Integrating Artificial Intelligence to Biomedical Science: New Applications for Innovative Stem Cell Research and Drug Development
Abstract
:1. Introduction
2. AI Technology in Regenerative Medicine
2.1. Potential of CNNs in Cell-Image-Based Classification
2.2. Applications of CNNs in Stem Cell Culture and Differentiation
3. AI Technology in Medical Image Analysis and New Drug Development
3.1. Image Analysis
3.2. New Drug Development
3.2.1. Drug Screening
Drug Toxicity Prediction
Drug Biological Activity Prediction
Physiochemical Property Prediction
3.2.2. Key Areas for Drug Discovery
De Novo Drug Design
Drug Target Prediction
Predicting Drug–Drug Interactions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.; Liu, X.; Zhang, S.; Chen, S. Artificial intelligence for drug discovery: Resources, methods, and applications. Mol. Ther.-Nucleic Acids 2023, 31, 691–702. [Google Scholar] [CrossRef]
- Hassanzadeh, P.; Atyabi, F.; Dinarvand, R. The significance of artificial intelligence in drug delivery system design. Adv. Drug Deliv. Rev. 2019, 151, 169–190. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [Google Scholar] [CrossRef] [PubMed]
- Duch, W.; Swaminathan, K.; Meller, J. Artificial intelligence approaches for rational drug design and discovery. Curr. Pharm. Des. 2007, 13, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Lai, X.; Pan, Y.; Zheng, H.; Vera, J.; Liu, S.; Deng, S.; Zhang, L. Artificial intelligence in cancer target identification and drug discovery. Signal Transduct. Target. Ther. 2022, 7, 156. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, X.; Pan, X.; Wang, B.; Ji, C.; Qi, Y.; Zhang, J.Z. HobPre: Accurate prediction of human oral bioavailability for small molecules. J. Cheminform. 2022, 14, 1. [Google Scholar] [CrossRef]
- Agrawal, M.; Alexander, A.; Khan, J.; Giri, T.K.; Siddique, S.; Dubey, S.K.; Patel, R.J.; Gupta, U.; Saraf, S.; Saraf, S. Recent biomedical applications on stem cell therapy: A brief overview. Curr. Stem Cell Res. Ther. 2019, 14, 127–136. [Google Scholar] [CrossRef]
- Mukherjee, S.; Yadav, G.; Kumar, R. Recent trends in stem cell-based therapies and applications of artificial intelligence in regenerative medicine. World J. Stem Cells 2021, 13, 521. [Google Scholar] [CrossRef] [PubMed]
- Ntege, E.H.; Sunami, H.; Shimizu, Y. Advances in regenerative therapy: A review of the literature and future directions. Regen. Ther. 2020, 14, 136–153. [Google Scholar] [CrossRef]
- Kwon, S.G.; Kwon, Y.W.; Lee, T.W.; Park, G.T.; Kim, J.H. Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater. Res. 2018, 22, 36. [Google Scholar] [CrossRef]
- Molofsky, A.V.; Pardal, R.; Morrison, S.J. Diverse mechanisms regulate stem cell self-renewal. Curr. Opin. Cell Biol. 2004, 16, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Lien, C.-Y.; Chen, T.-T.; Tsai, E.-T.; Hsiao, Y.-J.; Lee, N.; Gao, C.-E.; Yang, Y.-P.; Chen, S.-J.; Yarmishyn, A.A.; Hwang, D.-K. Recognizing the Differentiation Degree of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cells Using Machine Learning and Deep Learning-Based Approaches. Cells 2023, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, H.; Nosrati, M. Artificial intelligence in regenerative medicine: Applications and implications. Biomimetics 2023, 8, 442. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Kolios, G.; Moodley, Y. Introduction to stem cells and regenerative medicine. Respiration 2012, 85, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lo, B.; Parham, L. Ethical issues in stem cell research. Endocr. Rev. 2009, 30, 204–213. [Google Scholar] [CrossRef]
- Romito, A.; Cobellis, G. Pluripotent stem cells: Current understanding and future directions. Stem Cells Int. 2016, 2016, 9451492. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Altyar, A.E.; El-Sayed, A.; Abdeen, A.; Piscopo, M.; Mousa, S.A.; Najda, A.; Abdel-Daim, M.M. Future regenerative medicine developments and their therapeutic applications. Biomed. Pharmacother. 2023, 158, 114131. [Google Scholar] [CrossRef]
- Nosrati, H.; Aramideh Khouy, R.; Nosrati, A.; Khodaei, M.; Banitalebi-Dehkordi, M.; Ashrafi-Dehkordi, K.; Sanami, S.; Alizadeh, Z. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J. Nanobiotechnol. 2021, 19, 1. [Google Scholar] [CrossRef]
- Rajabzadeh, N.; Fathi, E.; Farahzadi, R. Stem cell-based regenerative medicine. Stem Cell Investig. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhong, F.; Jiang, Y. Endogenous pancreatic β cell regeneration: A potential strategy for the recovery of β cell deficiency in diabetes. Front. Endocrinol. 2019, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.I.; Costa-Almeida, R.; Gershovich, P.; Rodrigues, M.T.; Reis, R.L.; Gomes, M.E. Cell-based approaches for tendon regeneration. In Tendon Regeneration; Elsevier: Amsterdam, The Netherlands, 2015; pp. 187–203. [Google Scholar]
- Farini, A.; Sitzia, C.; Erratico, S.; Meregalli, M.; Torrente, Y. Clinical applications of mesenchymal stem cells in chronic diseases. Stem Cells Int. 2014, 2014, 306573. [Google Scholar] [CrossRef] [PubMed]
- Munir, H.; McGettrick, H.M. Mesenchymal stem cell therapy for autoimmune disease: Risks and rewards. Stem Cells Dev. 2015, 24, 2091–2100. [Google Scholar] [CrossRef] [PubMed]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, R.R.; Abd Hamid, Z.; Zaki, W.M.D.W.; Huddin, A.B.; Mathialagan, R. Stem cell imaging through convolutional neural networks: Current issues and future directions in artificial intelligence technology. PeerJ 2020, 8, e10346. [Google Scholar] [CrossRef] [PubMed]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, D.; Yuasa, S. The application of convolutional neural network to stem cell biology. Inflamm. Regen. 2019, 39, 14. [Google Scholar] [CrossRef]
- Kim, M.; Namkung, Y.; Hyun, D.; Hong, S. Prediction of Stem Cell State Using Cell Image-Based Deep Learning. Adv. Intell. Syst. 2023, 5, 2300017. [Google Scholar] [CrossRef]
- Waisman, A.; La Greca, A.; Möbbs, A.M.; Scarafía, M.A.; Velazque, N.L.S.; Neiman, G.; Moro, L.N.; Luzzani, C.; Sevlever, G.E.; Guberman, A.S. Deep learning neural networks highly predict very early onset of pluripotent stem cell differentiation. Stem Cell Rep. 2019, 12, 845–859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chu, L.-F.; Hou, Z.; Schwartz, M.P.; Hacker, T.; Vickerman, V.; Swanson, S.; Leng, N.; Nguyen, B.K.; Elwell, A. Functional characterization of human pluripotent stem cell-derived arterial endothelial cells. Proc. Natl. Acad. Sci. USA 2017, 114, E6072–E6078. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, D.; Lachmann, M.; Kunihiro, T.; Yuasa, S.; Kishino, Y.; Kimura, M.; Katsuki, T.; Itoh, S.; Seki, T.; Fukuda, K. Automated deep learning-based system to identify endothelial cells derived from induced pluripotent stem cells. Stem Cell Rep. 2018, 10, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Theagarajan, R.; Guan, B.X.; Bhanu, B. DeephESC: An automated system for generating and classification of human embryonic stem cells. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 3826–3831. [Google Scholar]
- Orita, K.; Sawada, K.; Koyama, R.; Ikegaya, Y. Deep learning-based quality control of cultured human-induced pluripotent stem cell-derived cardiomyocytes. J. Pharmacol. Sci. 2019, 140, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-H.; Abe, K.; Yokota, H.; Sudo, K.; Nakamura, Y.; Tsai, M.-D. Human induced pluripotent stem cell region detection in bright-field microscopy images using convolutional neural networks. Biomed. Eng. Appl. Basis Commun. 2019, 31, 1950009. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Abe, K.; Yokota, H.; Sudo, K.; Nakamura, Y.; Chu, S.-L.; Hsu, C.-Y.; Tsai, M.-D. Human induced pluripotent stem cell reprogramming prediction in microscopy images using LSTM based RNN. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2416–2419. [Google Scholar]
- Chen, Y.-C.; Zhang, Z.; Yoon, E. Early prediction of single-cell derived sphere formation rate using convolutional neural network image analysis. Anal. Chem. 2020, 92, 7717–7724. [Google Scholar] [CrossRef]
- Kegeles, E.; Naumov, A.; Karpulevich, E.A.; Volchkov, P.; Baranov, P. Convolutional neural networks can predict retinal differentiation in retinal organoids. Front. Cell. Neurosci. 2020, 14, 171. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.F.; Lu, Y.; Oh, S.; Conduit, G.J. Machine learning to predict mesenchymal stem cell efficacy for cartilage repair. PLoS Comput. Biol. 2020, 16, e1008275. [Google Scholar] [CrossRef]
- Ahmadzadeh, E.; Jaferzadeh, K.; Shin, S.; Moon, I. Automated single cardiomyocyte characterization by nucleus extraction from dynamic holographic images using a fully convolutional neural network. Biomed. Opt. Express 2020, 11, 1501–1516. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Chen, Z.; He, Y.; Liu, Q.; Huang, D.-S. Locating transcription factor binding sites by fully convolutional neural network. Brief. Bioinform. 2021, 22, bbaa435. [Google Scholar]
- Hirose, T.; Kotoku, J.i.; Toki, F.; Nishimura, E.K.; Nanba, D. Label-free quality control and identification of human keratinocyte stem cells by deep learning-based automated cell tracking. Stem Cells 2021, 39, 1091–1100. [Google Scholar] [CrossRef]
- Dursun, G.; Tandale, S.B.; Gulakala, R.; Eschweiler, J.; Tohidnezhad, M.; Markert, B.; Stoffel, M. Development of convolutional neural networks for recognition of tenogenic differentiation based on cellular morphology. Comput. Methods Programs Biomed. 2021, 208, 106279. [Google Scholar] [CrossRef]
- Yan, R.; Fan, C.; Yin, Z.; Wang, T.; Chen, X. Potential applications of deep learning in single-cell RNA sequencing analysis for cell therapy and regenerative medicine. Stem Cells 2021, 39, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Au Yeung, W.K.; Maruyama, O.; Sasaki, H. A convolutional neural network-based regression model to infer the epigenetic crosstalk responsible for CG methylation patterns. BMC Bioinform. 2021, 22, 341. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Nakatsuka, R.; Fujioka, T. Automatic discrimination of human hematopoietic tumor cell lines using a combination of imaging flow cytometry and convolutional neural network. Hum. Cell 2021, 34, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Huang, R.; Wu, Z.; Song, S.; Cheng, L.; Zhu, R. Deep learning-based predictive identification of neural stem cell differentiation. Nat. Commun. 2021, 12, 2614. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Jeon, J.H.; Park, K.; Kim, S.W.; Kim, D.H.; Lee, S. High throughput screening of mesenchymal stem cell lines using deep learning. Sci. Rep. 2022, 12, 17507. [Google Scholar] [CrossRef]
- Mai, M.; Luo, S.; Fasciano, S.; Oluwole, T.E.; Ortiz, J.; Pang, Y.; Wang, S. Morphology-based deep learning approach for predicting adipogenic and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Front. Cell Dev. Biol. 2023, 11, 1329840. [Google Scholar] [CrossRef]
- Chu, S.-L.; Sudo, K.; Yokota, H.; Abe, K.; Nakamura, Y.; Tsai, M.-D. Human induced pluripotent stem cell formation and morphology prediction during reprogramming with time-lapse bright-field microscopy images using deep learning methods. Comput. Methods Programs Biomed. 2023, 229, 107264. [Google Scholar] [CrossRef]
- Lan, Y.; Huang, N.; Fu, Y.; Liu, K.; Zhang, H.; Li, Y.; Yang, S. Morphology-based deep learning approach for predicting osteogenic differentiation. Front. Bioeng. Biotechnol. 2022, 9, 802794. [Google Scholar] [CrossRef]
- Kim, H.; Park, K.; Yon, J.-M.; Kim, S.W.; Lee, S.Y.; Jeong, I.; Jang, J.; Lee, S.; Cho, D.-W. Predicting multipotency of human adult stem cells derived from various donors through deep learning. Sci. Rep. 2022, 12, 21614. [Google Scholar] [CrossRef] [PubMed]
- Hanai, Y.; Ishihata, H.; Zhang, Z.; Maruyama, R.; Kasai, T.; Kameda, H.; Sugiyama, T. Temporal and Locational Values of Images Affecting the Deep Learning of Cancer Stem Cell Morphology. Biomedicines 2022, 10, 941. [Google Scholar] [CrossRef] [PubMed]
- Marzec-Schmidt, K.; Ghosheh, N.; Stahlschmidt, S.R.; Küppers-Munther, B.; Synnergren, J.; Ulfenborg, B. Artificial intelligence supports automated characterization of differentiated human pluripotent stem cells. Stem Cells 2023, 41, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Mamaeva, A.; Krasnova, O.; Khvorova, I.; Kozlov, K.; Gursky, V.; Samsonova, M.; Tikhonova, O.; Neganova, I. Quality Control of Human Pluripotent Stem Cell Colonies by Computational Image Analysis Using Convolutional Neural Networks. Int. J. Mol. Sci. 2022, 24, 140. [Google Scholar] [CrossRef] [PubMed]
- Jo, T.; Arai, Y.; Kanda, J.; Kondo, T.; Ikegame, K.; Uchida, N.; Doki, N.; Fukuda, T.; Ozawa, Y.; Tanaka, M. A convolutional neural network-based model that predicts acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Commun. Med. 2023, 3, 67. [Google Scholar] [CrossRef] [PubMed]
- Witmer, A.; Theagarajan, R.; Bhanu, B. Triplet-net Classification of Contiguous Stem Cell Microscopy Images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 2314–2327. [Google Scholar] [CrossRef]
- He, L.; Li, M.; Wang, X.; Wu, X.; Yue, G.; Wang, T.; Zhou, Y.; Lei, B.; Zhou, G. Morphology-based deep learning enables accurate detection of senescence in mesenchymal stem cell cultures. BMC Biol. 2024, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, E.M.; Yang, S.J.; Ando, D.M.; Javaherian, A.; Skibinski, G.; Lipnick, S.; Mount, E.; O’neil, A.; Shah, K.; Lee, A.K. In silico labeling: Predicting fluorescent labels in unlabeled images. Cell 2018, 173, 792–803.e719. [Google Scholar] [CrossRef]
- Edlund, C.; Jackson, T.R.; Khalid, N.; Bevan, N.; Dale, T.; Dengel, A.; Ahmed, S.; Trygg, J.; Sjögren, R. LIVECell—A large-scale dataset for label-free live cell segmentation. Nat. Methods 2021, 18, 1038–1045. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, D.; Zhou, Y.; Yang, Y.; Liang, J.; Zhou, Y.; Li, N.; Liu, Y.; Yang, G.; Li, W. Deep learning-based morphological classification of endoplasmic reticulum under stress. Front. Cell Dev. Biol. 2022, 9, 767866. [Google Scholar] [CrossRef]
- Sarti, M.; Parlani, M.; Diaz-Gomez, L.; Mikos, A.G.; Cerveri, P.; Casarin, S.; Dondossola, E. Deep Learning for Automated Analysis of Cellular and Extracellular Components of the Foreign Body Response in Multiphoton Microscopy Images. Front. Bioeng. Biotechnol. 2022, 9, 797555. [Google Scholar] [CrossRef]
- Niioka, H.; Asatani, S.; Yoshimura, A.; Ohigashi, H.; Tagawa, S.; Miyake, J. Classification of C2C12 cells at differentiation by convolutional neural network of deep learning using phase contrast images. Hum. Cell 2018, 31, 87–93. [Google Scholar] [CrossRef]
- Buggenthin, F.; Buettner, F.; Hoppe, P.S.; Endele, M.; Kroiss, M.; Strasser, M.; Schwarzfischer, M.; Loeffler, D.; Kokkaliaris, K.D.; Hilsenbeck, O. Prospective identification of hematopoietic lineage choice by deep learning. Nat. Methods 2017, 14, 403–406. [Google Scholar] [CrossRef]
- Ugawa, M.; Kawamura, Y.; Toda, K.; Teranishi, K.; Morita, H.; Adachi, H.; Tamoto, R.; Nomaru, H.; Nakagawa, K.; Sugimoto, K. In silico-labeled ghost cytometry. eLife 2021, 10, e67660. [Google Scholar] [CrossRef]
- Juhola, M.; Joutsijoki, H.; Varpa, K.; Saarikoski, J.; Rasku, J.; Iltanen, K.; Laurikkala, J.; Hyyrö, H.; Ávalos-Salguero, J.; Siirtola, H. On computation of calcium cycling anomalies in cardiomyocytes data. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 1444–1447. [Google Scholar]
- Fan, K.; Zhang, S.; Zhang, Y.; Lu, J.; Holcombe, M.; Zhang, X. A machine learning assisted, label-free, non-invasive approach for somatic reprogramming in induced pluripotent stem cell colony formation detection and prediction. Sci. Rep. 2017, 7, 13496. [Google Scholar] [CrossRef] [PubMed]
- Sommer, C.; Gerlich, D.W. Machine learning in cell biology–teaching computers to recognize phenotypes. J. Cell Sci. 2013, 126, 5529–5539. [Google Scholar] [CrossRef] [PubMed]
- Schaub, N.J.; Hotaling, N.A.; Manescu, P.; Padi, S.; Wan, Q.; Sharma, R.; George, A.; Chalfoun, J.; Simon, M.; Ouladi, M. Deep learning predicts function of live retinal pigment epithelium from quantitative microscopy. J. Clin. Investig. 2020, 130, 1010–1023. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, M.S.; Kurita, T.; Park, S.-Y.; Chien, S.-I.; Bae, J.-S.; Ahn, B.-C. Deep vector-based convolutional neural network approach for automatic recognition of colonies of induced pluripotent stem cells. PLoS ONE 2017, 12, e0189974. [Google Scholar] [CrossRef]
- D’Sa, K.; Evans, J.R.; Virdi, G.S.; Vecchi, G.; Adam, A.; Bertolli, O.; Fleming, J.; Chang, H.; Leighton, C.; Horrocks, M.H. Prediction of mechanistic subtypes of Parkinson’s using patient-derived stem cell models. Nat. Mach. Intell. 2023, 5, 933–946. [Google Scholar] [CrossRef]
- Datta, S.; Barua, R.; Das, J. Application of artificial intelligence in modern healthcare system. In Alginates-Recent Uses of This Natural Polymer; InTechOpen: London, UK, 2019. [Google Scholar]
- Sarraf, S.; Tofighi, G. Classification of alzheimer’s disease using fmri data and deep learning convolutional neural networks. arXiv 2016, arXiv:1603.08631. [Google Scholar]
- Ma, H.; Liu, Z.-X.; Zhang, J.-J.; Wu, F.-T.; Xu, C.-F.; Shen, Z.; Yu, C.-H.; Li, Y.-M. Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis. World J. Gastroenterol. 2020, 26, 5156. [Google Scholar] [CrossRef] [PubMed]
- Rakhlin, A.; Shvets, A.; Iglovikov, V.; Kalinin, A.A. Deep convolutional neural networks for breast cancer histology image analysis. In Proceedings of the Image Analysis and Recognition: 15th International Conference, ICIAR 2018, Proceedings 15, Póvoa de Varzim, Portugal, 27–29 June 2018; pp. 737–744. [Google Scholar]
- Hosseini-Asl, E.; Gimel’farb, G.; El-Baz, A. Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. arXiv 2016, arXiv:1607.00556. [Google Scholar]
- Zhang, Y.-D.; Pan, C.; Chen, X.; Wang, F. Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling. J. Comput. Sci. 2018, 27, 57–68. [Google Scholar] [CrossRef]
- Yang, S.J.; Lipnick, S.L.; Makhortova, N.R.; Venugopalan, S.; Fan, M.; Armstrong, Z.; Schlaeger, T.M.; Deng, L.; Chung, W.K.; O’Callaghan, L. Applying deep neural network analysis to high-content image-based assays. SLAS Discov. Adv. Life Sci. R D 2019, 24, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Sivaranjini, S.; Sujatha, C. Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimed. Tools Appl. 2020, 79, 15467–15479. [Google Scholar] [CrossRef]
- Xie, F.; Yang, J.; Liu, J.; Jiang, Z.; Zheng, Y.; Wang, Y. Skin lesion segmentation using high-resolution convolutional neural network. Comput. Methods Programs Biomed. 2020, 186, 105241. [Google Scholar] [CrossRef]
- Imamura, K.; Yada, Y.; Izumi, Y.; Morita, M.; Kawata, A.; Arisato, T.; Nagahashi, A.; Enami, T.; Tsukita, K.; Kawakami, H. Prediction model of amyotrophic lateral sclerosis by deep learning with patient induced pluripotent stem cells. Ann. Neurol. 2021, 89, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Mu, S.; Wang, J.; Gong, S. Application of medical imaging based on deep learning in the treatment of lumbar degenerative diseases and osteoporosis with bone cement screws. Comput. Math. Methods Med. 2021, 2021, 2638495. [Google Scholar] [CrossRef]
- Jangir, S.K.; Joshi, N.; Kumar, M.; Choubey, D.K.; Singh, S.; Verma, M. Functional link convolutional neural network for the classification of diabetes mellitus. Int. J. Numer. Methods Biomed. Eng. 2021, 37, e3496. [Google Scholar] [CrossRef] [PubMed]
- Schiff, L.; Migliori, B.; Chen, Y.; Carter, D.; Bonilla, C.; Hall, J.; Fan, M.; Tam, E.; Ahadi, S.; Fischbacher, B. Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts. Nat. Commun. 2022, 13, 1590. [Google Scholar] [CrossRef]
- Kodipalli, A.; Guha, S.; Dasar, S.; Ismail, T. An inception-ResNet deep learning approach to classify tumours in the ovary as benign and malignant. Expert Syst. 2022, e13215. [Google Scholar] [CrossRef]
- Reis, H.C.; Turk, V. COVID-DSNet: A novel deep convolutional neural network for detection of coronavirus (SARS-CoV-2) cases from CT and Chest X-Ray images. Artif. Intell. Med. 2022, 134, 102427. [Google Scholar] [CrossRef]
- Xu, Y.; He, X.; Xu, G.; Qi, G.; Yu, K.; Yin, L.; Yang, P.; Yin, Y.; Chen, H. A medical image segmentation method based on multi-dimensional statistical features. Front. Neurosci. 2022, 16, 1009581. [Google Scholar] [CrossRef]
- Korda, A.; Ventouras, E.; Asvestas, P.; Toumaian, M.; Matsopoulos, G.; Smyrnis, N. Convolutional neural network propagation on electroencephalographic scalograms for detection of schizophrenia. Clin. Neurophysiol. 2022, 139, 90–105. [Google Scholar] [CrossRef]
- Ackermann, M.; Jiang, J.; Russomanno, E.; Wolf, M.; Kalyanov, A. Hybrid Convolutional Neural Network (hCNN) for Image Reconstruction in Near-Infrared Optical Tomography. In Oxygen Transport to Tissue XLIII; Springer: Berlin/Heidelberg, Germany, 2022; pp. 165–170. [Google Scholar]
- Gharehbaghi, A.; Partovi, E.; Babic, A. Parralel Recurrent Convolutional Neural Network for Abnormal Heart Sound Classification. In Caring Is Sharing–Exploiting the Value in Data for Health and Innovation; IOS Press: Amsterdam, The Netherlands, 2023; p. 526. [Google Scholar]
- Kim, G.H.; Hwang, Y.J.; Lee, H.; Sung, E.-S.; Nam, K.W. Convolutional neural network-based vocal cord tumor classification technique for home-based self-prescreening purpose. BioMed. Eng. OnLine 2023, 22, 81. [Google Scholar] [CrossRef]
- Talevi, A.; Morales, J.F.; Hather, G.; Podichetty, J.T.; Kim, S.; Bloomingdale, P.C.; Kim, S.; Burton, J.; Brown, J.D.; Winterstein, A.G. Machine learning in drug discovery and development part 1: A primer. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 129–142. [Google Scholar] [CrossRef]
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.M.; Ahsan, M.J. Machine learning in drug discovery: A review. Artif. Intell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef]
- Heikamp, K.; Bajorath, J. Support vector machines for drug discovery. Expert Opin. Drug Discov. 2014, 9, 93–104. [Google Scholar] [CrossRef]
- Shi, H.; Liu, S.; Chen, J.; Li, X.; Ma, Q.; Yu, B. Predicting drug-target interactions using Lasso with random forest based on evolutionary information and chemical structure. Genomics 2019, 111, 1839–1852. [Google Scholar] [CrossRef] [PubMed]
- Hammann, F.; Gutmann, H.; Vogt, N.; Helma, C.; Drewe, J. Prediction of adverse drug reactions using decision tree modeling. Clin. Pharmacol. Ther. 2010, 88, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bai, M.; Zhao, H.; Qiu, S.; Wang, Z.; Zhao, H. Drug Toxicity Classification Based on ReliefF and K-means Algorithm. In Proceedings of the 2024 12th International Conference on Intelligent Control and Information Processing (ICICIP), Nanjing, China, 8–10 March 2024; pp. 95–99. [Google Scholar]
- Yoo, C.; Shahlaei, M. The applications of PCA in QSAR studies: A case study on CCR5 antagonists. Chem. Biol. Drug Des. 2018, 91, 137–152. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y.; Zang, T. CNN-DDI: A learning-based method for predicting drug–drug interactions using convolution neural networks. BMC Bioinform. 2022, 23, 88. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Z.; Piao, C.; Huang, Y.; Zhang, Y.; Zhang, C.; Lu, Y.-J.; Liu, D. LDS-CNN: A deep learning framework for drug-target interactions prediction based on large-scale drug screening. Health Inf. Sci. Syst. 2023, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, Y.; Zhou, H.; Sun, Q.; Su, R. DNN-PNN: A parallel deep neural network model to improve anticancer drug sensitivity. Methods 2023, 209, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Müller, A.T.; Huisman, B.J.; Fuchs, J.A.; Schneider, P.; Schneider, G. Generative recurrent networks for de novo drug design. Mol. Inform. 2018, 37, 1700111. [Google Scholar] [CrossRef]
- Kavipriya, G.; Manjula, D. Drug–Target Interaction Prediction Model Using Optimal Recurrent Neural Network. Intell. Autom. Soft Comput. 2023, 35, 1676–1689. [Google Scholar] [CrossRef]
- Blanchard, A.E.; Stanley, C.; Bhowmik, D. Using GANs with adaptive training data to search for new molecules. J. Cheminform. 2021, 13, 14. [Google Scholar] [CrossRef]
- Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design: From conventional to machine learning methods. Int. J. Mol. Sci. 2021, 22, 1676. [Google Scholar] [CrossRef]
- Edvinsson, F.; Jonsson, V. Autonomous Drug Design with Reinforcement Learning. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2023. [Google Scholar]
- Kraljevic, S.; Stambrook, P.J.; Pavelic, K. Accelerating drug discovery: Although the evolution of ‘-omics’ methodologies is still in its infancy, both the pharmaceutical industry and patients could benefit from their implementation in the drug development process. EMBO Rep. 2004, 5, 837–842. [Google Scholar] [CrossRef]
- Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [Google Scholar] [CrossRef]
- Chen, J.; Swamidass, S.J.; Dou, Y.; Bruand, J.; Baldi, P. ChemDB: A public database of small molecules and related chemoinformatics resources. Bioinformatics 2005, 21, 4133–4139. [Google Scholar] [CrossRef] [PubMed]
- Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT online: Collection of open natural products database. J. Cheminform. 2021, 13, 2. [Google Scholar] [CrossRef]
- Freshour, S.L.; Kiwala, S.; Cotto, K.C.; Coffman, A.C.; McMichael, J.F.; Song, J.J.; Griffith, M.; Griffith, O.L.; Wagner, A.H. Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021, 49, D1144–D1151. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ravikumar, B.; Alam, Z.; Rebane, A.; Vähä-Koskela, M.; Peddinti, G.; van Adrichem, A.J.; Wakkinen, J.; Jaiswal, A.; Karjalainen, E. Drug target commons: A community effort to build a consensus knowledge base for drug-target interactions. Cell Chem. Biol. 2018, 25, 224–229.e222. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, Q.; Meng, F.; Du, P.; Chen, W. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine. Comput. Struct. Biotechnol. J. 2022, 20, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Machancoses, Ó.; Fernández-Martínez, J.L. Using artificial intelligence methods to speed up drug discovery. Expert Opin. Drug Discov. 2019, 14, 769–777. [Google Scholar] [CrossRef]
- Dana, D.; Gadhiya, S.V.; St. Surin, L.G.; Li, D.; Naaz, F.; Ali, Q.; Paka, L.; Yamin, M.A.; Narayan, M.; Goldberg, I.D. Deep learning in drug discovery and medicine; scratching the surface. Molecules 2018, 23, 2384. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.-K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today 2019, 24, 773–780. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 2019, 119, 10520–10594. [Google Scholar] [CrossRef]
- Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity prediction using deep learning. Front. Environ. Sci. 2016, 3, 80. [Google Scholar] [CrossRef]
- Pu, L.; Naderi, M.; Liu, T.; Wu, H.-C.; Mukhopadhyay, S.; Brylinski, M. etoxpred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol. Toxicol. 2019, 20, 2. [Google Scholar] [CrossRef]
- Basile, A.O.; Yahi, A.; Tatonetti, N.P. Artificial intelligence for drug toxicity and safety. Trends Pharmacol. Sci. 2019, 40, 624–635. [Google Scholar] [CrossRef]
- Lysenko, A.; Sharma, A.; Boroevich, K.A.; Tsunoda, T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci. Alliance 2018, 1. [Google Scholar] [CrossRef]
- Öztürk, H.; Özgür, A.; Ozkirimli, E. DeepDTA: Deep drug–target binding affinity prediction. Bioinformatics 2018, 34, i821–i829. [Google Scholar] [CrossRef]
- Shen, T.; Guo, J.; Han, Z.; Zhang, G.; Liu, Q.; Si, X.; Wang, D.; Wu, S.; Xia, J. AutoMolDesigner for Antibiotic Discovery: An AI-based Open-source Software for Automated Design of Small-molecule Antibiotics. J. Chem. Inf. Model. 2023, 64, 575–583. [Google Scholar] [CrossRef]
- Zang, Q.; Mansouri, K.; Williams, A.J.; Judson, R.S.; Allen, D.G.; Casey, W.M.; Kleinstreuer, N.C. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. J. Chem. Inf. Model. 2017, 57, 36–49. [Google Scholar] [CrossRef]
- Wan, F.; Zeng, J. Deep learning with feature embedding for compound-protein interaction prediction. bioRxiv 2016, 086033. [Google Scholar] [CrossRef]
- Panapitiya, G.; Girard, M.; Hollas, A.; Murugesan, V.; Wang, W.; Saldanha, E. Predicting aqueous solubility of organic molecules using deep learning models with varied molecular representations. arXiv 2021, arXiv:2105.12638. [Google Scholar]
- Lee, J.W.; Maria-Solano, M.A.; Vu, T.N.L.; Yoon, S.; Choi, S. Big data and artificial intelligence (AI) methodologies for computer-aided drug design (CADD). Biochem. Soc. Trans. 2022, 50, 241–252. [Google Scholar] [CrossRef]
- Popova, M.; Isayev, O.; Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018, 4, eaap7885. [Google Scholar] [CrossRef]
- Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 2018, 4, 268–276. [Google Scholar] [CrossRef]
- Mercado, R.; Rastemo, T.; Lindelöf, E.; Klambauer, G.; Engkvist, O.; Chen, H.; Bjerrum, E.J. Graph networks for molecular design. Mach. Learn. Sci. Technol. 2021, 2, 025023. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Liu, Z. Multi-objective de novo drug design with conditional graph generative model. J. Cheminform. 2018, 10, 33. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Sun, H.; Wang, J.; Shen, C.; Weng, G.; Chai, X.; Li, H.; Cao, D.; Hou, T. Deep learning approaches for de novo drug design: An overview. Curr. Opin. Struct. Biol. 2022, 72, 135–144. [Google Scholar] [CrossRef]
- Guo, J.; Janet, J.P.; Bauer, M.R.; Nittinger, E.; Giblin, K.A.; Papadopoulos, K.; Voronov, A.; Patronov, A.; Engkvist, O.; Margreitter, C. DockStream: A docking wrapper to enhance de novo molecular design. J. Cheminform. 2021, 13, 89. [Google Scholar] [CrossRef]
- Wang, M.; Hsieh, C.-Y.; Wang, J.; Wang, D.; Weng, G.; Shen, C.; Yao, X.; Bing, Z.; Li, H.; Cao, D. Relation: A deep generative model for structure-based de novo drug design. J. Med. Chem. 2022, 65, 9478–9492. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Aderinwale, T.; Bharadwaj, V.; Christoffer, C.; Terashi, G.; Zhang, Z.; Jahandideh, R.; Kagaya, Y.; Kihara, D. Real-time structure search and structure classification for AlphaFold protein models. Commun. Biol. 2022, 5, 316. [Google Scholar] [CrossRef]
- Nag, S.; Baidya, A.T.; Mandal, A.; Mathew, A.T.; Das, B.; Devi, B.; Kumar, R. Deep learning tools for advancing drug discovery and development. 3 Biotech 2022, 12, 110. [Google Scholar] [CrossRef]
- Bagherian, M.; Sabeti, E.; Wang, K.; Sartor, M.A.; Nikolovska-Coleska, Z.; Najarian, K. Machine learning approaches and databases for prediction of drug–target interaction: A survey paper. Brief. Bioinform. 2021, 22, 247–269. [Google Scholar] [CrossRef]
- Wen, M.; Zhang, Z.; Niu, S.; Sha, H.; Yang, R.; Yun, Y.; Lu, H. Deep-learning-based drug–target interaction prediction. J. Proteome Res. 2017, 16, 1401–1409. [Google Scholar] [CrossRef]
- Lee, I.; Keum, J.; Nam, H. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS Comput. Biol. 2019, 15, e1007129. [Google Scholar] [CrossRef]
- Xia, Z.; Wu, L.-Y.; Zhou, X.; Wong, S.T. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 2010, 4, S6. [Google Scholar] [CrossRef]
- Dhakal, A.; McKay, C.; Tanner, J.J.; Cheng, J. Artificial intelligence in the prediction of protein–ligand interactions: Recent advances and future directions. Brief. Bioinform. 2022, 23, bbab476. [Google Scholar] [CrossRef]
- Yaseen, B.T. Drug Target Interaction Prediction Using Convolutional Neural Network (CNN). In Proceedings of the 2023 5th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Istanbul, Turkey, 8–10 June 2023; pp. 1–5. [Google Scholar]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80. [Google Scholar] [CrossRef]
- Tiwari, P.C.; Pal, R.; Chaudhary, M.J.; Nath, R. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges. Drug Dev. Res. 2023, 84, 1652–1663. [Google Scholar] [CrossRef]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
Cell Types | Groups | Algorithm Types | Dataset | Reference |
---|---|---|---|---|
Endothelial cells | CD31-stained cells | CNN | 800 images | [34] |
Unstained cells | ||||
Human Embryonic stem cells (hESCs) | Cell cluster | CNN | 83,000 images | [35] |
Debris | ||||
Unattached cells | ||||
Attached cells | ||||
Dynamically blebbing cells | ||||
Apoptically blebbing cells | ||||
Human-induced pluripotent stem-cell-derived cardiomyocytes (hiPS-CMs) | Normal hiPSC-CM images | CNN | 18,000 images | [36] |
Abnormal hiPSC-CM images | ||||
hiPSCs | Reprogramming hiPSCs groups (4 classes) | CNN | Total 4020 images | [37] |
Reprogrammed hiPSCs groups (1 class) | ||||
Human CD34+ cells group (1 class) | ||||
hiPSCs | Region with no cells Region with differentiated cells Region with possibly reprogramming and reprogrammed hiPSCs | CNN | 555 images | [38] |
Cancer stem-like cells | Single cells (0, 2, 4, and 14 days) | CNN | 1710 single cells | [39] |
Mouse ESCs | Retinal organoid Non-retinal organoid | CNN-ResNet50v2 | 1209 images | [40] |
Mesenchymal stem cells (MSCs) | Species Body weight Tissue Cell number and concentration Defect area and depth Type of cartilage damage | Artificial neural network (ANN) | 15 clinical trials 29 animal models (1 goat, 6 pigs, 2 dogs, 9 rabbits, 9 rats, and 2 mice) | [41] |
hiPS-CMs | Cardiac cell images | CNN | 2500 quantitative phase images | [42] |
A549, GM12878, MCF7 cells | Transcription factors (DNA binding motifs) | CNN | 53 transcription factors | [43] |
Human keratinocyte stem cells | Keratinocyte nuclei | CNN | 15,040 images | [44] |
Bone-marrow-derived mesenchymal stem cells (BMSCs) | 10 ng/mL (BMP-12/GDF-7) for 12, 24, and 48 h 50 ng/mL (BMP-12/GDF-7) for 12, 24, and 48 h | CNN | Immunofluorescence staining images | [45] |
MSCs | Single-cell RNA sequencing | CNN | RNA sequencing dataset | [46] |
ESCs Neuronal progenitor cells (NPCs) | CG methylation | CNN-epiNet | CG methylation in mouse oocytes | [47] |
Hematopoietic tumor cells (HTCs) | Acute myeloid leukemia Chronic myeloid leukemia B-cell acute lymphoblastic leukemia Myeloma | CNN | Ten hematopoietic tumor cell lines imaging | [48] |
Neural stem cells (NSCs) | Differentiated at 1, 2, 4, and 6 days | Google Inception | Imaging with bright field and flow cytometry | [49] |
MSCs | High and low multilineage differentiating stress-enduring (MUSE) cell markers | CNN-DenseNet121 | 6120 cell images | [50] |
hMSCs | Control group Osteogenic differentiation group Adipogenic differentiation group Osteogenic + Adipogenic differentiation group | CNN-Resnet50 | 2336 images (Images taken after 1, 2, 3, 5, 7, 10, and 13 days of differentiation) | [51] |
hiPSCs | Images during the reprogramming process for 10 days | CNN | 3000 images | [52] |
Rat rBMSCs | Osteogenic differentiation at 0, 1, 4, and 7 days | Osteogenic CNN | 2916 single-cell images | [53] |
Human nasal turbinate stem cells (hNTSCs) | Multipotent cell images Non-multipotent cell images | CNN-DenseNet121 | 1254 multipotent cell images 596 non-multipotent cell images | [54] |
Cancer stem cell (CSC) | CSC in images of 1-day culture CSC in images of 2-day culture | CNN | 2000 images | [55] |
hPSCs | Early differentiation group Late differentiation group | CNN | 1331 images | [56] |
hESCs | High or low pluripotency status | CNN | 269 images of hPSC colonies | [57] |
Hematopoietic stem cells (HSCs) | Grade I–IV Acute Graft-Versus-Host Disease (aGVHD) | CNN | 18,763 patients between 16 and 80 years of age | [58] |
Stem cells | Colony groups | Triplet-net CNN | Colonies images | [59] |
Senescent MSCs | Senescent cells Non-senescent cells | CNN | 93,907 senescent cells 46,118 non-senescent cells | [60] |
Disease Types | Groups | Algorithm Types | Dataset | Reference |
---|---|---|---|---|
Alzheimer’s Disease (AD) | AD | Deep 3D CNN | AD Neuroimaging Initiative MRI images | [78] |
Mild Cognitive Impairment (MCI) | ||||
Negative Control | ||||
Abnormal breast | Normal breast | CNN | 209 normal mammogram images | [79] |
Abnormal breast | 113 abnormal mammogram images | |||
Spinal Muscular Atrophy (SMA) | SMA subjects | CNN | Cell images | [80] |
Healthy subjects | ||||
Parkinson | MR Imaging | CNN-Alexnet | MR imaging | [81] |
Skin lesion | Dermoscopy images | CNN | 2750 skin lesion imaging | [82] |
Amyotrophic Lateral Sclerosis (ALS) | ALS subjects | CNN-VGG16 | iPSC cell image | [83] |
Healthy subjects | ||||
Lumbar degenerative disease | Negative group | Deep CNN | MRS and CT medical imaging | [84] |
Osteoporosis | Positive group | |||
Diabetes | Diabetes group | Functional Link CNN | Diabetes data | [85] |
Parkinson | Healthy group | Deep CNN | Primary fibroblast from 91 Parkinson’s disease patients and healthy controls | [86] |
Parkinson’s disease patients | ||||
Ovarian tumors | Benign tumors | Quantum CNN-Resnet | Benign and malignant tumor images | [87] |
Malignant tumors | ||||
SARS-CoV-2 | Non-COVID-19 | Deep CNN | Normal pneumonia | [88] |
Common Pneumonia | COVID-19 cases | |||
COVID-19 | (Chest CT and X-ray) | |||
Brain tumor | Brain tumor images | CNN-Resnet | Brain MRI images | [89] |
Schizophrenia | Schizophrenia patients | CNN | Electroencephalographic data | [90] |
Healthy groups | ||||
Oxygenation in the brains of infants | Infant brain groups | Hybrid CNN | 23,000 Near-Infrared Optical Tomography images | [91] |
Abnormal heart sound | Heart sound signals | Parallel CNN | 3240 heart sound signals | [92] |
Benign vocal cord tumor | Cysts Granulomas Leukoplakia Nodules and polyps | CNN | 2183 laryngoscopic images | [93] |
Category | Algorithm | Application | Reference |
---|---|---|---|
Supervised learning | SVM | Drug screening Drug target interaction Drug–drug interaction | [96] |
RF | [97] | ||
Decision tree | Drug–drug interaction Adverse drug reactions | [98] | |
Unsupervised learning | K-means clustering | Drug toxicity | [99] |
PCR | QSAR | [100] | |
Deep learning | CNN | Physiochemical property Drug target interaction Drug–drug interaction | [101,102] |
DNN | Drug screening | [103] | |
RNN | De novo drug design Drug target interaction | [104,105] | |
GAN | Molecule discovery | [106] | |
Reinforcement learning | Q-learning | De novo drug design Virtual screening | [107,108] |
Deep Q-network | |||
DAN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Hong, S. Integrating Artificial Intelligence to Biomedical Science: New Applications for Innovative Stem Cell Research and Drug Development. Technologies 2024, 12, 95. https://doi.org/10.3390/technologies12070095
Kim M, Hong S. Integrating Artificial Intelligence to Biomedical Science: New Applications for Innovative Stem Cell Research and Drug Development. Technologies. 2024; 12(7):95. https://doi.org/10.3390/technologies12070095
Chicago/Turabian StyleKim, Minjae, and Sunghoi Hong. 2024. "Integrating Artificial Intelligence to Biomedical Science: New Applications for Innovative Stem Cell Research and Drug Development" Technologies 12, no. 7: 95. https://doi.org/10.3390/technologies12070095
APA StyleKim, M., & Hong, S. (2024). Integrating Artificial Intelligence to Biomedical Science: New Applications for Innovative Stem Cell Research and Drug Development. Technologies, 12(7), 95. https://doi.org/10.3390/technologies12070095