Studying the Safety of Femtosecond Laser Applications in Assisted Hatching Technology
Abstract
1. Introduction
2. Materials and Methods
2.1. Hormonal Stimulation of Ovulation
2.2. Embryo Collection
2.3. Embryo Culture
2.4. Transportation of Embryos
2.5. Fluorescent Staining of Embryos for Determining ROS Levels
2.6. Fluorescent Staining of Embryos for Determining HSPs
2.7. Corrected Total Cell Fluorescence
2.8. Real-Time PCR
2.9. Experimental Setup
2.10. Laser-Assisted Hatching
2.11. Evaluation of Hatching Coefficient After LAH Procedure
2.12. Embryo Groups
2.13. Statistics
3. Results
3.1. Hatching Rate Assessment
3.2. Heat-Shock Protein Expression Analysis
3.3. Evaluation of Reactive Oxygen Species Levels
4. Discussion
4.1. The Choice of Parameters of Infrared Femtosecond Lasers for Zona Pellucida Dissection
4.2. Thermal Considerations
4.3. Benefits and Biological Safety of Femtosecond Laser-Assisted Hatching
4.4. Considerations for Infrared Wavelength Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AH | Assisted hatching; |
| DAPI | 4′,6-diamidino-2-phenylindole; |
| fs | Femtosecond; |
| FBS | Fetal bovine serum; |
| FSH | Follicle-stimulating hormone; |
| hCG | Human chorionic gonadotropin; |
| HSP | Heat-shock proteins; |
| ICM | Inner cell mass; |
| IGB RAS | Institute of Gene biology Russian Academy of Sciences; |
| JIHT RAS | Joint Institute for High Temperatures of the Russian Academy of Sciences; |
| LAH | Laser-assisted hatching; |
| ms | Millisecond; |
| PBS | Phosphate-buffered saline; |
| PFA | Paraformaldehyde; |
| ROS | Reactive oxygen species; |
| z.p. | Zona pellucida. |
Appendix A
| HSP90 (p-Value) | HSP70 (p-Value) | |||
|---|---|---|---|---|
| Control- | Experiment | Control- | Experiment | |
| Experiment 1028 | 0.28097 | – | >0.9999 | – |
| Control+ | 0.0004 | 0.00005 | 0.0004 | 0.00004 |
References
- Litvinova, K.S.; Rafailov, I.E.; Dunaev, A.V.; Sokolovski, S.G.; Rafailov, E.U. Non-Invasive Biomedical Research and Diagnostics Enabled by Innovative Compact Lasers. Prog. Quantum Electron. 2017, 56, 1–14. [Google Scholar] [CrossRef]
- Prasad, A. Laser Techniques in Ophthalmology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9781003144304. [Google Scholar]
- Gianfaldoni, S.; Tchernev, G.; Wollina, U.; Fioranelli, M.; Roccia, M.G.; Gianfaldoni, R.; Lotti, T. An Overview of Laser in Dermatology: The Past, the Present and … the Future (?). Open Access Maced. J. Med. Sci. 2017, 5, 526–530. [Google Scholar] [CrossRef]
- Khalkhal, E.; Rezaei-Tavirani, M.; Zali, M.R.; Akbari, Z. The Evaluation of Laser Application in Surgery: A Review Article. J. Lasers Med. Sci. 2019, 10, S104–S111. [Google Scholar] [CrossRef]
- Chung, S.H.; Mazur, E. Surgical Applications of Femtosecond Lasers. J. Biophotonics 2009, 2, 557–572. [Google Scholar] [CrossRef]
- Lehmann, U.; Kreipe, H. Laser-Assisted Microdissection and Isolation of DNA and RNA BT. In Breast Cancer Research Protocols; Brooks, S.A., Harris, A., Eds.; Humana Press: Totowa, NJ, USA, 2006; pp. 65–75. ISBN 978-1-59259-969-1. [Google Scholar]
- Han, T.S.; Oshima, M. Laser Microdissection of Cellular Compartments for Expression Analyses in Cancer Models BT. In Inflammation and Cancer: Methods and Protocols; Jenkins, B.J., Ed.; Humana Press: New York, NY, USA, 2018; pp. 143–153. ISBN 978-1-4939-7568-6. [Google Scholar]
- Odde, D.J.; Renn, M.J. Laser-Guided Direct Writing for Applications in Biotechnology. Trends Biotechnol. 1999, 17, 385–389. [Google Scholar] [CrossRef]
- Duan, B. State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering. Ann. Biomed. Eng. 2017, 45, 195–209. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Yue, K.; Aleman, J.; Mollazadeh-Moghaddam, K.; Bakht, S.M.; Yang, J.; Jia, W.; Dell’Erba, V.; Assawes, P.; Shin, S.R.; et al. 3D Bioprinting for Tissue and Organ Fabrication. Ann. Biomed. Eng. 2017, 45, 148–163. [Google Scholar] [CrossRef]
- Thalhammer, S.; Lahr, G.; Clement-Sengewald, A.; Heckl, W.M.; Burgemeister, R.; Schütze, K. Laser Microtools in Cell Biology and Molecular Medicine. Laser Phys. 2003, 13, 681–691. [Google Scholar]
- Kohli, V.; Elezzabi, A.Y. Prospects and Developments in Cell and Embryo Laser Nanosurgery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009, 1, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Berns, M.W.; Aist, J.; Edwards, J.; Strahs, K.; Girton, J.; McNeill, P.; Rattner, J.B.; Kitzes, M.; Hammer-Wilson, M.; Liaw, L.H.; et al. Laser Microsurgery in Cell and Developmental Biology. Science 1981, 213, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Stern, D. Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Lasers at 532 and 625 Nm. Arch. Ophthalmol. 1989, 107, 587. [Google Scholar] [CrossRef]
- Oraevsky, A.A.; Da Silva, L.B.; Rubenchik, A.M.; Feit, M.D.; Glinsky, M.E.; Perry, M.D.; Mammini, B.M.; Small, W.; Stuart, B.C. Plasma Mediated Ablation of Biological Tissues with Nanosecond-to-Femtosecond Laser Pulses: Relative Role of Linear and Nonlinear Absorption. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 801–809. [Google Scholar] [CrossRef]
- Ilina, I.; Sitnikov, D. From Zygote to Blastocyst: Application of Ultrashort Lasers in the Field of Assisted Reproduction and Developmental Biology. Diagnostics 2021, 11, 1897. [Google Scholar] [CrossRef]
- Ilina, I.V.; Sitnikov, D.S. Application of Ultrashort Lasers in Developmental Biology: A Review. Photonics 2022, 9, 914. [Google Scholar] [CrossRef]
- Abu-Siniyeh, A.; Al-Zyoud, W. Highlights on Selected Microscopy Techniques to Study Zebrafish Developmental Biology. Lab. Anim. Res. 2020, 36, 12. [Google Scholar] [CrossRef] [PubMed]
- Inhorn, M.C.; Patrizio, P. Infertility around the Globe: New Thinking on Gender, Reproductive Technologies and Global Movements in the 21st Century. Hum. Reprod. Update 2015, 21, 411–426. [Google Scholar] [CrossRef]
- Krivonogova, A.S.; Bruter, A.V.; Makutina, V.A.; Okulova, Y.D.; Ilchuk, L.A.; Kubekina, M.V.; Khamatova, A.Y.; Egorova, T.V.; Mymrin, V.S.; Silaeva, Y.Y.; et al. AAV Infection of Bovine Embryos: Novel, Simple and Effective Tool for Genome Editing. Theriogenology 2022, 193, 77–86. [Google Scholar] [CrossRef]
- Kilani, S.S.; Cooke, S.; Kan, A.K.; Chapman, M.G. Do Age and Extended Culture Affect the Architecture of the Zona Pellucida of Human Oocytes and Embryos? Zygote 2006, 14, 39–44. [Google Scholar] [CrossRef]
- Maddirevula, S.; Coskun, S.; Al-Qahtani, M.; Aboyousef, O.; Alhassan, S.; Aldeery, M.; Alkuraya, F.S. ASTL Is Mutated in Female Infertility. Hum. Genet. 2022, 141, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsen, A.; Agerholm, I.; Toft, B.; Hald, F.; Petersen, K.; Aagaard, J.; Feldinger, B.; Lindenberg, S.; Fedder, J. Assisted Hatching Improves Implantation Rates on Cryopreserved–Thawed Embryos. A Randomized Prospective Study. Hum. Reprod. 2004, 19, 2258–2262. [Google Scholar] [CrossRef] [PubMed]
- Obruca, A.; Strohmer, H.; Sakkas, D.; Menezo, Y.; Kogosowski, A.; Barak, Y.; Feichtinger, W. Fertilization and Early Embryology: Use of Lasers in Assisted Fertilization and Hatching. Hum. Reprod. 1994, 9, 1723–1726. [Google Scholar] [CrossRef]
- Elnahas, A.; Elnahas, T.; Azmy, O.; Elnoury, A.; Abdelhalim, A.; Aboelghar, M.; Alhassani, S.; Noureldin, R. The Use of Laser Assisted Hatching of Frozen/Thawed Embryos versus Laser Assisted Hatching of Fresh Embryos in Human Intracytoplasmic Sperm Injection. J. Obstet. Gynaecol. 2018, 38, 729. [Google Scholar] [CrossRef]
- Douglas-Hamilton, D.H.; Conia, J. Thermal Effects in Laser-Assisted Pre-Embryo Zona Drilling. J. Biomed. Opt. 2001, 6, 205. [Google Scholar] [CrossRef]
- Tadir, Y.; Douglas-Hamilton, D.H. Laser Effects in the Manipulation of Human Eggs and Embryos for In Vitro Fertilization. Methods Cell Biol. 2007, 82, 409–431. [Google Scholar] [CrossRef]
- Chatzimeletiou, K.; Morrison, E.E.; Panagiotidis, Y.; Prapas, N.; Prapas, Y.; Rutherford, A.J.; Grudzinskas, G.; Handyside, A.H. Comparison of Effects of Zona Drilling by Non-Contact Infrared Laser or Acid Tyrode’s on the Development of Human Biopsied Embryos as Revealed by Blastomere Viability, Cytoskeletal Analysis and Molecular Cytogenetics. Reprod. Biomed. Online 2005, 11, 697–710. [Google Scholar] [CrossRef] [PubMed]
- Sitnikov, D.S.; Filatov, M.A.; Ilina, I.V. Optimal Exposure Parameters for Microsurgery of Embryo Zona Pellucida Using Femtosecond Laser Pulses. Appl. Sci. 2023, 13, 11204. [Google Scholar] [CrossRef]
- Ilina, I.V.; Khramova, Y.V.; Filatov, M.A.; Semenova, M.L.; Sitnikov, D.S. Femtosecond Laser Assisted Hatching: Dependence of Zona Pellucida Drilling Efficiency and Embryo Development on Laser Wavelength and Pulse Energy. High Temp. 2016, 54, 46–51, Erratum in High Temp. 2024, 61, 144. https://doi.org/10.1134/S0018151X23010248. [Google Scholar] [CrossRef]
- Ilina, I.V.; Khramova, Y.V.; Ivanova, A.D.; Filatov, M.A.; Silaeva, Y.Y.; Deykin, A.V.; Sitnikov, D.S. Controlled Hatching at the Prescribed Site Using Femtosecond Laser for Zona Pellucida Drilling at the Early Blastocyst Stage. J. Assist. Reprod. Genet. 2021, 38, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Filatov, M.A.; Kubekina, M.V.; Tvorogova, A.V.; Ilchuk, L.A.; Zhuravlev, A.D.; Sazonova, E.A.; Ivanova, A.D.; Silaeva, Y.Y.; Sitnikov, D.S. Biological Effects of Femtosecond and Millisecond Lasers Application for Assisted Hatching in Mouse Embryos. J. Assist. Reprod. Genet. 2025, 42, 2219–2230. [Google Scholar] [CrossRef]
- Sitnikov, D.S.; Mukhdina, D.E.; Filatov, M.A.; Silaeva, Y.Y. Determination of the Optimal Impact Parameters for Microdissection of Zona Pellucida Using Femtosecond IR Laser Pulses. High Temp. 2024, 62, 102–109. [Google Scholar] [CrossRef]
- Kubekina, M.; Kalinina, A.; Korshunova, D.; Bruter, A.; Silaeva, Y. Models of Mitochondrial Dysfunction with Inducible Expression of Polg Pathogenic Mutant Variant. Bull. Russ. State Med. Univ. 2022, 2, 11–17. [Google Scholar] [CrossRef]
- Ilina, I.V.; Ovchinnikov, A.V.; Sitnikov, D.S.; Rakityanskiy, M.M.; Agranat, M.B.; Khramova, Y.V.; Semenova, M.L. Application of Femtosecond Laser Pulses in Biomedical Cell Technologies. High Temp. 2013, 51, 173–178. [Google Scholar] [CrossRef]
- Tirlapur, U.K.; König, K.; Peuckert, C.; Krieg, R.; Halbhuber, K.J. Femtosecond Near-Infrared Laser Pulses Elicit Generation of Reactive Oxygen Species in Mammalian Cells Leading to Apoptosis-like Death. Exp. Cell Res. 2001, 263, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Sitnikov, D.S.; Mukhdina, D.E.; Ovchinnikov, M.A. Study of the Applicability of IR Picosecond Laser Pulses for Microdissection of Zona Pellucida of a Mouse Embryo. High Temp. 2024, 62, 394–399. [Google Scholar] [CrossRef]
- Liang, X.X.; Zhang, Z.; Vogel, A. Multi-Rate-Equation Modeling of the Energy Spectrum of Laser-Induced Conduction Band Electrons in Water. Opt. Express 2019, 27, 4672. [Google Scholar] [CrossRef]
- Sitnikov, D.S.; Ilina, I.V.; Pronkin, A.A. Assessment of the Thermal Effect of Femtosecond and Millisecond Laser Pulses in Microsurgery of Mammalian Embryos. Quantum Electron. 2022, 52, 482–490. [Google Scholar] [CrossRef]
- Choi, I.; Dasari, A.; Kim, N.H.; Campbell, K.H.S. Effects of Prolonged Exposure of Mouse Embryos to Elevated Temperatures on Embryonic Developmental Competence. Reprod. Biomed. Online 2015, 31, 171–179. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of Apoptosis Signalling Pathways by Reactive Oxygen Species. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Scott, R.T.; Upham, K.M.; Forman, E.J.; Zhao, T.; Treff, N.R. Cleavage-Stage Biopsy Significantly Impairs Human Embryonic Implantation Potential While Blastocyst Biopsy Does Not: A Randomized and Paired Clinical Trial. Fertil. Steril. 2013, 100, 624–630. [Google Scholar] [CrossRef]








| Gene Name | Genbank No. | Forward Primer (5′→3′) | Reverse Primer (5′→3′) | Product Length |
|---|---|---|---|---|
| Hprt | NM_013556.2 | CAGCGTCGTGATTAGCGATGA | GCCACAATGTGATGGCCTCC | 174 |
| Hsp90aa1 | NM_010480.5 | TGAGCAGTATGCCTGGGAGT | CGACCCATTGGTTCACCTGT | 75 |
| Hspa5 | NM_001163434.1 | GGAATGACCCTTCGGTGCAG | GTCTTGGTTTGCCCACCTCC | 109 |
| Experiment | 40 | 46 | 86.95% |
| Parallel control | 16 | 28 | 57.14% |
| Total | 56 | 74 | 75.68% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitnikov, D.S.; Kubekina, M.V.; Tvorogova, A.V.; Agentova, V.S.; Mukhdina, D.E.; Ilchuk, L.A.; Silaeva, Y.Y.; Filatov, M.A. Studying the Safety of Femtosecond Laser Applications in Assisted Hatching Technology. Technologies 2025, 13, 483. https://doi.org/10.3390/technologies13110483
Sitnikov DS, Kubekina MV, Tvorogova AV, Agentova VS, Mukhdina DE, Ilchuk LA, Silaeva YY, Filatov MA. Studying the Safety of Femtosecond Laser Applications in Assisted Hatching Technology. Technologies. 2025; 13(11):483. https://doi.org/10.3390/technologies13110483
Chicago/Turabian StyleSitnikov, Dmitry S., Marina V. Kubekina, Anna V. Tvorogova, Victoria S. Agentova, Darya E. Mukhdina, Leonid A. Ilchuk, Yulia Yu. Silaeva, and Maxim A. Filatov. 2025. "Studying the Safety of Femtosecond Laser Applications in Assisted Hatching Technology" Technologies 13, no. 11: 483. https://doi.org/10.3390/technologies13110483
APA StyleSitnikov, D. S., Kubekina, M. V., Tvorogova, A. V., Agentova, V. S., Mukhdina, D. E., Ilchuk, L. A., Silaeva, Y. Y., & Filatov, M. A. (2025). Studying the Safety of Femtosecond Laser Applications in Assisted Hatching Technology. Technologies, 13(11), 483. https://doi.org/10.3390/technologies13110483

