frameworks through Projection Methods. Study, Application and Empirical Evaluation in Origin and Destination Tables at Basic Prices for Several European Union Countries. Seville: University of Seville. [Google Scholar]
- Valderas-Jaramillo, Juan Manuel, José M. Rueda-Cantuche, Elena Olmedo, and Joerg Beutel. 2019. Projecting supply and use tables: New variants and fair comparisons. Economic Systems Research 31: 423–44. [Google Scholar] [CrossRef]
- Zhao, Xiaoyun, and Sung-Goan Choi. 2015. On the regionalization of input–output tables with an industry-specific location quotient. Annals of Regional Science 54: 901–26. [Google Scholar] [CrossRef]
Regional Size * (%) | FLQ | AFLQ | 2D-LQ | ACILQ | MINIMUM WAPE | |
---|---|---|---|---|---|---|
1. Gyeonggi-do | 22.85 | 41.1032 | 81.524 | 37.1578 | 57.7978 | 2D-LQ |
2. Seoul | 18.97 | 60.3231 | 976.6543 | 74.775 | 73.093 | FLQ |
3. Gyeongsangbuk-do | 7.00 | 55.7305 | 68.4707 | 45.3338 | 69.2217 | 2D-LQ |
4. Chungcheongnam-do | 6.96 | 69.4134 | 70.5892 | 58.7928 | 90.1735 | 2D-LQ |
5. Gyeongsangnam-do | 6.93 | 55.5216 | 71.6967 | 47.4954 | 61.2203 | 2D-LQ |
6. Ulsan | 6.32 | 74.3943 | 90.0028 | 57.863 | 93.3422 | 2D-LQ |
7. Incheon | 4.96 | 52.0759 | 56.8124 | 47.3581 | 86.4897 | 2D-LQ |
8. Jeollanam-do | 4.89 | 66.1587 | 90.7174 | 56.4066 | 75.8863 | 2D-LQ |
9. Busan | 4.73 | 50.2127 | 65.0186 | 43.8702 | 62.5571 | 2D-LQ |
10. Chungcheongbuk-do | 3.47 | 72.7577 | 79.2497 | 64.0712 | 92.4192 | 2D-LQ |
11. Jeollabuk-do | 2.82 | 63.2096 | 77.6713 | 56.5918 | 73.858 | 2D-LQ |
12. Daegu | 2.82 | 59.2067 | 103.1339 | 58.1531 | 70.0134 | 2D-LQ |
13. Gwangju | 2.07 | 69.6581 | 95.1578 | 56.8449 | 83.3072 | 2D-LQ |
14. Gangwon-do | 1.97 | 67.2204 | 72.4614 | 69.378 | 88.4054 | FLQ |
15. Daejeon | 1.92 | 80.4275 | 94.3827 | 71.1432 | 113.2094 | 2D-LQ |
16. Jeju-do | 0.81 | 70.6293 | 238.9962 | 72.3739 | 79.6553 | FLQ |
17. Sejong | 0.50 | 87.7021 | 93.8636 | 77.591 | 162.8571 | 2D-LQ |
Region | Regional Size * (%) | WAPE | ||
---|---|---|---|---|
1. Gyeonggi-do | 22.85 | 0 | 0.5 | 37.1578 |
2. Seoul | 18.97 | 2 | 0.52 | 74.7750 |
3. Gyeongsangbuk-do | 7.00 | 0.2 | 0.3 | 45.3338 |
4. Chungcheongnam-do | 6.96 | 0.1 | 0.37 | 58.7928 |
5. Gyeongsangnam-do | 6.93 | 0.2 | 0.26 | 47.4954 |
6. Ulsan | 6.32 | 0.1 | 0.27 | 57.8630 |
7. Incheon | 4.96 | 0.5 | 0.32 | 47.3581 |
8. Jeollanam-do | 4.89 | 0.1 | 0.26 | 56.4066 |
9. Busan | 4.73 | 0.7 | 0.23 | 43.8702 |
10. Chungcheongbuk-do | 3.47 | 0 | 0.38 | 64.0712 |
11. Jeollabuk-do | 2.82 | 0 | 0.26 | 56.5918 |
12. Daegu | 2.82 | 0 | 0.24 | 58.1531 |
13. Gwangju | 2.07 | 0.6 | 0.21 | 56.8449 |
14. Gangwon-do | 1.97 | 0 | 0.29 | 69.3780 |
15. Daejeon | 1.92 | 0 | 0.29 | 71.1432 |
16. Jeju-do | 0.81 | 1.8 | 0.3 | 72.3739 |
17. Sejong | 0.50 | 0 | 0.35 | 77.5910 |
Region | Regional Size * (%) | Number | (%) | Min | Max | Stand. Deviat. | Min | Max | Stand. Deviat. |
---|---|---|---|---|---|---|---|---|---|
1. Gyeonggi-do | 22.85 | 579 | 27.3% | 0 | 2 | 0.606 | 0.35 | 0.66 | 0.081 |
3. Gyeongsangbuk-do | 7.00 | 197 | 9.3% | 0.1 | 0.7 | 0.185 | 0.16 | 0.5 | 0.089 |
4. Chungcheongnam-do | 6.96 | 334 | 15.8% | 0.1 | 0.9 | 0.236 | 0.19 | 0.64 | 0.119 |
5. Gyeongsangnam-do | 6.93 | 157 | 7.4% | 0.1 | 0.6 | 0.161 | 0.14 | 0.43 | 0.080 |
6. Ulsan | 6.32 | 231 | 10.9% | 0.1 | 0.6 | 0.159 | 0.11 | 0.58 | 0.121 |
7. Incheon | 4.96 | 144 | 6.8% | 0.1 | 0.8 | 0.207 | 0.23 | 0.46 | 0.060 |
8. Jeollanam-do | 4.89 | 617 | 29.1% | 0 | 2 | 0.606 | 0.15 | 0.49 | 0.086 |
9. Busan | 4.73 | 219 | 10.3% | 0.1 | 1.4 | 0.338 | 0.15 | 0.35 | 0.054 |
10. Chungcheongbuk-do | 3.47 | 769 | 36.3% | 0 | 2 | 0.605 | 0.23 | 0.62 | 0.106 |
11. Jeollabuk-do | 2.82 | 498 | 23.5% | 0 | 2 | 0.605 | 0.18 | 0.44 | 0.069 |
12. Daegu | 2.82 | 167 | 7.9% | 0 | 2 | 0.604 | 0.21 | 0.3 | 0.024 |
13. Gwangju | 2.07 | 381 | 18.0% | 0.1 | 1.5 | 0.382 | 0.11 | 0.42 | 0.082 |
15. Daejeon | 1.92 | 764 | 36.0% | 0 | 2 | 0.606 | 0.18 | 0.62 | 0.108 |
17. Sejong | 0.50 | 700 | 33.0% | 0 | 2 | 0.606 | 0.26 | 0.72 | 0.106 |
α | ||||||
---|---|---|---|---|---|---|
Region | Regional Size * (%) | Number | (%) | Min | Max | Standard Deviation |
1. Gyeonggi-do | 22.85 | 21 | 100.00% | 0 | 2 | 0.620 |
3. Gyeongsangbuk-do | 7.00 | 7 | 33.30% | 0.1 | 0.7 | 0.216 |
4. Chungcheongnam-do | 6.96 | 8 | 38.10% | 0.1 | 0.8 | 0.245 |
5. Gyeongsangnam-do | 6.93 | 6 | 28.60% | 0.1 | 0.6 | 0.187 |
6. Ulsan | 6.32 | 5 | 23.80% | 0.1 | 0.5 | 0.158 |
7. Incheon | 4.96 | 7 | 33.30% | 0.1 | 0.7 | 0.216 |
8. Jeollanam-do | 4.89 | 21 | 100.00% | 0 | 2 | 0.620 |
9. Busan | 4.73 | 12 | 57.10% | 0.1 | 1.2 | 0.361 |
10. Chungcheongbuk-do | 3.47 | 21 | 100.00% | 0 | 2 | 0.620 |
11. Jeollabuk-do | 2.82 | 21 | 100.00% | 0 | 2 | 0.620 |
12. Daegu | 2.82 | 21 | 100.00% | 0 | 2 | 0.620 |
13. Gwangju | 2.07 | 15 | 71.40% | 0.1 | 1.5 | 0.447 |
15. Daejeon | 1.92 | 21 | 100.00% | 0 | 2 | 0.620 |
17. Sejong | 0.50 | 14 | 66.70% | 0 | 1.3 | 0.418 |
Region | Regional Size * (%) | WAPE | ||
---|---|---|---|---|
1. Gyeonggi-do | 22.85 | 0.5881 | 0.5928 | 39.0869 |
2. Seoul | 18.97 | 0.4712 | 0.4661 | 75.1024 |
3. Gyeongsangbuk-do | 7.00 | 0.2837 | 0.2787 | 46.1892 |
4. Chungcheongnam-do | 6.96 | 0.3601 | 0.3543 | 60.7581 |
5. Gyeongsangnam-do | 6.93 | 0.3251 | 0.3227 | 50.1645 |
6. Ulsan | 6.32 | 0.2728 | 0.2821 | 60.3819 |
7. Incheon | 4.96 | 0.3336 | 0.3335 | 48.4683 |
8. Jeollanam-do | 4.89 | 0.2292 | 0.2236 | 57.4244 |
9. Busan | 4.73 | 0.2557 | 0.2635 | 47.6777 |
10. Chungcheongbuk-do | 3.47 | 0.3176 | 0.3247 | 65.2028 |
11. Jeollabuk-do | 2.82 | 0.2037 | 0.1973 | 60.1445 |
12. Daegu | 2.82 | 0.1451 | 0.1522 | 64.4493 |
13. Gwangju | 2.07 | 0.1256 | 0.1263 | 75.1186 |
14. Gangwon-do | 1.97 | 0.2480 | 0.2400 | 72.4061 |
15. Daejeon | 1.92 | 0.1194 | 0.1209 | 100.5671 |
16. Jeju-do | 0.81 | 0.0135 | 0.0133 | 151.0019 |
17. Sejong | 0.50 | 0.4475 | 0.4469 | 79.2421 |
WAPE | |||||||
---|---|---|---|---|---|---|---|
Region/Year | Regional Size * (%) | FLQ | AFLQ | 2D-LQ | ACILQ | MINIMUM | |
Catalonia 2011 | 20.53 | 93.328 | 129.356 | 108.862 | 98.172 | 93.328 | FLQ |
Community of Madrid 2010 | 18.87 | 77.905 | 83.981 | 76.910 | 89.381 | 76.910 | 2D-LQ |
Andalusia 2010 | 13.20 | 60.655 | 66.761 | 55.726 | 62.871 | 55.726 | 2D-LQ |
Basque Country 2015 | 6.62 | 63.174 | 72.237 | 63.198 | 67.947 | 63.174 | FLQ |
Galicia 2011 | 5.44 | 69.420 | 73.013 | 63.198 | 71.180 | 63.198 | 2D-LQ |
Canary Islands 2005 | 3.50 | 84.930 | 92.687 | 76.539 | 89.014 | 76.539 | 2D-LQ |
Castilla-La Mancha 2005 | 3.48 | 73.090 | 81.874 | 69.252 | 75.958 | 69.252 | 2D-LQ |
Aragon 2005 | 3.25 | 88.096 | 96.102 | 92.194 | 123.387 | 88.096 | FLQ |
Balearic Islands 2004 | 2.19 | 75.940 | 91.000 | 73.688 | 75.927 | 73.688 | 2D-LQ |
Principality of Asturias 2015 | 1.89 | 77.158 | 90.228 | 73.826 | 78.785 | 73.826 | 2D-LQ |
Community of Navarra 2010 | 1.88 | 73.724 | 86.877 | 68.909 | 75.494 | 68.909 | 2D-LQ |
Cantabria 2015 | 1.09 | 74.092 | 79.468 | 69.459 | 77.478 | 69.459 | 2D-LQ |
La Rioja 2008 | 0.77 | 83.874 | 86.426 | 80.089 | 97.820 | 80.089 | 2D-LQ |
Region/Year | Regional Size * (%) | WAPE | Dev. s/Optimum | ||
---|---|---|---|---|---|
1. Catalonia 2011 | 20.53 | 0.7939 | 0.4115 | 126.6419 | 35.70% |
2. Community of Madrid 2010 | 18.87 | 0.5362 | 0.5192 | 77.1477 | 0.31% |
3. Andalusia 2010 | 13.20 | 0.8200 | 0.3076 | 56.8420 | 2.00% |
4. Basque Country 2015 | 6.62 | 0.3001 | 0.3568 | 65.1524 | 3.13% |
5. Galicia 2011 | 5.44 | 0.4485 | 0.3010 | 68.0631 | 7.70% |
6. Canary Islands 2005 | 3.50 | 11.505 | 0.0683 | 93.8604 | 22.63% |
7. Castilla-La Mancha 2005 | 3.48 | 0.2264 | 0.2395 | 69.5357 | 0.41% |
8. Aragon 2005 | 3.25 | 0.2145 | 0.2264 | 108.1597 | 22.78% |
9. Balearic Islands 2004 | 2.19 | 12.118 | 0.0453 | 84.0523 | 14.06% |
10. Principality of Asturias 2015 | 1.89 | 0.1933 | 0.1354 | 74.7481 | 1.25% |
11. Community of Navarra 2010 | 1.88 | 0.1333 | 0.0950 | 72.4648 | 5.16% |
12. Cantabria 2015 | 1.09 | 0.1217 | 0.1761 | 69.9141 | 0.66% |
13. La Rioja 2008 | 0.77 | 0.0784 | 0.1859 | 82.2648 | 2.72% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Alpañez, R.; Buendía-Azorín, J.D.; Sánchez-de-la-Vega, M.d.M. A New Improvement Proposal to Estimate Regional Input–Output Structure Using the 2D-LQ Approach. Economies 2023, 11, 20. https://doi.org/10.3390/economies11010020
Martínez-Alpañez R, Buendía-Azorín JD, Sánchez-de-la-Vega MdM. A New Improvement Proposal to Estimate Regional Input–Output Structure Using the 2D-LQ Approach. Economies. 2023; 11(1):20. https://doi.org/10.3390/economies11010020
Chicago/Turabian StyleMartínez-Alpañez, Rubén, José Daniel Buendía-Azorín, and María del Mar Sánchez-de-la-Vega. 2023. "A New Improvement Proposal to Estimate Regional Input–Output Structure Using the 2D-LQ Approach" Economies 11, no. 1: 20. https://doi.org/10.3390/economies11010020
APA StyleMartínez-Alpañez, R., Buendía-Azorín, J. D., & Sánchez-de-la-Vega, M. d. M. (2023). A New Improvement Proposal to Estimate Regional Input–Output Structure Using the 2D-LQ Approach. Economies, 11(1), 20. https://doi.org/10.3390/economies11010020