Integrating Advanced Neuro-Oncology Imaging into Guideline-Directed Multimodal Therapy for Brain Metastases: Evaluating Comparative Treatment Effectiveness
Abstract
1. Introduction
2. Material and Methods
3. The Multidisciplinary Treatment Landscape for Brain Metastases
3.1. The Foundational Role of Local Control: Surgical Resection and Stereotactic Radiosurgery (SRS)
3.1.1. Surgical Resection
3.1.2. Stereotactic Radiosurgery (SRS)
3.2. Whole-Brain Radiation Therapy (WBRT): Evolving Indications and Mitigation of Neurotoxicity
3.3. The Paradigm Shift with Systemic Therapies
4. Foundational Imaging Modalities in Neuro-Oncology
4.1. Magnetic Resonance Imaging (MRI): Principles and Diagnostic Utility
4.1.1. Several Specialized MRI Techniques Are Employed for Comprehensive Brain Tumor Diagnosis and Monitoring
Intravenous (IV) Gadolinium-Enhanced MRI
Diffusion-Weighted Imaging (DWI)
Perfusion Imaging (PWI)
Functional MRI (fMRI)
Magnetic Resonance Spectroscopy (MRS)
4.2. Positron Emission Tomography (PET) Scan: Principles and Metabolic Insights
4.2.1. Key Radiotracers Utilized in Neuro-Oncology
18F-Fluorodeoxyglucose (18F-FDG)
Amino Acid PET Tracers (e.g., [18F]FET, [11C]MET, [18F]FDOPA)
4.2.2. Clinical Applications of PET Scans in Neuro-Oncology Are Diverse and Critical
Diagnosis and Staging
Treatment Planning
Monitoring Treatment Response
Differentiation of Tumor Progression from Treatment-Related Changes
4.3. Perfusion-Weighted Imaging (PWI): Assessing Tumor Vascularity
4.3.1. The Primary PWI Techniques Include
Dynamic Susceptibility Contrast (DSC) MRI
Arterial Spin Labeling (ASL)
4.3.2. Clinical Utility of PWI in Neuro-Oncology Includes
Differentiation Between Tumor Types
High-Grade Gliomas
Low-Grade Gliomas and Benign Tumors
Lymphomas
Hemangioblastomas
Metastases
Assessment of Tumor Grade and Aggressiveness
Identification of Tumor Boundaries and Infiltration
Differentiation from Treatment-Related Changes
4.4. Magnetic Resonance Spectroscopy (MRS): Biochemical Characterization of Brain Lesions
4.4.1. Key Metabolites and Their Significance Include
4.4.2. Clinical Applications of MRS in Brain Tumor Diagnosis, Characterization, and Differentiation Are Crucial
Tumor Type and Aggressiveness
Differentiation of Tumor Recurrence from Radiation Necrosis
4.4.3. Diagnostic Accuracy (Meta-Analysis Findings)
5. Advanced Imaging in the Critical Post-Treatment Setting: Differentiating Recurrence from Necrosis
5.1. Perfusion-Weighted Imaging (PWI): Quantifying Neovascularity to Unmask True Progression
5.2. Magnetic Resonance Spectroscopy (MRS): A Non-Invasive Metabolic Biopsy
5.3. Amino Acid PET: Exploiting Tumor Metabolism for Superior Diagnostic Clarity
6. Guideline-Informed Therapeutic Strategies by Primary Malignancy
6.1. Non-Small Cell Lung Cancer (NSCLC)
6.2. Breast Cancer
6.3. Melanoma
7. Discussion
7.1. Horizons
7.2. Synthesis: The Four Pillars of Modern Brain Metastasis Management
7.3. Unresolved Questions and Clinical Controversies
7.4. Concrete Research Challenges
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 18F-FDG | 18F-Fluorodeoxyglucose |
| ALK | Anaplastic Lymphoma Kinase |
| ASL | Arterial Spin Labeling |
| BBB | Blood–Brain Barrier |
| BCBM | Breast Cancer Brain Metastasis |
| BM | Brain Metastases |
| CBF | Cerebral Blood Flow |
| CBV | Cerebral Blood Volume |
| Cho | Choline |
| CNS | Central Nervous System |
| CNS-PFS | Central Nervous System Progression-Free Survival |
| Cr | Creatine |
| DSC | Dynamic Susceptibility Contrast |
| EGFR | Epidermal Growth Factor Receptor |
| fMRI | Functional Magnetic Resonance Imaging |
| HER2 | Human Epidermal Growth Factor Receptor 2 |
| ICIs | Immune Checkpoint Inhibitors |
| iORR | Intracranial Objective Response Rate |
| LINAC | Linear Accelerator |
| MBM | Melanoma Brain Metastases |
| MRI | Magnetic Resonance Imaging |
| MRS | Magnetic Resonance Spectroscopy |
| MTT | Mean Transit Time |
| NAA | N-acetyl Aspartate |
| NSCLC | Non-Small Cell Lung Cancer |
| ORR | Objective Response Rate |
| OS | Overall Survival |
| PET | Positron Emission Tomography |
| PFS | Progression-Free Survival |
| PWI | Perfusion-Weighted Imaging |
| rCBV | Relative Cerebral Blood Volume |
| RT | Radiotherapy |
| SRS | Stereotactic Radiosurgery |
| TKI | Tyrosine Kinase Inhibitor |
| TKIs | Tyrosine Kinase Inhibitors |
| WBRT | Whole-Brain Radiation Therapy |
References
- Teixeira Loiola de Alencar, V.; Guedes Camandaroba, M.P.; Pirolli, R.; Fogassa, C.A.Z.; Cordeiro de Lima, V.C. Immunotherapy as Single Treatment for Patients with NSCLC with Brain Metastases: A Systematic Review and Meta-Analysis-the META-L-BRAIN Study. J. Thorac. Oncol. 2021, 16, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, T.J.; Smits, M.; Boxerman, J.; Huang, R.; Barboriak, D.P.; Weller, M.; Chung, C.; Tsien, C.; Brown, P.D.; Shankar, L.; et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases. Neuro Oncol. 2020, 22, 757–772. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mehta, M.P.; Paleologos, N.A.; Mikkelsen, T.; Robinson, P.D.; Ammirati, M.; Andrews, D.W.; Asher, A.L.; Burri, S.H.; Cobbs, C.S.; Gaspar, L.E.; et al. The role of chemotherapy in the management of newly diagnosed brain metastases: A systematic review and evidence-based clinical practice guideline. J. Neurooncol. 2010, 96, 71–83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horbinski, C.; Nabors, L.B.; Portnow, J.; Baehring, J.; Bhatia, A.; Bloch, O.; Brem, S.; Butowski, N.; Cannon, D.M.; Chao, S.; et al. NCCN Guidelines® Insights: Central Nervous System Cancers, Version 2.2022. J. Natl. Compr. Cancer Netw. 2023, 21, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Porte, M.; Massard, C. New therapies for brain metastases: An update. Curr. Opin. Oncol. 2025, 37, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516, Erratum in J. Clin. Oncol. 2022, 40, 1392. https://doi.org/10.1200/JCO.22.00593. [Google Scholar] [CrossRef] [PubMed]
- Aseel, A.; McCarthy, P.; Mohammed, A. Brain magnetic resonance spectroscopy to differentiate recurrent neoplasm from radiation necrosis: A systematic review and meta-analysis. J. Neuroimaging 2023, 33, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Grenzelia, M.; Zygogianni, A.; Grapsa, D.; Maragkoudakis, E.; Fyta, E.; Charpidou, A.; Syrigos, K.; Mpakakos, P. Limited Cerebral Metastases in NSCLC: A Literature Review of SRS Versus Whole-brain Radiotherapy. Cancer Diagn. Progn. 2022, 2, 609–619. [Google Scholar] [CrossRef]
- Almeida, N.D.; Kuo, C.; Schrand, T.V.; Rupp, J.; Madhugiri, V.S.; Goulenko, V.; Shekher, R.; Shah, C.; Prasad, D. Stereotactic Radiosurgery for Intracranial Breast Metastases: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 3551. [Google Scholar] [CrossRef]
- Hatiboglu, M.A.; Wildrick, D.M.; Sawaya, R. The role of surgical resection in patients with brain metastases. Ecancermedicalscience 2013, 7, 308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Altieri, R.; Corvino, S.; La Rocca, G.; Cofano, F.; Melcarne, A.; Garbossa, D.; Barbarisi, M. Clinical Implication of Brain Metastases En-Bloc Resection: Surgical Technique Description and Literature Review. J. Pers. Med. 2024, 14, 1110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sas-Korczynska, B.; Rucinska, M. WBRT for brain metastases from non-small cell lung cancer: For whom and when?—Contemporary point of view. J. Thorac. Dis. 2021, 13, 3246–3257. [Google Scholar] [CrossRef] [PubMed]
- Lagerwaard, F.J.; van der Hoorn, E.A.; Verbakel, W.F.; Haasbeek, C.J.; Slotman, B.J.; Senan, S. Whole-brain radiotherapy with simultaneous integrated boost to multiple brain metastases using volumetric modulated arc therapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Latorzeff, I.; Antoni, D.; Josset, S.; Noël, G.; Tallet-Richard, A. Radiation therapy for brain metastases. Cancer Radiother. 2022, 26, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Garsa, A.; Jang, J.K.; Baxi, S.; Chen, C.; Akinniranye, O.; Hall, O.; Larkin, J.; Motala, A.; Hempel, S. Radiation Therapy for Brain Metastases: A Systematic Review. Pract. Radiat. Oncol. 2021, 11, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Mathis, N.J.; Wijetunga, N.A.; Imber, B.S.; Pike, L.R.G.; Yang, J.T. Recent Advances and Applications of Radiation Therapy for Brain Metastases. Curr. Oncol. Rep. 2022, 24, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, W.; Zhang, R.; Wang, Y.; Liu, P.; Lian, X.; Zhang, F.; Wang, Y.; Ma, W. Radiotherapy in combination with systemic therapies for brain metastases: Current status and progress. Cancer Biol. Med. 2020, 17, 910–922. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, S.; Xiao, J.; Liu, Q.; Zhang, Y.; Bi, N.; Huang, X.; Chen, X.; Wang, K.; Ma, Y.; Deng, L.; et al. The Sequence of Intracranial Radiotherapy and Systemic Treatment with Tyrosine Kinase Inhibitors for Gene-Driven Non-Small Cell Lung Cancer Brain Metastases in the Targeted Treatment Era: A 10-Year Single-Center Experience. Front. Oncol. 2021, 11, 732883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shalata, W.; Naamneh, R.; Najjar, W.; Abu Amna, M.; Asla, M.; Agbarya, A.; Brenner, R.; Abu Jama, A.; Abu Yasin, N.; Abu Juda, M.; et al. Efficacy of Tyrosine Kinase Inhibitors in ALK and EGFR-Mutated Non-Small Cell Lung Cancer with Brain Metastases. Med. Sci. 2025, 13, 200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shalata, W.; Naamneh, R.; Najjar, W.; Asla, M.; Abu Gameh, A.; Abu Amna, M.; Saiegh, L.; Agbarya, A. Current and Emerging Therapeutic Strategies for Limited- and Extensive-Stage Small-Cell Lung Cancer. Med. Sci. 2025, 13, 142. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verduin, M.; Zindler, J.D.; Martinussen, H.M.; Jansen, R.L.; Croes, S.; Hendriks, L.E.; Eekers, D.B.; Hoeben, A. Use of Systemic Therapy Concurrent with Cranial Radiotherapy for Cerebral Metastases of Solid Tumors. Oncologist 2017, 22, 222–235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thompson, J.F.; Williams, G.J.; Hong, A.M. Radiation therapy for melanoma brain metastases: A systematic review. Radiol. Oncol. 2022, 56, 267–284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tonse, R.; Tom, M.C.; Mehta, M.P.; Ahluwalia, M.S.; Kotecha, R. Integration of Systemic Therapy and Stereotactic Radiosurgery for Brain Metastases. Cancers 2021, 13, 3682. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pomeranz Krummel, D.A.; Nasti, T.H.; Izar, B.; Press, R.H.; Xu, M.; Lowder, L.; Kallay, L.; Rupji, M.; Rosen, H.; Su, J.; et al. Impact of Sequencing Radiation Therapy and Immune Checkpoint Inhibitors in the Treatment of Melanoma Brain Metastases. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, 157–163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cleveland Clinic. MRI (Magnetic Resonance Imaging): What it is & results [Internet]. Cleveland Clinic. Available online: https://my.clevelandclinic.org/health/diagnostics/4876-magnetic-resonance-imaging-mri (accessed on 17 October 2025).
- Moffitt Cancer Center. Brain Tumor Diagnosis—MRI. Moffitt Cancer Center. Available online: https://www.moffitt.org/cancers/brain-tumor/diagnosis/mri/ (accessed on 17 October 2025).
- Mayfield Clinic. Magnetic Resonance Spectroscopy (MR Spectroscopy). Mayfield Clinic. Available online: https://mayfieldclinic.com/pe-mrspectroscopy.htm (accessed on 17 October 2025).
- International Brain Tumor Center and Brain Network Institute. Neuroimaging for Brain Tumors. Available online: https://www.ivybraintumorcenter.org/brain-tumor-care/brain-tumor-treatments/neuroimaging-for-brain-tumors (accessed on 17 October 2025).
- Sutter Health Care. How PET Scans Work—What to Expect During a PET Scan. Available online: https://stanfordhealthcare.org/medical-tests/p/pet-scan/what-to-expect.html (accessed on 17 October 2025).
- The Preston Robert Tisch Brain Tumor Center. What Is a PET Scan? [Internet]. Duke University. Available online: https://tischbraintumorcenter.duke.edu/blog/what-pet-scan (accessed on 17 October 2025).
- Kapoor, M.; Heston, T.F.; Kasi, A. PET Scanning; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Werner, J.M.; Lohmann, P.; Fink, G.R.; Langen, K.J.; Galldiks, N. Current landscape and emerging fields of PET imaging in patients with brain tumors. Molecules 2020, 25, 1471. [Google Scholar] [CrossRef]
- Schlürmann, T.; Waschulzik, B.; Combs, S.; Gempt, J.; Wiestler, B.; Weber, W.; Yakushev, I. Utility of amino acid PET in the differential diagnosis of recurrent brain metastases and treatment-related changes: A meta-analysis. J. Nucl. Med. 2023, 64, 816–821. [Google Scholar] [CrossRef]
- Lee, S. Perfusion-Weighted Imaging in Brain Tumor Surgery [Internet]. Number Analytics. Available online: https://www.numberanalytics.com/blog/perfusion-weighted-imaging-guide (accessed on 17 October 2025).
- Svolos, P.; Kousi, E.; Kapsalaki, E.; Theodorou, K.; Fezoulidis, I.; Kappas, C.; Tsougos, I. The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: A review and future perspectives. Cancer Imaging 2014, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Petrella, J.R.; Provenzale, J.M. MR perfusion imaging of the brain. Am. J. Roentgenol. 2000, 175, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Schack, A.; Aunan-Diop, J.S.; Gerhardt, F.A.; Pedersen, C.B.; Halle, B.; Kofoed, M.S.; Markovic, L.; Wirenfeldt, M.; Poulsen, F.R. Evaluating the efficacy of perfusion MRI and conventional MRI in distinguishing recurrent cerebral metastasis from brain radiation necrosis. Brain Sci. 2024, 14, 321. [Google Scholar] [CrossRef]
- Cho, S.K.; Na, D.G.; Ryoo, J.W.; Roh, H.G.; Moon, C.H.; Byun, H.S.; Kim, J.H. Perfusion MR imaging: Clinical utility for the differential diagnosis of various brain tumors. Korean J. Radiol. 2002, 3, 171–179. [Google Scholar] [CrossRef]
- Chuang, M.T.; Liu, Y.S.; Tsai, Y.S.; Chen, Y.C.; Wang, C.K. Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: A meta-analysis. PLoS ONE 2016, 11, e0141438. [Google Scholar] [CrossRef] [PubMed]
- Boujraf, A.H.S. Magnetic resonance spectroscopy in the diagnosis and follow-up of brain tumors. J. Biomed. Sci. Eng. 2012, 5, 853–861. [Google Scholar] [CrossRef]
- Verma, N.; Cowperthwaite, M.C.; Burnett, M.G.; Markey, M.K. Differentiating tumor recurrence from treatment necrosis: A review of neuro-oncologic imaging strategies. Neuro Oncol. 2013, 15, 515–534. [Google Scholar] [CrossRef]
- Jajodia, A.; Goel, V.; Goyal, J.; Patnaik, N.; Khoda, J.; Pasricha, S.; Gairola, M. Combined Diagnostic Accuracy of Diffusion and Perfusion MR Imaging to Differentiate Radiation-Induced Necrosis from Recurrence in Glioblastoma. Diagnostics 2022, 12, 718. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Jin, G.; Su, D. Comparison of Gadolinium-enhanced MRI and 18FDG PET/PET-CT for the diagnosis of brain metastases in lung cancer patients: A meta-analysis of 5 prospective studies. Oncotarget 2017, 8, 35743–35749. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Henssen, D.; Leijten, L.; Meijer, F.J.A.; van der Kolk, A.; Arens, A.I.J.; Ter Laan, M.; Smeenk, R.J.; Gijtenbeek, A.; van de Giessen, E.M.; Tolboom, N.; et al. Head-To-Head Comparison of PET and Perfusion Weighted MRI Techniques to Distinguish Treatment Related Abnormalities from Tumor Progression in Glioma. Cancers 2023, 15, 2631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, D.H. Longitudinal Analysis of Amyloid PET and Brain MRI for Predicting Conversion from Mild Cognitive Impairment to Alzheimer’s Disease: Findings from the ADNI Cohort. Tomography 2025, 11, 37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghia, A.J.; Tward, J.D.; Anker, C.J.; Boucher, K.M.; Jensen, R.L.; Shrieve, D.C. Radiosurgery for melanoma brain metastases: The impact of hemorrhage on local control. J. Radiosurg. SBRT 2014, 3, 43–50. [Google Scholar] [PubMed]
- Lazaro, T.; Brastianos, P.K. Immunotherapy and targeted therapy in brain metastases: Emerging options in precision medicine. CNS Oncol. 2017, 6, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, T.; Podder, V.; Margolin, K.; Velcheti, V.; Maharaj, A.; Ahluwalia, M.S. Immune Checkpoint Inhibitors in the Management of Brain Metastases from Non-Small Cell Lung Cancer: A Comprehensive Review of Current Trials, Guidelines and Future Directions. Cancers 2024, 16, 3388. [Google Scholar] [CrossRef]
- Luo, J.; Ren, A.; Si, D.; Yang, J.; Xu, D.; Li, N. Drug treatment of breast cancer brain metastases: Progress and challenges. Discov. Oncol. 2025, 16, 1025. [Google Scholar] [CrossRef]
- Curigliano, G.; Mueller, V.; Borges, V.; Hamilton, E.; Hurvitz, S.; Loi, S.; Murthy, R.; Okines, A.; Paplomata, E.; Cameron, D.; et al. Tucatinib versus placebo added to trastuzumab and capecitabine for patients with pretreated HER2+ metastatic breast cancer with and without brain metastases (HER2CLIMB): Final overall survival analysis. Annu. Oncol. 2022, 33, 321–329, Erratum in Annu. Oncol. 2023, 34, 630. https://doi.org/10.1016/j.annonc.2022.12.005. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, A.J.M.; Illerhaus, G.; Doorduijn, J.K.; Auer, D.P.; Bromberg, J.E.C.; Calimeri, T.; Cwynarski, K.; Fox, C.P.; Hoang-Xuan, K.; Malaise, D.; et al. Primary central nervous system lymphomas: EHA-ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Annu. Oncol. 2024, 35, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Im, S.A.; Cortes, J.; Cescon, D.W.; Yusof, M.M.; Iwata, H.; Masuda, N.; Takano, T.; Huang, C.S.; Chung, C.F.; Tsugawa, K.; et al. Results from the randomized KEYNOTE-355 study of pembrolizumab plus chemotherapy for Asian patients with advanced TNBC. NPJ Breast Cancer 2024, 10, 79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gion, M.; Blancas, I.; Cortez-Castedo, P.; Cortés-Salgado, A.; Marmé, F.; Blanch, S.; Morales, S.; Díaz, N.; Calvo-Plaza, I.; Recalde, S.; et al. Atezolizumab plus paclitaxel and bevacizumab as first-line treatment of advanced triple-negative breast cancer: The ATRACTIB phase 2 trial. Nat. Med. 2025, 31, 2746–2754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walsh, E.M.; Smith, K.L.; Stearns, V. Management of hormone receptor-positive, HER2-negative early breast cancer. Semin. Oncol. 2020, 47, 187–200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, S.; Lin, Z.; Zhang, R.; Cheng, Z.; Li, K.; Gu, C.; Chen, Y.; Lin, J. Progress in immunotherapy for brain metastatic melanoma. Front. Oncol. 2024, 14, 1485532. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.L.; Le, A.; Scherrer, E.; Tang, H.; Kiehl, N.; Han, J.; Jiang, R.; Diede, S.J.; Shui, I.M. Systematic literature review and meta-analysis of clinical outcomes and prognostic factors for melanoma brain metastases. Front. Oncol. 2022, 12, 1025664. [Google Scholar] [CrossRef]
- Smith, E.J.; Naik, A.; Shaffer, A.; Goel, M.; Krist, D.T.; Liang, E.; Furey, C.G.; Miller, W.K.; Lawton, M.T.; Barnett, D.H.; et al. Differentiating radiation necrosis from tumor recurrence: A systematic review and diagnostic meta-analysis comparing imaging modalities. J. Neurooncol. 2023, 162, 15–23. [Google Scholar] [CrossRef]
- Hojjati, M.; Badve, C.; Garg, V.; Tatsuoka, C.; Rogers, L.; Sloan, A.; Faulhaber, P.; Ros, P.R.; Wolansky, L.J. Role of FDG-PET/MRI, FDG-PET/CT, and Dynamic Susceptibility Contrast Perfusion MRI in Differentiating Radiation Necrosis from Tumor Recurrence in Glioblastomas. J. Neuroimaging 2018, 28, 118–125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sahu, A.; Mathew, R.; Ashtekar, R.; Dasgupta, A.; Puranik, A.; Mahajan, A.; Janu, A.; Choudhari, A.; Desai, S.; Patnam, N.G.; et al. The complementary role of MRI and FET PET in high-grade gliomas to differentiate recurrence from radionecrosis. Front. Nucl. Med. 2023, 3, 1040998. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zach, L.; Guez, D.; Last, D.; Daniels, D.; Grober, Y.; Nissim, O.; Hoffmann, C.; Nass, D.; Talianski, A.; Spiegelmann, R.; et al. Delayed contrast extravasation MRI: A new paradigm in neuro-oncology. Neuro Oncol. 2015, 17, 457–465. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Janopaul-Naylor, J.R.; Shen, Y.; Qian, D.C.; Buchwald, Z.S. The Abscopal Effect: A Review of Pre-Clinical and Clinical Advances. Int. J. Mol. Sci. 2021, 22, 11061. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, D.R.; Lanciano, R.; Heal, C.; Hanlon, A.; Yang, J.; Feng, J.; Stanley, M.; Buonocore, R.; Okpaku, A.; Ding, W.; et al. The effect of whole-brain radiation (WBI) and Karnofsky performance status (KPS) on survival of patients receiving stereotactic radiosurgery (SRS) for second brain metastatic event. J. Radiat. Oncol. 2017, 6, 31–37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chitoran, E.; Rotaru, V.; Stefan, D.C.; Gullo, G.; Simion, L. Blocking Tumoral Angiogenesis VEGF/VEGFR Pathway: Bevacizumab-20 Years of Therapeutic Success and Controversy. Cancers 2025, 17, 1126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, M.M.; Zhou, Q.; Chen, H.J.; Jiang, B.Y.; Tang, L.B.; Jie, G.L.; Tu, H.Y.; Yin, K.; Sun, H.; Liu, S.Y.; et al. Cerebrospinal fluid circulating tumor DNA profiling for risk stratification and matched treatment of central nervous system metastases. Nat. Med. 2025, 31, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Coelho, L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering 2023, 10, 1435. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| Comparison Group | Local Control Outcome | Overall Survival Outcome | Overall Survival Outcome | Key Findings/Nuances | Reference |
|---|---|---|---|---|---|
| WBRT vs. WBRT + SRS Boost | Improved local control with SRS boost (e.g., 1-year local failure: 100% vs. 8%; RTOG 9508: 82% vs. 71%) | Inconsistent OS benefit; OS benefit for single brain metastasis (BM), RPA class I, GPA 3.5–4 | OS benefit only for single BM (6.5 vs. 4.9 months) and good prognosis patients | SRS boost significantly improves local control. OS benefit is subgroup-dependent, favoring patients with better prognostic factors. | [8] |
| SRS Alone vs. WBRT + SRS | WBRT + SRS significantly improves brain tumor recurrence (BTR) control (e.g., 1-year CNS recurrence: 27% vs. 73%; BTR-free survival: 7.4 vs. 21.6 months) | Inconsistent OS benefit; some studies show better OS with SRS alone (e.g., 15.2 vs. 7 months); OS benefit for younger patients with SRS alone; WBRT + SRS shows OS benefit in favorable prognosis (DS-GPA 2.5–4) | Inconsistent OS benefit; some studies show no difference or favor SRS alone. | WBRT improves local and distant control. OS outcomes vary—SRS alone may benefit younger or lower-volume patients; combined therapy better for high-risk/favorable prognosis groups. | [8] |
| Parameter | Physiological Meaning | Typical Pattern in High-Grade Glioma | Typical Pattern in Low-Grade Glioma | Typical Pattern in Lymphoma | Typical Pattern in Metastasis | Typical Pattern in Radiation Necrosis |
|---|---|---|---|---|---|---|
| Relative Cerebral Blood Volume (rCBV) | Amount of blood in a given tissue volume | Markedly Increased | Low | Low | High | Low |
| Relative Cerebral Blood Flow (rCBF) | Rate of blood flow through a tissue | Markedly Increased | Low | Low | High | Low |
| Mean Transit Time (MTT) | Average time for blood to pass through a tissue | Decreased | Normal/Increased | Normal/Increased | Decreased | Increased |
| Metabolite Ratio/Presence | Normal Brain Tissue | High-Grade Glioma | Low-Grade Glioma | Radiation Necrosis | Meningioma |
|---|---|---|---|---|---|
| Cho/NAA Ratio | Baseline/Low | Elevated | Slightly Elevated | Low/Normal | Variable |
| Cho/Cr Ratio | Baseline/Normal | Elevated | Slightly Elevated | Low/Normal | Variable |
| NAA Levels | High | Decreased | Moderately Decreased | Variable | Normal |
| Modality | Sensitivity | Specificity | AUC | Notes |
|---|---|---|---|---|
| Conventional MRI | ~77% (0.60–0.89) | ~99% (0.97–1.00) | ~0.97 | Data specifically for lung cancer brain metastases. |
| Perfusion-Weighted Imaging (PWI) | ~80% | ~86% | ~0.93 | Data for distinguishing tumor progression from radiation necrosis using relative cerebral blood volume (rCBV) threshold. |
| Magnetic Resonance Spectroscopy (MRS) | Not widely pooled | Not widely pooled | Not widely pooled | Described as having high diagnostic accuracy, especially when combined with other methods. |
| FDG-PET | ~21% (0.13–0.32) | ~100% (0.99–1.00) | ~0.98 | Low sensitivity for brain metastases in lung cancer, but high specificity. |
| [11C] MET PET | 89% (78–95%) | 72% (25–95%) | Not widely pooled | Data for differentiating tumor progression from treatment related abnormalities. |
| [18F]-FET PET | 82% (72–90%) | 85% (68–94%) | Not widely pooled | Data for differentiating tumor progression from treatment related abnormalities. |
| Modality | Key Parameter | Finding in Tumor Recurrence | Finding in Radiation Necrosis |
|---|---|---|---|
| PWI | Relative Cerebral Blood Volume (rCBV) | Increased | Decreased/Low |
| MRS | Choline/Creatine (Cho/Cr) Ratio | Elevated | Low/Normal |
| MRS | Choline/NAA (Cho/NAA) Ratio | Elevated | Low/Normal |
| Amino Acid PET | Tumor-to-Brain Uptake Ratio | High | Low |
| Primary Cancer | Subtype/Biomarker | Drug Class | Recommended Agents (Examples) | Key Efficacy Data |
|---|---|---|---|---|
| NSCLC | EGFR Mutation | 3rd-Gen TKI | Osimertinib | High intracranial response rate; recommended as upfront therapy for asymptomatic BM. |
| NSCLC | ALK Rearrangement | 2nd/3rd-Gen TKI | Alectinib, Brigatinib, Lorlatinib | Excellent CNS penetration and intracranial efficacy; preferred upfront therapy. |
| Breast Cancer | HER2-Positive | TKI | Tucatinib (+Trastuzumab/Capecitabine) | HER2CLIMB: Significant OS and CNS-PFS benefit in patients with active BM. |
| Breast Cancer | HER2-Positive | TKI | Neratinib, Pyrotinib | PERMEATE (Pyrotinib): High CNS-ORR (74.6% in RT-naive patients). |
| Melanoma | BRAF V600 Mutation | BRAF/MEK Inhibitors | Dabrafenib + Trametinib | High intracranial ORR (up to 58%); used for rapid response in symptomatic patients. |
| Melanoma | Any | Dual Immunotherapy | Nivolumab + Ipilimumab | High and durable intracranial response rates (~54%); preferred first-line for asymptomatic BM. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouvinov, K.; Naamneh, R.; Najjar, W.; Abu Amna, M.; Soklakova, A.; Abu Zeid, E.E.D.; Abu Ghalion, F.; Abu Juma’a, A.; Asla, M.; Yakobson, A.; et al. Integrating Advanced Neuro-Oncology Imaging into Guideline-Directed Multimodal Therapy for Brain Metastases: Evaluating Comparative Treatment Effectiveness. Technologies 2025, 13, 532. https://doi.org/10.3390/technologies13110532
Rouvinov K, Naamneh R, Najjar W, Abu Amna M, Soklakova A, Abu Zeid EED, Abu Ghalion F, Abu Juma’a A, Asla M, Yakobson A, et al. Integrating Advanced Neuro-Oncology Imaging into Guideline-Directed Multimodal Therapy for Brain Metastases: Evaluating Comparative Treatment Effectiveness. Technologies. 2025; 13(11):532. https://doi.org/10.3390/technologies13110532
Chicago/Turabian StyleRouvinov, Keren, Rashad Naamneh, Wenad Najjar, Mahmoud Abu Amna, Arina Soklakova, Ez El Din Abu Zeid, Fahmi Abu Ghalion, Ali Abu Juma’a, Mohnnad Asla, Alexander Yakobson, and et al. 2025. "Integrating Advanced Neuro-Oncology Imaging into Guideline-Directed Multimodal Therapy for Brain Metastases: Evaluating Comparative Treatment Effectiveness" Technologies 13, no. 11: 532. https://doi.org/10.3390/technologies13110532
APA StyleRouvinov, K., Naamneh, R., Najjar, W., Abu Amna, M., Soklakova, A., Abu Zeid, E. E. D., Abu Ghalion, F., Abu Juma’a, A., Asla, M., Yakobson, A., & Shalata, W. (2025). Integrating Advanced Neuro-Oncology Imaging into Guideline-Directed Multimodal Therapy for Brain Metastases: Evaluating Comparative Treatment Effectiveness. Technologies, 13(11), 532. https://doi.org/10.3390/technologies13110532

