# The Non-Euclidean Hydrodynamic Klein–Gordon Equation with Perturbative Self-Interacting Field

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. The Hydrodynamic KGE with Perturbative Self-Interaction

#### Charged Boson

## 3. Non-Euclidean Space–Time

#### Charged Boson in Non-Euclidean Space–Time

## 4. Discussion and Conclusions

## Conflicts of Interest

## References

- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Bousso, R. The Holographic principle. Rev. Mod. Phys.
**2002**, 74, 825. [Google Scholar] [CrossRef] - Ashtekar, A. Introduction to loop quantum gravity and cosmology. In Quantum gravity and quantum cosmology; Springer: Berlin, Germany, 2013; pp. 31–56. [Google Scholar]
- Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Giddings, S.B. Is string theory a theory of quantum gravity? Found. Phys.
**2013**, 43, 115–139. [Google Scholar] [CrossRef] - Dewitt, B.S. Quantum theory of gravity. I. The canonical theory. Phys. Rev.
**1967**, 160, 1113. [Google Scholar] [CrossRef] - Gupta, S.N. Quantization of Einstein’s gravitational field: General treatment. Proc. Phys. Soc. Sect. A
**1952**, 65, 608–619. [Google Scholar] [CrossRef] - Gupta, S.N.; Radford, S.F. Quantum field-theoretical electromagnetic and gravitational two-particle potentials. Phys. Rev. D
**1980**, 21, 2213. [Google Scholar] [CrossRef] - Faddeev, L.D.; Popov, V.N. Feynman diagrams for the Yang-Mills field. Phys. Lett. B
**1967**, 25, 29–30. [Google Scholar] [CrossRef] - Mandelstam, S. Feynman rules for the gravitational field from the coordinate-independent field-theoretic formalism. Phys. Rev.
**1968**, 175, 1604. [Google Scholar] [CrossRef] - Schwinger, J. Quantized gravitational field. Phys. Rev.
**1963**, 130, 1253. [Google Scholar] [CrossRef] - Schwinger, J. Sources and gravitons. Phys. Rev.
**1968**, 173, 1264–1272. [Google Scholar] [CrossRef] - Weinberg, S. Photons and gravitons in S-matrix theory: Derivation of charge conservation and equality of gravitational and inertial mass. Phys. Rev. B
**1964**, 135, B1049. [Google Scholar] [CrossRef] - Iwasaki, Y. Quantum theory of gravitation vs. classical theory fourth-order potential. Prog. Theor. Phys.
**1971**, 46, 1587–1609. [Google Scholar] [CrossRef] - T Hooft, G.; Veltman, M.J.G. One-loop divergencies in the theory of gravitation. Ann. Henri Poincaré
**1974**, 20, 69–94. [Google Scholar] - Radkowski, A.F. Some aspects of the source description of gravitation. Ann. Phys.
**1970**, 56, 319–354. [Google Scholar] [CrossRef] - Capper, D.M.; Leibbrandt, G.; Ramon Medrano, M. Calculation of the graviton self-energy using dimensional regularization. Phys. Rev. D
**1973**, 8, 4320. [Google Scholar] [CrossRef] - Duff, M.J. Quantum corrections to the Schwarzschild solution. Phys. Rev. D
**1974**, 9, 1837. [Google Scholar] [CrossRef] - Capper, D.M.; Duff, M.J.; Halpern, L. Photon corrections to the graviton propagator. Phys. Rev. D
**1974**, 10, 461. [Google Scholar] [CrossRef] - Capper, D.M.; Duff, M.J. The one loop neutrino contribution to the graviton propagator. Nucl. Phys. B
**1974**, 82, 147–154. [Google Scholar] [CrossRef] - Duff, M.J.; Liu, J.T. Complementarity of the Maldacena and Randall-Sundrum pictures. Phys. Rev. Lett.
**2000**, 85, 2052. [Google Scholar] [CrossRef] [PubMed] - Odintsov, S.D.; Shapiro, I.L. General relativity as the low-energy limit in higher derivative quantum gravity. Class. Quantum Gravity
**1992**, 9, 873. [Google Scholar] [CrossRef] - Elizalde, E.; Odintsov, S.D.; Shapiro, I.L. Asymptotic regimes in quantum gravity at large distances and running Newtonian and cosmological constants. Class. Quantum Gravity
**1994**, 11, 1607. [Google Scholar] [CrossRef] - Elizalde, E.; Lousto, C.O.; Odintsov, S.D.; Romeo, A. GUT’s in curved spacetime: Running gravitational constants, Newtonian potential, and the quantum-corrected gravitational equations. Phys. Rev. D
**1995**, 52, 2202. [Google Scholar] [CrossRef] - Dalvit, D.A.R.; Mazzitelli, F.D. Running coupling constants, Newtonian potential, and nonlocalities in the effective action. Phys. Rev. D
**1994**, 50, 1001. [Google Scholar] [CrossRef] - Dalvit, D.A.R.; Mazzitelli, F.D. Geodesics, gravitons, and the gauge-fixing problem. Phys. Rev. D
**1997**, 56, 7779. [Google Scholar] [CrossRef] - Satz, A.; Mazzitelli, F.D.; Alvarez, E. Vacuum polarization around stars: Nonlocal approximation. Phys. Rev. D
**2005**, 71, 064001. [Google Scholar] [CrossRef] - Anderson, P.R.; Fabbri, A. Apparent universality of semiclassical gravity in the far field limit. Phys. Rev. D
**2007**, 75, 044015. [Google Scholar] [CrossRef] - Stephens, C.R.; Hooft, G.t.; Whiting, B.F. Black hole evaporation without information loss. Class. Quantum Gravity
**1994**, 11, 621. [Google Scholar] [CrossRef] - Hawking, S.W. Particle creation by black holes. Commun. Math. Phys.
**1975**, 43, 199–220. [Google Scholar] [CrossRef] - Parikh, M.K.; Wilczek, F. Hawking radiation as tunneling. Phys. Rev. Lett.
**2000**, 85, 5042–5045. [Google Scholar] [CrossRef] [PubMed] - Parikh, M.K. A secret tunnel through the horizon. Gen. Relat. Gravitat.
**2004**, 36, 2419–2422. [Google Scholar] [CrossRef] - Banerjee, R.; Majhi, B.R. Quantum tunneling beyond semiclassical approximation. J. High Energy Phys.
**2008**, 2008, 095. [Google Scholar] [CrossRef] - Angheben, M.; Nadalini, M.; Vanzo, L.; Zerbini, S. Hawking radiation as tunneling for extremal and rotating black holes. J. High Energy Phys.
**2005**, 2005, 014. [Google Scholar] [CrossRef] - Arzano, M.; Medved, A.J.M.; Vagenas, E.C. Hawking radiation as tunneling through the quantum horizon. J. High Energy Phys.
**2005**, 2005, 037. [Google Scholar] [CrossRef] - Banerjee, R.; Majhi, B.R. Hawking black body spectrum from tunneling mechanism. Phys. Lett. B
**2009**, 675, 243–245. [Google Scholar] [CrossRef] - Corda, C. Quasi-normal modes: The electrons of black holes as gravitational atoms? Implications for the black hole information puzzle. Adv. High Energy Phys.
**2015**, 2015, 867601. [Google Scholar] [CrossRef] - Hajcek, P.; Kiefer, C. Singularity avoidance by collapsing shells in quantum gravity. Int. J. Mod. Phys. D
**2001**, 10, 775–779. [Google Scholar] [CrossRef] - Bambi, C.; Malafarina, D.; Modesto, L. Non-singular quantum-inspired gravitational collapse. Phys. Rev. D
**2013**, 88, 044009. [Google Scholar] [CrossRef] - Rovelli, C.; Vidotto, F. Planck stars. Int. J. Mod. Phys. D
**2014**, 23, 1442026. [Google Scholar] [CrossRef] - Barrau, A.; Rovelli, C. Planck star phenomenology. Phys. Lett. B
**2014**, 739, 405–409. [Google Scholar] [CrossRef] [Green Version] - Carr, B.J.; Mureika, J.; Nicolini, P. Sub-Planckian black holes and the Generalized Uncertainty Principle. J. High Energy Phys.
**2015**, 2015, 1–24. [Google Scholar] [CrossRef] [Green Version] - T Hooft, G. The quantum black hole as a hydrogen atom: Microstates without strings attached. arXiv, 2016; arXiv:arXiv:1605.05119. [Google Scholar]
- Chiarelli, P. The quantum lowest limit to the black hole mass. Phys. Sci. Int. J.
**2016**, 9, 1–25. [Google Scholar] [CrossRef] - Einstein, A. Zum Kosmologischen Problem der Allgemeinen Relativit Atstheorie; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 1931; Volume 142, pp. 235–237. [Google Scholar]
- Carroll, S.M.; Press, W.H.; Turner, E.L. The cosmological constant. Annu. Rev. Astron. Astrophys.
**1992**, 30, 499–542. [Google Scholar] [CrossRef] - Zel’dovich, Y.B. The cosmological constant and the theory of elementary. Sov. Phys. Uspekhi
**1968**, 11, 381–393. [Google Scholar] [CrossRef] - Gamov, G. My World Line; Viking Press: New York, NY, USA, 1970; p. 44. [Google Scholar]
- Hubble, E.P. A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proc. Natl. Acad. Sci. USA
**1929**, 15, 168–173. [Google Scholar] [CrossRef] [PubMed] - Cohn, J.D. Living with Lambda. Astrophys. Space Sci.
**1998**, 259, 213–234. [Google Scholar] [CrossRef] - Sahni, V.; Starobinsky, A.A. The case for a positive cosmological Λ-Term. Int. J. Mod. Phys. D
**2000**, 9, 373–443. [Google Scholar] [CrossRef] - Turner, M.S. Dark matter and dark energy in the universe. In The Third Stromlo Symposium: The Galactic Halo, Proceedings of the Third Stromlo Symposium, Canberra, ACT, Australia, 17–21 August 1998; Gibson, B.K., Axelrod, T.S., Putman, M.E., Eds.; ASP Conference Series; ASP: San Francisco, CA, USA, 1998; Volume 165, pp. 431–452. [Google Scholar]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys.
**1989**, 61, 1–23. [Google Scholar] [CrossRef] - Dewitt, B.S. Quantum theory of gravity. II. The manifestly covariant theory. Phys. Rev.
**1967**, 162, 1195. [Google Scholar] [CrossRef] - Veltman, M. Gravitation, in Les Houches; Balian, R., Zinn-Justin, J., Eds.; Session XXVIII; North-Holland Publishing Company: Amsterdam, the Netherlands, 1976; p. 266. [Google Scholar]
- Goroff, M.H.; Sagnotti, A. The ultraviolet behavior of Einstein gravity. Nucl. Phys. B
**1986**, 266, 709–736. [Google Scholar] [CrossRef] - Van de Ven, A.E. Two-loop quantum gravity. Nucl. Phys. B
**1992**, 378, 309–366. [Google Scholar] [CrossRef] - Akhundov, A.; Shiekh, A. A Review of leading quantum gravitational corrections to Newtonian gravity. arXiv, 2006; arXiv:arXiv:gr-qc/0611091. [Google Scholar]
- Bialyniki-Birula, I.; Cieplak, M.; Kaminski, J. Theory of Quanta; Oxford University Press: New York, NY, USA, 1992; pp. 87–115. [Google Scholar]
- Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys Rev.
**1952**, 85, 166. [Google Scholar] [CrossRef] - Madelung, E.Z. Quantentheorie in hydrodynamischer Form. Z. Physik A
**1926**, 40, 322–326. [Google Scholar] [CrossRef] - Jánossy, L. Zum hydrodynamischen Modell der Quantenmechanik. Z. Phys.
**1962**, 169, 79–89. [Google Scholar] [CrossRef] - Aharonov, Y.; Bohm, D. Significance of electromagnetic potentials in quantum theory. Phys. Rev.
**1959**, 115, 485–491. [Google Scholar] [CrossRef] - Weiner, J.H. Statistical Mechanics of Elasticity; John Wiley & Sons: New York, NY, USA, 1983; pp. 315–317. [Google Scholar]
- Haas, F.; Eliasson, B.; Shukla, P.K. Relativistic Klein-Gordon-Maxwell multistream model for quantum plasmas. Phys. Rev. E
**2012**, 85, 056411. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Chiarelli, P. The CPT-Ricci scalar curvature symmetry in quantum electro-gravity. Int. J. Sci.
**2016**, 5, 36–58. [Google Scholar] [CrossRef] - Chiarelli, P. The Quantum-Gravity Equation Derived from the Minimum Action Principle, Submitted for Publication. Available online: https://www.researchgate.net/publication/318420781_The_quantum-gravity_equation_derived_from_the_minimum_action_principle (accessed on 1 September 2017).
- Guvenis, H. Hydrodynamische Formulierung der relativischen Quantenmechanik. Available online: http://gsjournal.net/Science-Journals/Essays/View/5241 (accessed on 9 January 2014).
- Chiarelli, P. Theoretical derivation of the cosmological constant in the framework of the hydrodynamic model of quantum gravity: The solution of the quantum vacuum catastrophe? Galaxies
**2016**, 4, 6. [Google Scholar] [CrossRef] - Weiner, J.H.; Askar, A. Particle method for the numerical solution of the time-dependent schrödinger equation. J. Chem. Phys.
**1971**, 54, 3534–3541. [Google Scholar] [CrossRef] - Koide, T.; Kodama, T. Stochastic variational method as quantization scheme: Field quantization of complex Klein-Gordon equation. Prog. Theor. Exp. Phys. 2015. [CrossRef]
- Chiarelli, P. The Planck law for particles with rest mass. Quantum Matter
**2016**, 5, 748–751. [Google Scholar] [CrossRef] - Hiley, B.J.; Callaghan, R.E. The Clifford Algebra approach to Quantum Mechanics A: The Schrödinger and Pauli Particles. arXiv, 2010; arXiv:arXiv:1011.4031. [Google Scholar]
- Landau, L.D.; Lifsits, E.M. Course of Theoretical Physics; Butterworth-Heinemann: Oxford, UK, 1976; Volume 2, pp. 309–335. [Google Scholar]
- Le Bellac, M. Quantum and Statistical Field Theory; Oxford Science Publication: Oxford, UK, 1991; pp. 315–337. [Google Scholar]
- Tsekov, R. Bohmian Mechanics versus Madelung Quantum Hydrodynamics. arXiv, 2009; arXiv:arXiv:0904.0723. [Google Scholar]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Chiarelli, P.
The Non-Euclidean Hydrodynamic Klein–Gordon Equation with Perturbative Self-Interacting Field. *Technologies* **2017**, *5*, 63.
https://doi.org/10.3390/technologies5040063

**AMA Style**

Chiarelli P.
The Non-Euclidean Hydrodynamic Klein–Gordon Equation with Perturbative Self-Interacting Field. *Technologies*. 2017; 5(4):63.
https://doi.org/10.3390/technologies5040063

**Chicago/Turabian Style**

Chiarelli, Piero.
2017. "The Non-Euclidean Hydrodynamic Klein–Gordon Equation with Perturbative Self-Interacting Field" *Technologies* 5, no. 4: 63.
https://doi.org/10.3390/technologies5040063