Artificial Intelligence in Biomedical Technology: Advances and Challenges
1. Introduction
2. Emerging Trends
2.1. Compact and Executable Models in Real Time
2.2. Use of Synthetic Data for Training and Validation
2.3. Explainability as a Functional Component of Design
2.4. Expansion of Functional Scope Toward Social and Preventive Problems
3. Persistent Gaps and Challenges
4. Future Perspectives
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Szilágyi, L.; Kovács, L. Special issue: Artificial intelligence technology in medical image analysis. Appl. Sci. 2024, 14, 2180. [Google Scholar] [CrossRef]
- Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef]
- Tjoa, E.; Guan, C. A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4793–4813. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, H.A.; Alharbi, K.K.; Hassan, C.A.U. Enhancing elderly fall detection through IoT-enabled smart flooring and AI for independent living sustainability. Sustainability 2023, 15, 15695. [Google Scholar] [CrossRef]
- Gou, F.; Liu, J.; Xiao, C.; Wu, J. Research on artificial-intelligence-assisted medicine: A survey on medical artificial intelligence. Diagnostics 2024, 14, 1472. [Google Scholar] [CrossRef] [PubMed]
- Kolosov, D.; Kelefouras, V.; Kourtessis, P.; Mporas, I. Contactless camera-based heart rate and respiratory rate monitoring using AI on hardware. Sensors 2023, 23, 4550. [Google Scholar] [CrossRef] [PubMed]
- Müller-Franzes, G.; Niehues, J.M.; Khader, F.; Arasteh, S.T.; Haarburger, C.; Kuhl, C.; Wang, T.; Han, T.; Nolte, T.; Nebelung, S.; et al. A multimodal comparison of latent denoising diffusion probabilistic models and generative adversarial networks for medical image synthesis. Sci. Rep. 2023, 13, 12098. [Google Scholar] [CrossRef] [PubMed]
- Hildt, E. What is the role of explainability in medical artificial intelligence? A case-based approach. Bioengineering 2025, 12, 375. [Google Scholar] [CrossRef] [PubMed]
- García-Gil, G.; López-Armas, G.d.C.; Sánchez-Escobar, J.J.; Salazar-Torres, B.A.; Rodríguez-Vázquez, A.N. Real-time machine learning for accurate Mexican sign language identification: A distal phalanges approach. Technologies 2024, 12, 152. [Google Scholar] [CrossRef]
- Villa, M.; Casilari, E. Wearable fall detectors based on low power transmission systems: A systematic review. Technologies 2024, 12, 166. [Google Scholar] [CrossRef]
- Baraneedharan, P.; Kalaivani, S.; Vaishnavi, S.; Somasundaram, K. Revolutionizing healthcare: A review on cutting-edge innovations in Raspberry Pi-powered health monitoring sensors. Comput. Biol. Med. 2025, 190, 110109. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Mahmoud, Q.H. A systematic review of synthetic data generation techniques using generative AI. Electronics 2024, 13, 3509. [Google Scholar] [CrossRef]
- Antoniadi, A.M.; Du, Y.; Guendouz, Y.; Wei, L.; Mazo, C.; Becker, B.A.; Mooney, C. Current challenges and future opportunities for XAI in machine Learning-based Clinical Decision Support Systems: A systematic review. Appl. Sci. 2021, 11, 5088. [Google Scholar] [CrossRef]
- Nagendran, M.; Chen, Y.; Lovejoy, C.A.; Gordon, A.C.; Komorowski, M.; Harvey, H.; Topol, E.J.; Ioannidis, J.P.A.; Collins, G.S.; Maruthappu, M. Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies. BMJ 2020, 368, m689. [Google Scholar] [CrossRef] [PubMed]
- Petersson, L.; Larsson, I.; Nygren, J.M.; Nilsen, P.; Neher, M.; Reed, J.E.; Tyskbo, D.; Svedberg, P. Challenges to implementing artificial intelligence in healthcare: A qualitative interview study with healthcare leaders in Sweden. BMC Health Serv. Res. 2022, 22, 850. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Akhlaq, F.; Imran, A.S.; Kastrati, Z.; Daudpota, S.M.; Moosa, M. The enlightening role of explainable artificial intelligence in medical & healthcare domains: A systematic literature review. Comput. Biol. Med. 2023, 166, 107555. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aviles, M.; Tovar-Arriaga, S.; Pérez-Soto, G.I.; Camarillo-Gómez, K.A.; Rodríguez-Reséndiz, J. Artificial Intelligence in Biomedical Technology: Advances and Challenges. Technologies 2025, 13, 208. https://doi.org/10.3390/technologies13050208
Aviles M, Tovar-Arriaga S, Pérez-Soto GI, Camarillo-Gómez KA, Rodríguez-Reséndiz J. Artificial Intelligence in Biomedical Technology: Advances and Challenges. Technologies. 2025; 13(5):208. https://doi.org/10.3390/technologies13050208
Chicago/Turabian StyleAviles, Marcos, Saul Tovar-Arriaga, Gerardo Israel Pérez-Soto, Karla A. Camarillo-Gómez, and Juvenal Rodríguez-Reséndiz. 2025. "Artificial Intelligence in Biomedical Technology: Advances and Challenges" Technologies 13, no. 5: 208. https://doi.org/10.3390/technologies13050208
APA StyleAviles, M., Tovar-Arriaga, S., Pérez-Soto, G. I., Camarillo-Gómez, K. A., & Rodríguez-Reséndiz, J. (2025). Artificial Intelligence in Biomedical Technology: Advances and Challenges. Technologies, 13(5), 208. https://doi.org/10.3390/technologies13050208