The Impacts of International Political and Economic Events on Japanese Financial Markets
Abstract
:1. Introduction
2. Methodology
3. Data Description
4. Empirical Results
4.1. Model Estimations
4.2. Changes in Causality Relationship
5. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Agren, Martin. 2006. Does Oil Price Uncertainty Transmit to Stock Markets? Working Paper Series 2006: 23; Uppsala: Uppsala University, Department of Economics. [Google Scholar]
- Bashir, Usman, Gilney Figueira Zebende, Yugang Yu, Muntazir Hussain, Ahmed Ali, and Ghulam Abbas. 2019. Differential market reactions to pre and post Brexit referendum. Physica A: Statistical Mechanics and its Applications 515: 151–58. [Google Scholar] [CrossRef]
- Belke, Ansgar, Irina Dubova, and Thomas Osowski. 2018. Policy uncertainty and international financial markets: the case of Brexit. Applied Economics 50: 3752–70. [Google Scholar] [CrossRef] [Green Version]
- Bollerslev, Tim. 1986. Generalised autoregressive conditional hetroscedasticity. Journal of Econometrics 31: 307–27. [Google Scholar] [CrossRef] [Green Version]
- Bollerslev, Tim, Ray Chou, and Kenneth Kroner. 1992. ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics 52: 5–59. [Google Scholar] [CrossRef]
- Box, George, and David Pierce. 1970. Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association 65: 1509–26. [Google Scholar] [CrossRef]
- Chung, Chae-Shik, and Youngmin Jang. 2000. Analysis of changes in the relationship between the KRW/USD exchange rate and JPY/USD exchange rate before and after the economic crisis. East Asian Economic Review 4: 65–93. [Google Scholar] [CrossRef]
- Dickey, Alan, and Arthur Wayne Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–31. [Google Scholar]
- Dickey, Alan, and Arthur Wayne Fuller. 1981. Likelihood ration statistics for autoregressive time series with a unit root. Econometrica 49: 1057–72. [Google Scholar] [CrossRef]
- Engle, Robert. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50: 987–1007. [Google Scholar] [CrossRef]
- Engle, Robert. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional hetroscedasticity models. Journal of Business and Economic Statistics 20: 339–50. [Google Scholar] [CrossRef]
- Engle, Robert, and Kevin Sheppard. 2001. Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH. NBER Working Paper No. 8554. Available online: https://ssrn.com/abstract=1296441 (accessed on 30 March 2020).
- Glosten, Lawrence, Ravi Jagannathan, and David Runkle. 1993. On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance 48: 1779–801. [Google Scholar] [CrossRef]
- Hamori, Shigeyuki. 2003. An Empirical Investigation of Stock Markets: The CCF Approach. New York: Kluwer Academic Publisher. [Google Scholar]
- Hanabusa, Kunihiro. 2010. Effects of foreign disasters on the petroleum industry in Japan: A financial market perspective. Energy 35: 5455–63. [Google Scholar] [CrossRef]
- Hong, Yongmiao. 2001. A test for volatility spillover with application to exchange rates. Journal of Econometrics 103: 183–224. [Google Scholar] [CrossRef]
- Jarque, Carlos, and Anil Bera. 1987. A test for normality of observations and regression residuals. International Statistical Review 55: 163–72. [Google Scholar] [CrossRef]
- Kadiric, Samir, and Arthur Korus. 2019. The effects of Brexit on credit spreads: Evidence from UK and Eurozone corporate bond markets. International Economics and Economic Policy 16: 65–102. [Google Scholar] [CrossRef] [Green Version]
- Karfakis, Costas, and Theodore Panagiotidis. 2015. The effects of global monetary policy and Greek debt crisis on the dynamic conditional correlations of currency markets. Empirica (Journal of European Economics) 42: 795–811. [Google Scholar] [CrossRef]
- Lin, Chin-Tsai, and Yi-Hsien Wang. 2005. An analysis of political changes on Nikkei 225 stock returns and volatilities. Annals of Economics and Finance 6: 169–83. [Google Scholar]
- Ljung, Greta, and George Box. 1978. On a measure of lack of fit in time series models. Biometrika 65: 297–303. [Google Scholar] [CrossRef]
- Nelson, Daniel. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59: 347–70. [Google Scholar] [CrossRef]
- Ross, Stephen. 1989. Information and volatility: The no-arbitrage Martingale approach to timing and resolution irrelevancy. Journal of Finance 44: 1–17. [Google Scholar] [CrossRef]
- Schwert, William. 1989. Why does stock market volatility change over time? Journal of Finance 44: 1115–53. [Google Scholar] [CrossRef]
- Shaikh, Imlak. 2017. The 2016 U.S. presidential election and the stock, FX and VIX markets. The North American Journal of Economics and Finance 42: 546–63. [Google Scholar] [CrossRef]
- Sultonov, Mirzosaid, and Shahzadah Jehan. 2018. Dynamic linkages between Japan’s foreign exchange and stock markets: Response to the Brexit referendum and the 2016 U.S. presidential election. Journal of Risk and Financial Management 11: 34. [Google Scholar] [CrossRef] [Green Version]
- Taylor, Stephen. 1986. Modelling Financial Time Series. Chichester and New York: Wiley. [Google Scholar]
- Wang, Lin, and Ali Kutan. 2013. The impact of natural disasters on stock markets: Evidence from Japan and the US. Comparative Economic Studies 55: 672–86. [Google Scholar] [CrossRef]
1 |
Variables | Obs. | Mean | Std. Dev. | Skewness | Kurtosis | Jarque–Bera | ADF |
---|---|---|---|---|---|---|---|
Whole period: 9 February 2016 to 24 March 2017 | |||||||
JPY | 276 | −0.00019 | 0.00840 | −0.54315 | 8.59034 | 373.00 *** | −3.633 *** |
Nikkei | 276 | 0.00045 | 0.01514 | −0.45002 | 9.52024 | 498.20 *** | −5.304 *** |
TOPIX | 276 | 0.00041 | 0.01458 | −0.36411 | 9.87909 | 550.30 *** | −5.303 *** |
Before BR: 9 February 2016 to 23 June 2016 | |||||||
JPY | 92 | −0.00123 | 0.00865 | −1.95794 | 11.7919 | 355.10 *** | −3.468 ** |
Nikkei | 92 | −0.00050 | 0.01856 | 0.05303 | 5.24109 | 19.300 *** | −3.264 ** |
TOPIX | 92 | −0.00066 | 0.01866 | 0.14395 | 6.35728 | 43.520 *** | −3.068 *** |
After BR and before USE: 24 June 2016 to 8 November 2016 | |||||||
JPY | 92 | −0.00002 | 0.00793 | −0.61696 | 5.09002 | 22.580 *** | −3.467 ** |
Nikkei | 92 | 0.00061 | 0.01402 | −2.01021 | 15.1419 | 627.10 *** | −3.381 *** |
TOPIX | 92 | 0.00053 | 0.01324 | −1.82225 | 13.5368 | 476.50 *** | −3.347 *** |
After USE: 9 November 2016 to 24 March 2017 | |||||||
JPY | 92 | 0.00069 | 0.00857 | 0.96898 | 6.62240 | 64.700 *** | −2.959 ** |
Nikkei | 92 | 0.00125 | 0.01224 | 0.54557 | 13.9792 | 466.60 *** | −2.951 ** |
TOPIX | 92 | 0.00135 | 0.01081 | 0.46879 | 12.6791 | 362.50 *** | −2.657 * |
JPY | JPY | JPY | Nikkei | Nikkei | Nikkei | TOPIX | TOPIX | TOPIX | |
---|---|---|---|---|---|---|---|---|---|
Mean | |||||||||
C | 0.0000 (0.0005) | −0.0001 (0.0029) | −0.0003 *** (0.0001) | 0.0000 (0.0002) | 0.0004 ** (0.0002) | 0.0001 *** (0.0000) | 0.0004 *** (0.0001) | 0.0002 (0.0009) | 0.0004 (0.0008) |
−0.0205 (0.0869) | −0.0430 (0.3057) | −0.0940 *** (0.0022) | 0.0265 *** (0.0028) | 0.0373 (0.1296) | 0.0086 ** (0.0038) | 0.0297 ** (0.0137) | 0.1099 (0.1164) | 0.0247 (0.0782) | |
Brexit 1 week | 0.0035 (0.0043) | −0.0017 (0.0430) | −0.0333 (0.0373) | ||||||
Brexit 2 weeks | −0.0004 *** (0.0000) | −0.0062 (0.0081) | −0.0048 *** (0.0009) | ||||||
USE 1 week | 0.0084 (0.0107) | −0.0013 (0.0062) | −0.0066 (0.0180) | ||||||
USE 2 weeks | 0.0084 *** (0.0002) | 0.0030 *** (0.0010) | 0.0028 (0.0029) | ||||||
Variance | |||||||||
ω | −17.037 *** (2.8158) | −17.744 *** (1.1457) | −19.152 *** (1.2575) | −0.4111 ** (0.1937) | −6.7280 (7.6965) | −0.5606 (0.3791) | −0.4377 * (0.2253) | −0.8037 (0.5124) | −0.4830 (0.9977) |
−0. 1143 (0.0727) | −0.1253 (0.0792) | −0.0470 (0.0829) | −0.3005 *** (0.0746) | −0.3462 * (0.1861) | −0.3002 *** (0.0794) | −0.2934 *** (0.0710) | −0.3987 *** (0.1260) | −0.2919 *** (0.1085) | |
α1 | 0.0289 (0.1806) | −0.0197 (0.1490) | −0.0127 (0.1146) | 0.0303 (0.0550) | 0.3277 (0.3088) | 0.0912 (0.1093) | 0.0653 (0.0662) | 0.1312 (0.1272) | 0.0950 (0.3392) |
β1 | −0.7649 *** (0.2939) | −0.8206 *** (0.1229) | −0.9651 *** (0.1084) | 0.9532 *** (0.0221) | 0.2360 (0.8813) | 0.9350 *** (0.0442) | 0.9517 *** (0.0251) | 0.9111 *** (0.0575) | 0.9458 *** (0.1149) |
Brexit 1 week | 2.1566 * (1.2185) | 2.0436 (1.4497) | 0.5064 (0.8815) | ||||||
Brexit 2 weeks | 1.3502 (1.1926) | 0.0598 (0.1573) | 0.0160 (0.0819) | ||||||
USE 1 week | 1.0209 (1.2260) | 1.5501 (1.9073) | 0.0544 (0.6265) | ||||||
USE 2 weeks | 0.9928 (0.9905) | −0.2012 (0.1998) | −0.1171 (0.5512) | ||||||
GED parameter | 0. 1204 (0.1291) | 0.1668 (0.1543) | 0.1608 (0.1334) | 0.1253 (0.1215) | 0.1980 (0.3048) | 0.1400 (0.1178) | 0.1928 (0.1280) | 0.4538 * (0.2597) | 0.1943 (0.1466) |
Diagnostic | |||||||||
Q(5) | 5.0193 (0.4135) | 3.8026 (0.5782) | 3.5284 (0.6191) | 2.5675 (0.7663) | 6.7945 (0.2364) | 1.7072 (0.8880) | 3.0440 (0.6932) | 3.5301 (0.6188) | 2.7364 (0.7405) |
Q2(5) | 1.0372 (0.9595) | 1.2148 (0.9434) | 0.9833 (0.9639) | 1.4679 (0.9167) | 6.2153 (0.2858) | 1.2978 (0.9352) | 1.6036 (0.9008) | 3.9060 (0.5630) | 2.0401 (0.8436) |
Pair | Before BR | After BR (Before USE) | After USE |
---|---|---|---|
JPY to Nikkei | −0.0387 | 0.0190 | 0.0337 |
Nikkei to JPY | 0.2852 *** | 0.0581 | 0.0749 * |
JPY to TOPIX | −0.0871 | −0.0219 | 0.0547 |
TOPIX to JPY | 0.2625 *** | −0.0669 | 0.0000 |
Nikkei to TOPIX | −0.0029 | 0.1284 | −0.0423 |
TOPIX to Nikkei | 0.0285 | −0.1518 | −0.0304 ** |
Pair | Before BR | After BR (Before USE) | After USE |
---|---|---|---|
JPY to Nikkei | −0.0562 * | 0.0132 ** | −0.0032 ** |
Nikkei to JPY | 0.4434 *** | −0.0478 ** | 0.6210 *** |
JPY to TOPIX | −0.0629 * | −0.0114 ** | 0.0184 ** |
TOPIX to JPY | 0.3480 *** | −0.0413 ** | 0.5774 *** |
Nikkei to TOPIX | −0.0562 | −0.0072 ** | 0.0123 * |
TOPIX to Nikkei | 0.1631 | −0.0141 ** | 0.0023 * |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sultonov, M. The Impacts of International Political and Economic Events on Japanese Financial Markets. Int. J. Financial Stud. 2020, 8, 43. https://doi.org/10.3390/ijfs8030043
Sultonov M. The Impacts of International Political and Economic Events on Japanese Financial Markets. International Journal of Financial Studies. 2020; 8(3):43. https://doi.org/10.3390/ijfs8030043
Chicago/Turabian StyleSultonov, Mirzosaid. 2020. "The Impacts of International Political and Economic Events on Japanese Financial Markets" International Journal of Financial Studies 8, no. 3: 43. https://doi.org/10.3390/ijfs8030043
APA StyleSultonov, M. (2020). The Impacts of International Political and Economic Events on Japanese Financial Markets. International Journal of Financial Studies, 8(3), 43. https://doi.org/10.3390/ijfs8030043