Effects of Liquidity on TE and Performance of Japanese ETFs
Abstract
1. Introduction
2. Literature Review
Research Motivation
3. Data Description and Variables Constructed
3.1. Bid–Ask Spread—The Proxy of Transaction Costs
3.2. Amihud Illliquidity
3.3. Turnover Liquidity Measure
3.4. New Revised Roll Liquidity Measure
4. Empirical Analysis
4.1. The Relation Between Tracking Error and Liquidity
4.1.1. Measuring Tracking Error
4.1.2. Beta Measure of TE
4.1.3. The Relation Between Tracking Error and Liquidity—Cross Section Regression
4.1.4. The Relation Between Tracking Error and Liquidity—Panel Regression
4.1.5. International Markets
4.2. The Relationship Between Liquidity and Risk-Adjusted Return
4.2.1. Why Use Risk-Adjusted Performance and Fama–French Five-Factor Model?
4.2.2. Cross-Sectional Regression
4.2.3. Panel Regression
4.3. How the Size of JETF Affects Tracking Error and Risk-Adjusted Return
5. Robustness Checks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adjei, F. (2009). Diversification, performance, and performance persistence in exchange traded funds. International Review of Applied Financial Issues and Economics, 1(1), 4–19. [Google Scholar]
- Agapova, A. (2011). Conventional mutual index funds versus exchange-traded funds. Journal of Financial Markets, 14(2), 323–343. [Google Scholar] [CrossRef]
- Agarwal, V., Hanouna, P. E., Moussawi, R., & Stahel, C. W. (2018, November 20). Do ETFs increase the commonality in liquidity of underlying stocks? 28th Annual Conference on Financial Economics and Accounting and the Fifth Annual Conference on Financial Market Regulation. Available online: https://ssrn.com/abstract=3001524 (accessed on 23 May 2023).
- Alexander, C., & Barbosa, A. (2008). Hedging index exchange traded funds. Journal of Banking & Finance, 32(2), 326–337. [Google Scholar] [CrossRef]
- Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets, 5(1), 31–56. [Google Scholar] [CrossRef]
- Amihud, Y. (2018). Illiquidity and stock returns: A revisit. Critical Finance Review. Available online: https://ssrn.com/abstract=3257038 (accessed on 23 May 2023).
- Amihud, Y., & Goyenko, R. (2013). Mutual fund’s R2 as predictor of performance. The Review of Financial Studies, 26(3), 667–694. [Google Scholar] [CrossRef]
- Avellaneda, M., & Dobi, D. (2012). Structural slippage of leveraged ETFs [Working Paper]. SSRN. [Google Scholar] [CrossRef]
- Bae, K., & Kim, D. (2020). Liquidity risk and exchange-traded fund returns, variances, and tracking errors. Journal of Financial Economics, 138, 222–253. [Google Scholar] [CrossRef]
- Ben-David, I., Franzoni, F., & Moussawi, R. (2018). Do ETFs increase volatility? Journal of Finance, 73(6), 2471–2535. [Google Scholar] [CrossRef]
- Berk, J. B., & Green, R. C. (2004). Mutual fund flows and performance in rational markets. Journal of Political Economy, 112(6), 1269–1295. [Google Scholar] [CrossRef]
- Bhattacharya, A., & O’Hara, M. (2018). Can ETFs increase market fragility? Effect of information linkages in ETF markets. SSRN. [Google Scholar] [CrossRef]
- Bloch, M., Guerard, J., Markowitz, H., Todd, P., & Xu, G. (1993). A comparison of some aspects of the U.S. and Japanese equity markets. Japan and the World Economy, 5(1), 3–26. [Google Scholar] [CrossRef]
- Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control. John Wiley & Sons. [Google Scholar]
- Brown, A., & Yang, F. (2011). Liquidity, arbitrage, and short sales: Evidence from the London stock exchange. Journal of Financial Economics, 101(2), 583–604. [Google Scholar]
- Bunnenberg, S., Rohleder, M., Scholz, H., & Wilkens, M. (2019). Jensen’s alpha and the market-timing puzzle. Review of Financial Economics, 37, 234–255. [Google Scholar] [CrossRef]
- Charupat, N., & Miu, P. (2013). Recent developments in exchange-traded funds literature: Pricing efficiency, tracking ability and effects on underlying assets. Managerial Finance, 39(5), 427–443. [Google Scholar] [CrossRef]
- Christopoulos, A. (2021). The absolute Roll measure. SSRN. Available online: https://ssrn.com/abstract=3958079 (accessed on 1 September 2025). [CrossRef]
- Chu, P. K.-K. (2013). Tracking errors and their determinants: Evidence from Hong Kong exchange traded funds. SSRN. [Google Scholar] [CrossRef]
- Cremers, K. J. M., & Petajisto, A. (2009). How active is your fund manager? A new measure that predicts performance [Working paper]. SSRN. [Google Scholar]
- de Andres, P., & Vallelado, E. (2008). Corporate governance in banking: The role of the board of directors. Journal of Banking & Finance, 32(12), 2570–2580. [Google Scholar] [CrossRef]
- Delcoure, N., & Zhong, M. (2007). On the premiums of iShares. Journal of Empirical Finance, 14(2), 168–195. [Google Scholar] [CrossRef]
- Doukas, J. A., & McKnight, P. J. (2005). Liquidity and the Jensen index of mutual funds. Journal of Financial Research, 28(4), 559–569. [Google Scholar] [CrossRef]
- Elton, E. J., Gruber, M. J., & Blake, C. R. (1996). Survivorship bias and mutual fund performance. The Review of Financial Studies, 9(4), 1097–1120. [Google Scholar] [CrossRef]
- Eun, C. S., Huang, W., & Lai, S. (2008). International diversification with large- and small-cap stocks. The Journal of Financial and Quantitative Analysis, 43(2), 489–523. [Google Scholar] [CrossRef]
- Evans, R. B., Karakaş, O., Moussawi, R., & Young, M. J. (in press). Phantom of the Opera: ETF shorting and shareholder voting. Management Science. [CrossRef]
- Gastineau, G. L. (2001). Exchange-traded funds: An introduction. The Journal of Portfolio Management, 27(3), 88–96. [Google Scholar] [CrossRef]
- Gastineau, G. L. (2004). The benchmark index ETF performance problem. The Journal of Portfolio Management, 30(2), 96–103. [Google Scholar] [CrossRef]
- Glosten, L. R., Nallareddy, S., & Zou, Y. (2021). ETF activity and informational efficiency of underlying securities. Management Science, 67(1), 22–47. [Google Scholar] [CrossRef]
- Huang, J. C., & Guedj, I. (2009, March 15). Are ETFs replacing index mutual funds? The American Finance Association 2009, San Francisco, CA, USA. [Google Scholar] [CrossRef]
- Jensen, M. C. (1967). The Performance of Mutual Funds in the Period 1945–1964. Journal of Finance, 23, 389–416. [Google Scholar]
- Jensen, M. C. (1969). Risk, the pricing of capital assets, and the evaluation of investment portfolios. Journal of Business, 42(2), 167–247. [Google Scholar] [CrossRef]
- Johnson, W. (2009). Tracking errors of exchange traded funds. Journal of Asset Management, 10(3), 253–262. [Google Scholar] [CrossRef]
- Kalfa Baş, N., & Eren Sarıoğlu, S. (2015). Tracking ability and pricing efficiency of exchange traded funds: Evidence from Borsa Istanbul. Business and Economics Research Journal, 6(1), 19–33. [Google Scholar]
- Katagiri, M., Shino, J., & Takahashi, K. (2025). Bank of Japan’s ETF purchase program and equity risk premium: A CAPM interpretation. Journal of Financial Markets, 73, 100961. [Google Scholar] [CrossRef]
- Khanniche, S., Van Oppens, H., & Zekri, D. (2014). Liquidity and alpha: Do they coexist? Journal of Asset Management, 15(2), 71–82. [Google Scholar] [CrossRef]
- Krause, T., Ehsani, S., & Lien, D. (2014). Exchange-traded funds, liquidity and volatility. Applied Financial Economics, 24(24), 1617–1630. [Google Scholar] [CrossRef]
- Lesmond, D. A. (2005). Liquidity of emerging markets. Journal of Financial Economics, 77(2), 411–452. [Google Scholar] [CrossRef]
- Lettau, M., & Ludvigson, S. C. (2019). The Importance of liquidity in fund performance. Journal of Finance, 74(1), 423–456. [Google Scholar] [CrossRef]
- Lettau, M., & Madhavan, A. (2018). Exchange-traded funds 101 for economists. Journal of Economic Perspectives, 32(1), 135–154. [Google Scholar] [CrossRef]
- Lou, X., & Shu, T. (2017). Price impact or trading volume: Why is the amihud (2002) measure priced? The Review of Financial Studies, 30(12), 4481–4520. [Google Scholar] [CrossRef]
- MacGregor, B. D., Schulz, R., & Zhao, Y. (2021). Performance and market maturity in mutual funds: Is real estate different? The Journal of Real Estate Finance and Economics, 63(3), 437–492. [Google Scholar] [CrossRef]
- Maeda, K., Shino, J., & Takahashi, K. (2022). Counteracting large-scale asset purchase program: The Bank of Japan’s ETF purchases and securities lending. Economic Analysis and Policy, 75, 563–576. [Google Scholar] [CrossRef]
- Malamud, S. (2015). A dynamic equilibrium model of ETFs (Swiss Finance Institute Research Paper No. 15–37). SSRN. [Google Scholar] [CrossRef]
- Naka, A., & Noman, A. (2017). Diversification of risk exposure through country mutual funds under alternative investment opportunities. The Quarterly Review of Economics and Finance, 64, 215–227. [Google Scholar] [CrossRef]
- Paliienko, O., Naumenkova, S., & Mishchenko, S. (2020). An empirical investigation of the Fama-French five-factor model. Investment Management and Financial Innovations, 17(1), 143–155. [Google Scholar] [CrossRef]
- Paudel, K., & Naka, A. (2023). Effects of size on the exchange-traded funds performance. Journal of Asset Management, 24(6), 474–484. [Google Scholar] [CrossRef]
- Pope, P. F., & Yadav, P. K. (1994). Discovering errors in tracking error. The Journal of Portfolio Management, 20(2), 27–32. [Google Scholar] [CrossRef]
- Qadan, M., & Yagil, J. (2012). On the dynamics of tracking indices by exchange traded funds in the presence of high volatility. Managerial Finance, 38(9), 804–832. [Google Scholar] [CrossRef]
- Ranaldo, A., & Somogyi, F. (2021). Asymmetric information risk in FX markets. Journal of Financial Economics, 140(2), 391–411. [Google Scholar] [CrossRef]
- Roll, R. (1984). A simple implicit measure of the effective bid-ask spread in an efficient market. The Journal of Finance, 39(4), 1127–1139. [Google Scholar] [CrossRef]
- Roll, R. (1992). A mean/variance analysis of tracking error. The Journal of Portfolio Management, 18, 13–22. [Google Scholar] [CrossRef]
- Shin, S., & Soydemir, G. (2010). Exchange-traded funds, persistence in tracking errors and information dissemination. Journal of Multinational Financial Management, 20(4–5), 214–234. [Google Scholar] [CrossRef]
- Tang, H., & Xu, X. E. (2013). Solving the Return Deviation Conundrum of Leveraged Exchange-Traded Funds. The Journal of Financial and Quantitative Analysis, 48(1), 309–342. Available online: http://www.jstor.org/stable/43303801 (accessed on 1 September 2025). [CrossRef]
- Tetlock, P. C. (2010). Does public financial news resolve asymmetric information? The Review of Financial Studies, 23(9), 3520–3557. [Google Scholar] [CrossRef]
- Treynor, J. L., & Mazuy, K. K. (1966). Can mutual funds outguess the market? Harvard Business Review, 44(4), 131–136. [Google Scholar]
- Zawadzki, K. (2020). The performance of ETFs on developed and emerging markets with consideration of regional diversity. Quantitative Finance and Economics, 4(3), 515–525. [Google Scholar] [CrossRef]
Time | Created | Delisted | Available |
---|---|---|---|
1995 | 1 | 0 | 1 |
1996 | 1 | 0 | 2 |
1997 | 0 | 0 | 2 |
1998 | 0 | 0 | 2 |
1999 | 0 | 0 | 2 |
2000 | 0 | 0 | 2 |
2001 | 12 | 0 | 14 |
2002 | 10 | 0 | 24 |
2003 | 0 | 0 | 24 |
2004 | 4 | 5 | 23 |
2005 | 7 | 4 | 26 |
2006 | 18 | 4 | 40 |
2007 | 23 | 1 | 62 |
2008 | 68 | 2 | 128 |
2009 | 74 | 7 | 195 |
2010 | 84 | 21 | 258 |
2011 | 44 | 6 | 296 |
2012 | 31 | 11 | 316 |
2013 | 43 | 7 | 352 |
2014 | 44 | 15 | 381 |
2015 | 99 | 20 | 460 |
2016 | 90 | 45 | 505 |
2017 | 82 | 26 | 561 |
2018 | 104 | 62 | 603 |
2019 | 73 | 41 | 634 |
2020 | 71 | 68 | 638 |
2021 | 64 | 33 | 669 |
2022 | 30 | 3 | 696 |
Total | 1077 | 381 | 696 |
NAV Return | Volatility | Market Value | Turnover | JETF Return | Dollar Trading Volume | Shares Outstanding Growth | Shares Outstanding | Assets Under Management | |
---|---|---|---|---|---|---|---|---|---|
Max | 0.0069 | 4.2874 | 53,557.00 | 27,406.00 | 0.0069 | 1.001 × 103 | 0.0082 | 3.93 × 106 | 9.22 × 106 |
Min | −0.0057 | 0.0000 | 0.3459 | 0.0000 | −0.0051 | 0 | −0.0013 | 7.7483 | 0.3512 |
Mean | −0.0001 | 0.1783 | 821.6300 | 97.4310 | −8.62 × 10−5 | 3.049 | 0.0013 | 3.24 × 104 | 4.01 × 104 |
Std. Dev | 0.0008 | 0.2709 | 3640 | 1052 | 7.49 × 10−4 | 37.37 | 0.0024 | 2.00 × 105 | 4.78 × 105 |
Obs | 4,025,826 | 4,025,826 | 4,025,826 | 4,025,826 | 4,025,826 | 4,025,826 | 4,025,826 | 4,025,826 | 4,025,826 |
Median | 0.0000 | 0.1581 | 77.8170 | 4.6180 | 4.34 × 10−5 | 0.1174 | 3.15 × 10−4 | 3.00 × 103 | 197.3009 |
15th Pct | −0.0003 | 0.0858 | 6.4452 | 0.4784 | −2.17 × 10−4 | 0.0196 | −5.20 × 10−4 | 201.8639 | 8.8681 |
25th Pct | −0.0001 | 0.1115 | 13.3240 | 1.1794 | −8.75 × 10−5 | 0.0377 | −1.96 × 10−4 | 453.6337 | 22.9756 |
50th Pct | 0.0000 | 0.1581 | 77.8170 | 4.6180 | 4.34 × 10−5 | 0.1174 | 3.15 × 10−4 | 3.00 × 103 | 197.3009 |
75th Pct | 0.0001 | 0.1899 | 370.8800 | 16.3910 | 1.49 × 10−4 | 0.4078 | 0.0020 | 1.29 × 104 | 1.51 × 103 |
90th Pct | 0.0002 | 0.2523 | 1428.9000 | 56.8320 | 2.36 × 10−4 | 1.2807 | 0.0051 | 5.01 × 104 | 1.11 × 104 |
Skewness | −0.4270 | 12.4540 | 9.4359 | 21.4470 | −0.3032 | 23.0422 | 1.5240 | 14.3027 | 16.7680 |
Kurtosis | 28.0510 | 177.5500 | 108.0900 | 516.6900 | 35.1126 | 589.4621 | 4.5464 | 237.0575 | 300.7882 |
t-value | −4.5457 | 21.1230 | 6.8116 | 2.8395 | −3.7070 | 2.4205 | 15.4848 | 4.9064 | 2.4896 |
Max | 0.0493 | 0.0522 | 0.0125 | 12.26 |
Min | 0.0014 | 3.17 × 10−5 | 0.0011 | 3.04 × 10−5 |
Mean | 0.0097 | 0.0088 | 0.0055 | 2.0739 |
Std. Dev | 0.0132 | 0.0137 | 0.0032 | 8.3228 |
Obs | 4,025,826 | 4,025,826 | 4,025,826 | 4,025,826 |
Median | 0.0042 | 0.0026 | 0.0049 | 0.6399 |
15% | 0.0020 | 3.54 × 10−4 | 0.0022 | 0.1100 |
25% | 0.0025 | 6.38 × 10−4 | 0.0029 | 0.2163 |
50% | 0.0042 | 0.0026 | 0.0049 | 0.6399 |
75% | 0.0087 | 0.0097 | 0.0075 | 1.6061 |
90% | 0.0342 | 0.0274 | 0.0102 | 4.1669 |
Skewness | 2.1496 | 2.0971 | 0.6251 | 15.8241 |
Kurtosis | 6.3198 | 6.5021 | 2.4944 | 300.0665 |
t test | 21.1322 | 18.8752 | 55.0991 | 7.5622 |
JETF NAV Return | Volatility | Market Value | Turnover | JETF Return | Dollar Trading Volume | Shares Growth | Shares | AUM | |
---|---|---|---|---|---|---|---|---|---|
(A) | |||||||||
Max | 0.0069 | 4.2874 | 3.75 × 104 | 772.56 | 0.0069 | 6.0 × 106 | 0.1385 | 9.8 × 105 | 21.9405 |
Min | −0.0042 | 0.0000 | 0.3459 | 0.0667 | −0.0033 | 845.816 | −0.0113 | 1.0000 | 2.2000 |
Mean | −1.3 × 10−4 | 0.1965 | 608.929 | 22.0233 | −3.1 × 10−5 | 4.2 × 105 | 0.0023 | 2.1 × 104 | 10.9951 |
Std. Dev | 0.0011 | 0.4394 | 2.4 × 103 | 63.1462 | 0.001 | 8.7 × 105 | 0.0087 | 6.5 × 105 | 3.6253 |
Obs | 1,203,636 | 1,203,636 | 1,203,636 | 1,203,636 | 1,203,636 | 1,203,636 | 1,203,636 | 1,203,636 | 1,203,636 |
Median | 7.5 × 10−5 | 0.1565 | 142.14 | 4.8136 | 8.9 × 10−5 | 1.1 × 105 | 8.1 × 10−4 | 5.2 × 103 | 11.4629 |
15% | −2.5 × 10−4 | 0.095 | 7.4929 | 0.7674 | −2.0 × 10−4 | 1.9 × 104 | −1.47 × 10−4 | 68.7316 | 7.7921 |
25% | −9.2 × 10−4 | 0.1127 | 41.2578 | 1.5753 | −2.8 × 10−5 | 3.9 × 104 | 0 | 400.00 | 9.0682 |
50% | 7.5 × 10−5 | 0.1565 | 142.14 | 4.8136 | 8.9 × 10−5 | 1.1 × 105 | 8.17 × 10−4 | 5.2 × 103 | 11.4629 |
75% | 1.5 × 10−4 | 0.1789 | 512.693 | 16.1089 | 1.7 × 10−4 | 3.2 × 105 | 0.0033 | 1.39 × 104 | 13.3147 |
90% | 2.3 × 10−4 | 0.2078 | 1.85 × 103 | 45.34 | 2.6 × 10−4 | 9.9 × 105 | 0.0055 | 4.76 × 104 | 14.5954 |
Skewness | 1.1334 | 8.8953 | 13.8901 | 7.7625 | 2.4244 | 3.806 | 13.27 | 11.3259 | −0.4986 |
Kurtosis | 20.97 | 82.48 | 209.446 | 81.5105 | 27.84 | 19.1534 | 206.56 | 161.86 | 3.4415 |
t test | −1.96 | 7.362 | 3.927 | 5.667 | −0.520 | 7.752 | 4.3897 | 5.414 | 50.5688 |
(B) | |||||||||
Max | 0.005 | 0.6100 | 5.36 × 104 | 2.74 × 104 | 6.51 × 10−4 | 1.0 × 1009 | 0.0457 | 3.93 × 106 | 22.8553 |
Min | −0.0057 | 0.0000 | 1.0764 | 0.0071 | −0.0051 | 1.28 × 103 | −0.0015 | 1.0000 | 6.4027 |
Mean | −2.9 × 10−4 | 0.1953 | 1.21 × 103 | 236.29 | −3.1 × 10−4 | 6.52 × 106 | 0.0028 | 2.1 × 104 | 13.3105 |
Std. Dev | 9.8 × 10−4 | 0.097 | 5.72 × 103 | 1.86 × 103 | 8.92 × 10−4 | 6.2e × 1007 | 0.0054 | 5.34 × 104 | 3.1722 |
Obs | 1,151,304 | 1,151,304 | 1,151,304 | 1,151,304 | 1,151,304 | 1,151,304 | 1,151,304 | 1,151,304 | 1,151,304 |
Median | −2.6 × 10−5 | 0.1846 | 38.5605 | 3.9383 | −7.5 × 10−6 | 9.86 × 104 | 0.0012 | 967.09 | 13.3284 |
15% | −7.6−04 | 0.0951 | 5.7931 | 0.2033 | −8.0 × 10−4 | 1.32 × 104 | −3.6 × 10−4 | 73.115 | 10.0097 |
25% | −2.89−04 | 0.1452 | 9.3233 | 0.5618 | −2.8 × 10−4 | 2.25 × 104 | 0.0000 | 193.99 | 11.0698 |
50% | −2.6 × 10−5 | 0.1846 | 38.5605 | 3.9383 | −7.5 × 10−6 | 9.86 × 104 | 0.0012 | 967.09 | 13.3284 |
75% | 1.0 × 10−4 | 0.2391 | 138.80 | 17.7792 | 1.14 × 10−4 | 5.36 × 105 | 0.0032 | 7.5 × 103 | 15.4750 |
90% | 3.1 × 10−4 | 0.3396 | 1.01 × 103 | 150.122 | 2.4 × 10−4 | 92.97 × 105 | 0.0079 | 3.76 × 104 | 17.1240 |
Skewness | −1.7545 | 0.4749 | 6.5492 | 12.5573 | −3.0984 | 15.03 | 3.8001 | 9.1615 | 0.3097 |
Kurtosis | 12.9883 | 3.72 | 49.5654 | 172.17 | 13.78 | 238.43 | 22.752 | 95.015 | 2.9682 |
t test | −4.899 | 33.68 | 3.552 | 2.108 | −5.743 | 1.752 | 8.755 | 2.780 | 68.5626 |
(C) | |||||||||
Max | 5.74 × 10−4 | 3.3468 | 2.15 × 103 | 844.03 | 0.0026 | 7.87 × 1007 | 0.0672 | 1.00 × 105 | 18.8411 |
Min | −0.0038 | 0.0000 | 1.3802 | 0.0000 | −0.0038 | 0.0000 | −0.0054 | 1.0000 | 1.4266 |
Mean | −2.1 × 10−5 | 0.1715 | 331.7841 | 16.070 | 1.47 × 10−5 | 8.90 × 106 | 0.0012 | 7.98 × 104 | 11.0206 |
Std. Dev | 4.87 × 10−4 | 0.2877 | 475.52 | 61.205 | 5.08 × 10−4 | 5.70 × 1007 | 0.005 | 1.58 × 105 | 3.1848 |
Obs | 930,762 | 930,762 | 930,762 | 930,762 | 930,762 | 930,762 | 930,762 | 930,762 | 930,762 |
Median | 7.72 × 10−5 | 0.1472 | 120.45 | 5.1654 | 8.18 × 10−5 | 1.67 × 105 | 6.03 × 10−5 | 2.54 × 103 | 11.4045 |
15% | −1.4 × 10−4 | 0.0820 | 13.1630 | 0.8864 | −9.78 × 10−5 | 4.55 × 104 | −4.99 × 10−4 | 62.4712 | 8.2586 |
25% | −5.6 × 10−5 | 0.1046 | 21.8793 | 1.4297 | −1.63 × 10−5 | 6.86 × 104 | −1.55 × 10−4 | 233.33 | 9.4029 |
50% | 7.72 × 10−5 | 0.1472 | 120.45 | 5.1654 | 8.18 × 10−5 | 1.67 × 105 | 6.03 × 10−5 | 2.54 × 103 | 11.4045 |
75% | 1.46 × 10−5 | 0.1753 | 470.168 | 12.9358 | 1.67 × 10−5 | 3.68 × 105 | 0.0017 | 7.92 × 103 | 13.2869 |
90% | 2.27 × 10−4 | 0.2021 | 940.42 | 34.8845 | 2.59 × 10−4 | 8.36 × 106 | 0.0034 | 2.01 × 104 | 14.5617 |
Skewness | −6.1052 | 8.7337 | 1.9807 | 12.3657 | −3.8484 | 12.795 | 9.766 | 3.6353 | −0.5576 |
Kurtosis | 45.7244 | 86.8879 | 6.4836 | 166.66 | 32.701 | 173.482 | 124.688 | 18.146 | 3.7033 |
t test | −0.6522 | 8.9624 | 9.8179 | 3.7132 | 0.4369 | 2.2021 | 3.698 | 7.7969 | 52.0214 |
(D) | |||||||||
Max | 4.5 × 10−4 | 0.4155 | 1.46 × 104 | 7.57 × 103 | 3.1 × 10−4 | 3.73 × 1008 | 0.0061 | 1.59 × 106 | 17.4429 |
Min | −8.2 × 10−4 | 0.0000 | 1.2497 | 0.0000 | −7.65 × 10−4 | 0.0000 | −0.0019 | 50.03 | 6.8831 |
Mean | −1.22−05 | 0.1699 | 1.61 × 103 | 154.0253 | −1.61 × 10−5 | 7.43 × 106 | 3.01 × 10−4 | 6.93 × 104 | 11.1095 |
Std. Dev | 2.05 × 10−4 | 0.0761 | 3.34 × 103 | 823.85 | 2.03 × 10−4 | 4.07 × 1007 | 0.0013 | 2.07 × 105 | 2.9295 |
Obs | 403,704 | 403,704 | 403,704 | 403,704 | 403,704 | 403,704 | 403,704 | 403,704 | 403,704 |
Median | 2.4 × 10−5 | 0.1552 | 28.3674 | 3.8524 | 1.80 × 10−5 | 1.23 × 105 | 0.0000 | 892.567 | 10.1522 |
15% | −1.3 × 10−4 | 0.0956 | 4.0255 | 0.3915 | −1.28 × 10−4 | 1.71 × 104 | −5.0 × 10−4 | 150.197 | 8.2831 |
25% | −5.24−04 | 0.1183 | 8.9457 | 0.9207 | −5.88 × 10−5 | 3.32 × 104 | −3.72 × 10−4 | 229.887 | 8.7931 |
50% | 2.4 × 10−5 | 0.1552 | 28.3674 | 3.8524 | 1.80 × 10−5 | 1.23 × 105 | 0.0000 | 892.567 | 10.1522 |
75% | 9.0 × 10−5 | 0.2068 | 1.49 × 103 | 17.2231 | 9.92 × 10−5 | 6.18 × 105 | 3.85 × 10−4 | 3.02 × 104 | 13.3157 |
90% | 1.8 × 10−4 | 0.2684 | 5.19 × 103 | 135.0709 | 1.98 × 10−4 | 6.63 × 106 | 0.0018 | 1.23 × 105 | 15.3824 |
Skewness | −1.5147 | 0.8162 | 2.5329 | 8.1369 | −1.8518 | 8.0926 | 2.308 | 4.8201 | 0.5717 |
Kurtosis | 6.348 | 4.047 | 8.8100 | 72.1158 | 7.5339 | 71.4659 | 9.4351 | 30.9026 | 2.0828 |
t test | −0.5818 | 22.460 | 4.8924 | 1.7835 | −0.8025 | 1.7434 | 2.3154 | 3.3423 | 37.1563 |
(E) | |||||||||
Ireland | Japan | Luxembourg | U.S. | ||||||
Mean | −0.5581 | −2.6694 | 0.1118 | −0.0107 | |||||
Median | 1.54 × 10−4 | −2.3081 | −3.49 × 10−4 | −2.84 × 10−4 | |||||
Std. Dev | 1.5023 | 2.0474 | 1.5944 | 0.0931 | |||||
t test | −6.115 | −21.3042 | −6.0452 | −1.1234 |
Variable | ||||
---|---|---|---|---|
(A) | ||||
0.078 *** (0.006) | −3.411 × 10−4 (0.329) | −0.0053 *** (0.002) | 5.89 × 10−6 (0.837) | |
−1.309 *** (0.023) | 0.0077 (0.235) | 0.322 ** (0.012) | −0.157 (0.395) | |
4.16 × 10−4 (0.13) | −2.96 × 10−6 (0.478) | −4.97 × 10−6 (0.300) | 5.95 × 10−4 ** (0.046) | |
5.05 × 10−5 (0.179) | −1.883 × 10−6 ** (0.019) | −1.22 × 10−6 ** (0.012) | −1.84 × 10−4 *** (0.002) | |
−0.039 (0.258) | 0.0017 (9.42 × 10−4) | 0.002 *** (0.001) | −0.016 (0.645) | |
2.72 × 10−5 (1.35 × 10−7) | 2.02 × 10−5 *** (1.74 × 10−4) | 4.32 × 10−6 *** (1.74 × 10−6) | 4.41 × 10−4 *** (1.00 × 10−13) | |
1.25 × 10−5 (0.814) | 4.22 × 10−6 *** (8.09 × 10−7) | −1.75 × 10−6 ** (0.018) | −2.60 × 10−4 *** (2.67 × 10−8) | |
Constant | −1.83 × 10−4 (0.788) | 5.27 × 10−6 (0.623) | 1.07 × 10−5 (0.343) | 0.007 *** (7.20 × 10−17) |
The number of observations | 1077 | 1077 | 1077 | 1077 |
(B) | ||||
2.78 (0.276) | −0.014 (0.996) | −34.801 *** (8.99 × 10−4) | 0.01 * (0.076) | |
−66.73 (0.189) | 26.836 (0.571) | 1.591 × 103 ** (0.051) | −33.225 * (0.08) | |
0.02 (0.462) | −0.086 *** (0.005) | −0.089 *** (0.004) | −0.086 *** (0.005) | |
−0.004 (0.274) | −0.024 *** (5.04 × 10−5) | −0.005 (0.133) | −0.022 *** (3.31 × 10−4) | |
−1.811 (0.548) | −19.62 *** (2.30 × 10−7) | −19.31 *** (2.31 × 10−7) | −16.93 *** (4.04 × 10−6) | |
0.013 ** (0.0052) | 0.061 *** (2.33 × 10−21) | 0.049 *** (3.90−17) | 0.056 *** (5.08 × 10−20) | |
−0.01 *** (0.008) | −0.044 *** (5.82 × 10−19) | −0.039 *** (2.23 × 10−16) | −0.042 *** (3.46 × 10−18) | |
Constant | 0.081 (0.179) | 0.705 *** (2.06 × 10−18) | 0.692 *** (3.85 × 10−21) | 0.717 *** (1.25 × 10−17) |
The number of observations | 1077 | 1077 | 1077 | 1077 |
Adjusted R square | 0.01 | 0.20 | 0.18 | 0.19 |
(C) | ||||
0.102 *** (3.93 × 10−5) | 4.21 × 10−4 (0.488) | −0.005 *** (0.029) | 1.79 × 10−6 (0.309) | |
−1.440 *** (0.003) | −0.009 (0.439) | 0.588 *** (0.001) | −0.01 (0.394) | |
6.45 × 10−4 *** (0.006) | 1.09 × 10−5 (0.134) | 1.41 × 10−6 (0.835) | −2.48 × 10−5 (0.175) | |
7.66 × 10−5 *** (0.02) | −2.20 × 10−6 (0.114) | −5.26 × 10−7 (0.441) | −2.05 × 10−6 (0.579) | |
−0.0346 (0.236) | −9.45 × 10−4 (0.289) | −5.15 (0.531) | 6.66 × 10−4 (0.760) | |
1.74 × 10−4 *** (1.40 × 10−4) | −2.08 × 10−6 (0.159) | −1.85 × 10−6 (0.143) | −5.30 × 10−6 (0.139) | |
−1.33 × 10−4 (2.91 × 10−4) | 1.94 × 10−6 * (0.088) | 9.37 × 10−7 (0.365) | 4.83 × 10−6 * (0.089) | |
Constant | 0.004 *** (3.08 × 10−12) | 1.60 × 10−5 *** (0.391) | 1.94 × 10−5 (0.222) | 5.94 × 10−6 (3.22 × 10−24) |
The number of observations | 1077 | 1077 | 1077 | 1077 |
Adjusted R square | 0.10 | 0.01 | 0.03 | 0.01 |
(A) | ||||
Tracking Error (TE(1)) | ||||
Variable | (1) | (2) | (3) | (4) |
0.0411 *** (0.000) | 0.0748 *** (0.000) | 0.0095 *** (0.000) | 0.1301 *** (0.000) | |
−0.0329 *** (0.000) | −0.0522 *** (0.000) | −0.0041 *** (0.000) | −0.0187 *** (0.000) | |
0.0013 *** (0.000) | 0.0017 *** (0.000) | 0.0176 *** (0.000) | 0.2222 *** (0.000) | |
−4.38 × 10−5 (0.940) | 0.0003 (0.546) | −0.003 *** (0.000) | −0.0032 *** (0.000) | |
0.0005 *** (0.000) | 0.0036 *** (0.000) | 0.0005 *** (0.000) | −0.0286 *** (0.000) | |
−0.0003 *** (0.000) | −0.0023 *** (0.000) | −0.0009 *** (0.000) | −0.0081 *** (0.000) | |
−0.0004 *** (0.000) | −0.0018 *** (0.000) | 0.0006 *** (0.000) | 0.0300 *** (0.000) | |
Constant | 0.012 *** (0.000) | 0.0006 *** (0.000) | 3.46 × 10−7 (0.514) | −1.36 × 10−7 (0.820) |
The number of observations | 3,962,283 | 3,962,283 | 3,962,283 | 3,962,283 |
Adjusted R square | 0.0017 | 0.0020 | 0.0056 | 0.325 |
Firm fixed | No | Yes | No | Yes |
Year fixed | No | No | Yes | Yes |
(B) | ||||
Tracking Error (1 − beta) | ||||
Variable | (1) | (2) | (3) | (4) |
0.0283 (0.640) | 0.713 *** (0.000) | −1.551 *** (0.000) | 1.811 *** (0.000) | |
0.0087 (0.923) | −0.471 *** (0.000) | 1.258 *** (0.000) | −0.949 *** (0.000) | |
0.0071 ** (0.043) | −0.011 (0.139) | −2.301 *** (0.000) | 1.588 *** (0.000) | |
−0.001 (0.950) | 0.006 (0.71) | 0.003 (0.273) | 0.013 *** (0.000) | |
0.029 *** (0.000) | 0.034 *** (0.000) | 0.126 *** (0.000) | −0.107 *** (0.000) | |
−0.039 *** (0.000) | 0.014 *** (0.000) | −0.062 *** (0.000) | 0.060 *** (0.000) | |
−0.01 *** (0.000) | −0.056 *** (0.000) | −0.077 *** (0.000) | 0.025 *** (0.000) | |
Constant | 0.853 *** (0.000) | 0.015 *** (0.000) | −3.38 × 10−6 (0.532) | −7.64 × 10−7 (0.885) |
The number of observations | 3,962,283 | 3,962,283 | 3,962,283 | 3,962,283 |
Adjusted R square | 0.01 | 0.0003 | 0.150 | 0.751 |
Firm fixed | No | Yes | No | Yes |
Year fixed | No | No | Yes | Yes |
(C) | ||||
Variable | Ireland | Japan | Luxemburg | U.S. |
0.093 *** (0.001) | 0.252 *** (0.000) | 0.186 *** (0.000) | 0.034 *** (0.000) | |
−0.381 * (0.068) | −0.901 *** (0.000) | −0.333 *** (0.000) | −0.028 *** (0.000) | |
0.003 *** (0.000) | 0.005 *** (0.000) | 0.001 *** (0.000) | −2.4 × 10−4 (0.987) | |
−0.0001 (0.845) | −0.03 *** (0.000) | 0.000 (0.524) | −0.006 *** (0.000) | |
−1.41 × 10−7 *** (0.000) | 1.05 × 10−9 * (0.073) | 3.71 × 10−8 *** (0.000) | 4.01 × 10−9 *** (0.000) | |
−0.003 *** (0.000) | −0.000 (0.124) | −0.001 *** (0.000) | −0.001 *** (0.000) | |
−3.18 × 10−6 *** (0.000) | −4.3 × 10−8 (0.135) | −6.51 × 10−8 *** (0.000) | −2.06 × 10−7 (0.137) | |
The number of observations | 187,423 | 239,818 | 404,670 | 84,503 |
Adjusted R square | 0.01 | 0.05 | 0.175 | 0.03 |
(D) | ||||
Tracking Error (Residuals Difference) | ||||
Variable | (1) | (2) | (3) | (4) |
0.043 *** (0.000) | 0.067 *** (0.000) | 0.03 *** (0.000) | 0.145 *** (0.000) | |
−0.034 *** (0.000) | −0.046 *** (0.000) | −0.02 *** (0.000) | −0.027 *** (0.000) | |
0.001 *** (0.000) | 3.71 × 10−4 (0.516) | 0.017 *** (0.000) | 0.224 *** (0.000) | |
−5.96 × 10−5 (0.917) | 0.003 (0.000) | −0.004 *** (0.273) | −0.004 *** (0.000) | |
4.58 × 10−4 *** (0.000) | −0.002 *** (0.000) | 2.85 × 10−4 *** (0.000) | −0.028 *** (0.000) | |
−1.47 × 10−4 *** (0.000) | −0.001 *** (0.000) | −1.96 × 10−4 *** (0.000) | −0.008 *** (0.000) | |
−4.29 × 10−4 *** (0.000) | 0.067 *** (0.000) | 7.476 × 10−4 *** (0.000) | 0.029 *** (0.000) | |
Constant | 0.01 *** (0.000) | 3.44 × 10−4 *** (0.000) | 6.56 × 10−7 (0.225) | −1.30 × 10−7 (0.830) |
The number of observations | 4,025,826 | 4,025,826 | 4,025,826 | 4,025,826 |
Adjusted R square | 0.001 | 0.002 | 0.01 | 0.324 |
Firm fixed | No | Yes | No | Yes |
Year fixed | No | No | Yes | Yes |
Variables | ||||
---|---|---|---|---|
−0.005 * (0.086) | 0.001 (0.607) | 0.011 (0.244) | −1.58 × 10−5 *** (0.004) | |
0.116 ** (0.036) | −0.104 *** (0.010) | −1.446 ** (0.031) | 0.088 *** (0.014) | |
−2.97 × 10−5 (0.259) | −1.59 × 10−5 (0.539) | 4.35 × 10−6 *** (0.862) | 0.001 *** (1.84 × 10−60) | |
1.06 × 10−5 *** (0.0037) | 1.35 × 10−5 *** (0.010) | 6.69 × 10−6 ** (0.009) | −1.63 × 10−5 (0.1681) | |
−0.006 ** (0.054) | −0.004 (0.193) | −0.008 *** (0.013) | −0.014 ** (0.054) | |
2.72 × 10−5 *** (1.35 × 10−7) | 2.02 × 10−5 *** (1.74 × 10−4) | 2.22 × 10−5 *** (3.23 × 10−6) | 5.67 × 10−5 *** (1.05 × 10−6) | |
−1.57 × 10−5 *** (1.44 × 10−4) | −1.55 × 10−5 *** (1.48 × 10−4) | −9.41 × 10−6 *** (0.015) | −2.27 × 10−5 *** (0.012) | |
−0.753 *** (0.0173) | 0.001 (0.965) | −0.2484 (0.161) | 1.205 ** (0.027) | |
Constant | −2.6 × 10−5 *** (−7.45 × 10−5) | −2.05 × 10−4 (0.0021) | −4.19 × 10−4 *** (1.01 × 10−9) | −4.42 × 10−4 *** (0.005) |
The number of observations | 1077 | 1077 | 1077 | 1077 |
Adjusted R square | 0.061 | 0.093 | 0.074 | 0.288 |
Dependent: Risk-Adjusted Performance | ||||
---|---|---|---|---|
Variable | (1) | (2) | (3) | (4) |
−0.0010 *** (0.000) | −0.0046 *** (0.000) | −0.0084 *** (0.000) | −0.0113 *** (0.000) | |
0.0005 ** (0.026) | 0.0038 *** (0.000) | 0.0056 *** (0.000) | 0.0058 *** (0.000) | |
0.0008 *** (0.000) | 0.0015 *** (0.000) | 0.0026 *** (0.000) | −0.0023 *** (0.000) | |
0.0002 *** (0.000) | 0.0002 *** (0.000) | −0.0004 *** (0.000) | −0.001 *** (0.000) | |
−2.25 × 10−5 *** (0.000) | −0.0014 *** (0.000) | −0.0004 *** (0.000) | 0.001 *** (0.000) | |
−1.17 × 10−5 *** (0.000) | −0.0003 *** (0.000) | 0.0002 *** (0.000) | 0.001 *** (0.000) | |
4.96 × 10−5 *** (0.000) | 0.0016 *** (0.000) | 0.0003 *** (0.000) | −0.0014 *** (0.000) | |
−0.0016 *** (0.000) | −0.0016 *** (0.000) | −0.0001 *** (0.000) | 0.0002 *** (0.000) | |
Constant | −4.99 × 10−5 *** (0.000) | −0.003 *** (0.000) | −2.71 × 10−9 (0.926) | −1.80 × 10−9 (0.950) |
The number of observations | 3,962,283 | 3,962,283 | 3,962,283 | 3,962,283 |
Adjusted R square | 0.0126 | 0.0186 | 0.0521 | 0.0465 |
Firm fixed | No | Yes | No | Yes |
Daily fixed | No | No | Yes | Yes |
Risk-Adjusted Performance | ||||
---|---|---|---|---|
25th | Median | 75th | Full | |
−0.0012 *** (0.000) | 7.79 × 10−5 (0.284) | 0.001 *** (0.000) | −0.001 *** (0.000) | |
0.001 *** (0.000) | −1.68 × 10−5 (0.874) | −0.001 *** (0.000) | 0.0005 ** (0.026) | |
−0.0002 *** (0.000) | 1.81 × 10−5 *** (0.000) | 0.0002 *** (0.000) | 0.0008 *** (0.000) | |
8.26 × 10−5 *** (0.001) | 1.02 × 10−4 *** (0.000) | 0.001 *** (0.000) | 0.0002 *** (0.000) | |
−2.17 × 10−5 *** (0.000) | −9.2 × 10−6 *** (0.000) | 2.73 × 10−6 ** (0.004) | −2.25 × 10−5 *** (0.000) | |
−8.88 × 10−6 *** (0.000) | −1.94 × 10−5 *** (0.000) | −3.68 × 10−5 *** (0.000) | −1.17 × 10−6 *** (0.000) | |
5.94 × 10−5 *** (0.000) | 2.8 × 10−5 *** (0.000) | 1.85 × 10−5 *** (0.000) | 4.96 × 10−5 *** (0.000) | |
−0.022 *** (0.000) | −0.007 *** (0.000) | −0.002 *** (0.000) | −0.002 *** (0.000) | |
Constant | −0.001 *** (0.000) | 6.87 × 10−5 *** (0.000) | 0.001 *** (0.000) | −0.005 *** (0.000) |
The number of observations | 787,669 | 787,669 | 787,669 | 787,669 |
Adjusted R square | 0.0187 | 0.0027 | 0.0037 | 0.0126 |
Variable | Ireland | Japan | Luxemburg | U.S. |
---|---|---|---|---|
0.093 *** (0.001) | 0.252 *** (0.000) | 0.186 *** (0.000) | 0.034 *** (0.000) | |
−0.381 * (0.068) | −0.901 *** (0.000) | −0.333 *** (0.000) | −0.028 *** (0.000) | |
0.003 *** (0.000) | 0.005 *** (0.000) | 0.001 *** (0.000) | −2.4 × 10−4 (0.987) | |
−0.0001 (0.845) | −0.03 *** (0.000) | 0.000 (0.524) | −0.006 *** (0.000) | |
−1.41 × 10−7 *** (0.000) | 1.05 × 10−9 * (0.073) | 3.71 × 10−8 *** (0.000) | 4.01 × 10−9 *** (0.000) | |
−0.003 *** (0.000) | −0.000 (0.124) | −0.001 *** (0.000) | −0.001 *** (0.000) | |
−3.18 × 10−6 *** (0.000) | −4.3 × 10−8 (0.135) | −6.51 × 10−8 *** (0.000) | −2.06 × 10−7 (0.137) | |
The number of observations | 187,423 | 239,818 | 404,670 | 84,503 |
Adjusted R square | 0.01 | 0.05 | 0.175 | 0.03 |
Variable | TE(1) | 1 − β | Residuals Difference | Rolling Jensen’s Alpha |
---|---|---|---|---|
0.0297 *** (0.000) | 0.7251 *** (0.000) | 0.0045 * (0.106) | −0.0048 *** (0.000) | |
−0.0220 *** (0.000) | −0.4708 *** (0.000) | −0.0065 ** (0.037) | 0.0037 *** (0.000) | |
−0.0005 (0.120) | −0.0090 *** (0.008) | −0.0004 (0.420) | 0.0014 (0.506) | |
0.0000 (0.880) | 0.0030 (0.561) | 0.0000 (0.767) | 0.0000 (0.655) | |
0.0005 (0.399) | 0.0186 *** (0.008) | 0.0010 (0.206) | 0.0004 *** (0.000) | |
0.0014 *** (0.000) | 0.0777 *** (0.000) | 0.0007 (0.170) | −0.0012 *** (0.170) | |
0.0394 *** (0.000) | −0.0709 *** (0.000) | 0.0868 *** (0.000) | 0.0014 *** (0.000) | |
Constant | 0.0512 *** (0.002) | 0.9974 *** (0.000) | 0.0984 *** (0.002) | −0.0026 *** (0.000) |
The number of observations | 4,025,826 | 3,962,283 | 4,025,826 | 3,962,283 |
Adjusted R square | 0.010 | 0.005 | 0.050 | 0.020 |
Firm fixed | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naka, A.; Tian, J.; Shin, S. Effects of Liquidity on TE and Performance of Japanese ETFs. Int. J. Financial Stud. 2025, 13, 168. https://doi.org/10.3390/ijfs13030168
Naka A, Tian J, Shin S. Effects of Liquidity on TE and Performance of Japanese ETFs. International Journal of Financial Studies. 2025; 13(3):168. https://doi.org/10.3390/ijfs13030168
Chicago/Turabian StyleNaka, Atsuyuki, Jiayuan Tian, and Seungho Shin. 2025. "Effects of Liquidity on TE and Performance of Japanese ETFs" International Journal of Financial Studies 13, no. 3: 168. https://doi.org/10.3390/ijfs13030168
APA StyleNaka, A., Tian, J., & Shin, S. (2025). Effects of Liquidity on TE and Performance of Japanese ETFs. International Journal of Financial Studies, 13(3), 168. https://doi.org/10.3390/ijfs13030168