Monetary Governance and Currencies Resilience in Times of Crisis
Abstract
1. Introduction
2. Theoretical Background and Literature Review
2.1. Theoretical Background
2.2. Literature Review
3. Databases and Methodology
3.1. Databases
3.2. Methodology
4. ARCH/GARCH Modelling
5. Principal Component Analysis
- Pearson correlation coefficient:
- Multicollinearity Test/Vif:
- KMO Test:
- Principal Components:
6. Panel ARDL Modelling
- Stationarity Test:
- Panel ARDL Specification
- Cointegration Test:
- Causality Test:
- Hausman Test:
7. Results and Discussion
7.1. Regression Results
7.2. Discussion of the Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
1 | https://www.imf.org/en/Blogs/Articles/2020/04/14/blog-weo-the-great-lockdown-worst-economic-downturn-since-the-great-depression (accessed on 10 September 2024). |
2 | https://www.worldbank.org/en/news/press-release/2020/06/08/covid-19-to-plunge-global-economy-into-worst-recession-since-world-war-ii (accessed on 10 September 2024). |
3 | https://data.worldbank.org (accessed on 10 September 2024). |
4 | https://www.congress.gov/bill/116th-congress/house-bill/748 (accessed on 10 September 2024). |
5 | https://www.imf.org/en/News/Articles/2022/02/25/pr2251statement-by-imf-md-on-ukraine (accessed on 10 September 2024). |
6 | |
7 | |
8 | https://www.reuters.com/business/imf-warns-russia-sanctions-threaten-chip-away-dollar-dominance-ft-2022-03-31/, (accessed on 22 December 2024). |
9 | https://www.bloomberg.com/news/articles/2022-05-11/russian-ruble-surpasses-brazilian-real-as-world-s-best-currency, (accessed on 22 December 2024). |
References
- Almustafa, H. (2022). National governance quality, COVID-19, and stock index returns: OECD evidence. Economies, 10(9), 214. [Google Scholar] [CrossRef]
- Aquilante, T., Di Pace, F., & Masolo, R. M. (2022). Exchange-rate and news: Evidence from the COVID pandemic. Economics Letters, 213, 110390. [Google Scholar] [CrossRef]
- Arslanalp, S., Eichengreen, B., & Simpson-Bell, C. (2022). The stealth erosion of dollar dominance and the rise of nontraditional reserve currencies. Journal of International Economics, 138, 103656. [Google Scholar] [CrossRef]
- Beirne, J., Renzhi, N., Sugandi, E., & Volz, U. (2021). COVID-19, asset markets and capital flows. Pacific Economic Review, 26(4), 498–538. [Google Scholar] [CrossRef]
- Bleaney, M., & Fielding, D. (2002). Exchange rate regimes, inflation and output volatility in developing countries. Journal of Development Economics, 68(1), 233–245. [Google Scholar] [CrossRef]
- Borio, C. (2020). The COVID-19 economic crisis: Dangerously unique. Business Economics, 55(4), 181. [Google Scholar] [CrossRef]
- Cepoi, C. O., Dumitrescu, B. A., Georgescu, G. C., Gherghina, R., & Iacob, M. (2023). Investigating the impact of monetary policy on foreign exchange market in Europe during COVID-19 pandemic. Applied Economics Letters, 30(8), 1139–1144. [Google Scholar] [CrossRef]
- Choudhary, O. P., Saied, A. A., Ali, R. K., & Maulud, S. Q. (2022). Russo-Ukrainian conflict: An unexpected event during the COVID-19 pandemic. Travel Medicine and Infectious Disease, 48, 102346. [Google Scholar] [CrossRef]
- Cohen, B. J. (2007). Global monetary governance. Routledge. [Google Scholar] [CrossRef]
- Cohen, B. J. (2018). The geography of money. Cornell University Press. [Google Scholar] [CrossRef]
- Congress. (2020). Coronavirus aid, relief, and economic security act (CARES Act). Available online: https://www.congress.gov/bill/116th-congress/house-bill/748 (accessed on 10 September 2024).
- Cooper, R. N. (1968). The economics of interdependence: Economic policy in the Atlantic community. Columbia University Press. [Google Scholar] [CrossRef]
- Dornbusch, R. (1976). Expectations and exchange rate dynamics. Journal of Political Economy, 84(6), 1161–1176. [Google Scholar] [CrossRef]
- Edwards, S. (1989). Exchange rate misalignment in developing countries. The World Bank Research Observer, 4(1), 3–21. [Google Scholar] [CrossRef]
- Eichengreen, B. (2011). Exorbitant privilege: The rise and fall of the dollar and the future of the international monetary system. Oxford University Press. [Google Scholar]
- Eichengreen, B., Mehl, A., & Chiţu, L. (2018). Mars or mercury? The geopolitics of international currency choice. Economic Policy, 34, 315–363. [Google Scholar] [CrossRef]
- El Rhadbane, A. B., & El Moudden, A. (2023). COVID-19 pandemic, Russian-Ukrainian war and REER volatility: Evidence from panel of countries. International Journal of Applied Economics, Finance and Accounting, 17(1), 156–167. [Google Scholar] [CrossRef]
- Feng, G.-F., Yang, H.-C., Gong, Q., & Chang, C.-P. (2021). What is the exchange rate volatility response to COVID-19 and government interventions? Economic Analysis and Policy, 69, 705–719. [Google Scholar] [CrossRef]
- Georgieva. (2022). IFM, press release No.: 22/51 published on 26 FEBRUARY 2022 entitled “Statement by IMF Managing Director Kristalina Georgieva on Ukraine”. Available online: https://www.imf.org/en/News/Articles/2022/02/25/pr2251statement-by-imf-md-on-ukraine (accessed on 10 September 2024).
- Gopinath, G. (2020). The “Great Lockdown”: Worst economic recession since the Great Depression. International Monetary Fund. Available online: https://www.imf.org/fr/Blogs/Articles/2020/04/14/blog-weo-the-great-lockdown-worst-economic-downturn-since-the-great-depression (accessed on 10 September 2024).
- Gunay, S. (2021). Comparing COVID-19 with the GFC: A shockwave analysis of currency markets. Research in International Business and Finance, 56, 101377. [Google Scholar] [CrossRef] [PubMed]
- Hausman, J. A. (1978). Specification tests in econometrics. Econometrica: Journal of the Econometric Society, 46(6), 1251–1271. [Google Scholar] [CrossRef]
- Hoshikawa, T., & Yoshimi, T. (2021). The effect of the COVID-19 pandemic on South Korea’s stock market and exchange rate. The Developing Economies, 59(2), 206–222. [Google Scholar] [CrossRef] [PubMed]
- Jamal, A., & Bhat, M. A. (2022). COVID-19 pandemic and the exchange rate movements: Evidence from six major COVID-19 hot spots. Future Business Journal, 8(1), 17. [Google Scholar] [CrossRef]
- Juodis, A., Karavias, Y., & Sarafidis, V. (2021). A homogeneous approach to testing for Granger non-causality in heterogeneous panels. Empirical Economics, 60(1), 93–112. [Google Scholar] [CrossRef]
- Kao, C., Chiang, M. H., & Chen, B. (1999). International R&D spillovers: An application of estimation and inference in panel cointegration. Oxford Bulletin of Economics and Statistics, 61(S1), 691–709. [Google Scholar] [CrossRef]
- Kaufmann, D., Kraay, A., & Mastruzzi, M. (2005). Governance matters IV: Governance indicators for 1996–2004 (Vol. 3630). World Bank. [Google Scholar]
- Kindleberger, C. P. (1970). Power and money. Springer. [Google Scholar] [CrossRef]
- Klinlampu, C., Rakpho, P., Tarapituxwong, S., & Yamaka, W. (2022, January). How the exchange rate reacts to google trends during the COVID-19 pandemic? In International econometric conference of Vietnam (pp. 667–678). Springer International Publishing. [Google Scholar] [CrossRef]
- Kohrt, L., Horky, F., & Fidrmuc, J. (2022). Exchange rates in emerging markets in the first wave of the COVID-19 pandemic. Eastern European Economics, 2022, 2074461. [Google Scholar] [CrossRef]
- Lane, P. R., & Milesi-Ferretti, G. M. (2004). The transfer problem revisited: Net foreign assets and real exchange rates. Review of Economics and Statistics, 86(4), 841–857. [Google Scholar] [CrossRef]
- Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of econometrics, 108(1), 1–24. [Google Scholar] [CrossRef]
- Li, C., Su, Z. W., Yaqoob, T., & Sajid, Y. (2022). COVID-19 and currency market: A comparative analysis of exchange rate movement in China and USA during pandemic. Economic Research-Ekonomska Istraživanja, 35(1), 2477–2492. [Google Scholar] [CrossRef]
- Maronoti, B. (2022). Revisiting the international role of the US dollar. BIS Quarterly Review, 5. Available online: https://www.bis.org/publ/qtrpdf/r_qt2212x.htm (accessed on 9 March 2025).
- Miller, C. (2020). The dominance of the US dollar during the COVID-19 pandemic. Available online: https://www.fpri.org/article/2020/05/the-dominance-of-the-u-s-dollar-during-the-covid-19-pandemic (accessed on 9 March 2025).
- Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16(3), 289–326. [Google Scholar] [CrossRef]
- Pesaran, M. H., & Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of Econometrics, 68(1), 79–113. [Google Scholar] [CrossRef]
- Picek, O. (2020). Spillover effects from next generation EU. Intereconomics, 55(5), 325–331. [Google Scholar] [CrossRef] [PubMed]
- Rodrik, D. (1998). Why do more open economies have bigger governments? Journal of Political Economy, 106(5), 997–1032. [Google Scholar] [CrossRef]
- Samaniego, D. (2021). The dynamics of oil prices, COVID-19, and exchange rates in five emerging economies in the atypical first quarter of 2020. Estudios Gerenciales, 37(158), 17–27. [Google Scholar] [CrossRef]
- Sethi, M., Dash, S. R., Swain, R. K., & Das, S. (2021). Economic consequences of Covid-19 pandemic: An analysis of exchange rate behaviour. Organizations and Markets in Emerging Economies, 12(2), 258–284. [Google Scholar] [CrossRef]
- Shahrier, N. A. (2022). Contagion effects in ASEAN-5 exchange rates during the COVID-19 pandemic. The North American Journal of Economics and Finance, 62, 101707. [Google Scholar] [CrossRef]
- Singh, S., Bansal, P., Bhardwaj, N., & Agrawal, A. (2021). Nexus between COVID-19 infections, exchange rates, stock market return, and temperature in G7 countries: Novel insights from partial and multiple wavelet coherence. Frontiers in Environmental Science, 470, 772783. [Google Scholar] [CrossRef]
- Sokhanvar, A., & Bouri, E. (2023). Commodity price shocks related to the war in Ukraine and exchange rates of commodity exporters and importers. Borsa Istanbul Review, 23(1), 44–54. [Google Scholar] [CrossRef]
- Strange, S. (1971). The politics of international currencies. World Politics, 23(2), 215–231. [Google Scholar] [CrossRef]
- Tiwari, R., Singh, P., Kargeti, H., & Chand, K. (2022). Impact of Russia Ukraine war on exchange rate in India. Available online: https://ssrn.com/abstract=4281532 (accessed on 9 February 2025).
- Williams, G., Olanipekun, I., & Özkan, O. (2021). Foreign exchange market response to pandemic-induced fear: Evidence from (a) symmetric wild bootstrap likelihood ratio approach. The Journal of International Trade & Economic Development, 30(7), 988–1003. [Google Scholar] [CrossRef]
- World Bank. (2020). Press release No.: 2020/209/EFI, published on 8 June 2020, entitled “COVID-19 pandemic plunges global economy into worst recession since World War II”. Available online: https://www.worldbank.org/en/news/press-release/2020/06/08/covid-19-to-plunge-global-economy-into-worst-recession-since-world-war-ii (accessed on 10 September 2024).
- World Bank. (2022). Press release No.: 2023/ECA/18, published on 4 October 2022, titled “Russian invasion of Ukraine hampers post-COVID recovery in emerging economies of Europe and Central Asia”. Available online: https://www.banquemondiale.org/fr/news/press-release/2022/10/04/russian-invasion-of-ukraine-impedes-post-pandemic-economic-recovery-in-emerging-europe-and-central-asia (accessed on 10 September 2024).
- Yilanci, V., & Pata, U. K. (2022). COVID-19, stock prices, exchange rates and sovereign bonds: A wavelet-based analysis for Brazil and India. International Journal of Emerging Markets, 18(11), 4968–4986. [Google Scholar] [CrossRef]
- Zhou, H., Yu, M., Li, J., & Qin, Q. (2021). Rare disasters, exchange rates, and macroeconomic policy: Evidence from COVID-19. Economics Letters, 209, 110099. [Google Scholar] [CrossRef]
Variable | Name | Abbreviation | Source |
---|---|---|---|
Dependent | REER | LREER | Bruegel database “https://www.bruegel.org/datasets (accessed on 5 October 2024)” |
REER volatility | LvolREER | Bruegel database and calculated “https://www.bruegel.org/datasets (accessed on 5 October 2024)” | |
Independent | Voice and Accountability | LVA | Worldwide Governance Indicators “https://www.worldbank.org/en/publication/worldwide-governance-indicators (accessed on 5 November 2024)” |
Political Stability and Absence of Violence/Terrorism | LPSAV | ||
Government Effectiveness | LGES | ||
Regulatory Quality | LRQ | ||
Rule of Law | LRL | ||
Control of Corruption | LCC | ||
Policy Rate | LPR | International Monetary Fund “https://www.imf.org/en/Data (accessed on 13 December 2024)” | |
Inflation | LINF | World Bank “https://databank.worldbank.org (accessed on 13 December 2024)” | |
Terms of Trade | LTOT | ||
Economic Openness | LEO | ||
Government Expenditure | LGE | ||
Net Foreign Assets | LNFA | ||
Geopolitical Risk Index | LGPR | Economic Policy Uncertainty Index “https://www.policyuncertainty.com (accessed on 10 January 2025)” | |
Financial Stress Index | LFSI | Office of Financial Research “https://www.financialresearch.gov/financial-stress-index (accessed on 10 January 2025)” | |
Subprime crisis | 2008 Crisis | Dummy variable takes the value of 0 or 1 to indicate the absence or presence | |
COVID-19 | 2020 Crisis | ||
Russo–Ukrainian conflict | 2022 Crisis |
Individual | Heteroscedasticity Test | ARCH Model | GARCH Model | Selected Model | |||
---|---|---|---|---|---|---|---|
Chi2 | Lag | Coefficient | Lag | Coefficient | Lag | ||
Australia | 27.103 *** | 1 | 0.211 *** | 1 | 0.299 | 1 | ARCH (1) |
Brazil | 19.299 *** | 1 | 0.348 *** | 1 | 0.117 | 1 | ARCH (1) |
Canada | 13.276 * | 7 | 0.168 * | 1 | 0.829 *** | 1 | GARCH (1.1) |
Chile | 8.302 * | 4 | 0.032 | 1 | −0.882 *** | 2 | GARCH (1.2) |
Euro area | 8.657 ** | 2 | 0.056 | 1 | 0.836 *** | 1 | GARCH (1.1) |
India | 15.192 *** | 2 | −0.038 | 1 | 0.774 ** | 1 | GARCH (1.1) |
Indonesia | 5.138 ** | 1 | 0.753 *** | 1 | 0.247 *** | 1 | GARCH (1.1) |
Japan | 44.321 *** | 1 | 0.309 *** | 1 | 0.392 *** | 1 | GARCH (1.1) |
Mexico | 3.790 ** | 1 | 0.217 *** | 1 | 0.225 | 1 | ARCH (1) |
Russian federation | 145.401 *** | 1 | 10.69 *** | 1 | 0.369 *** | 1 | GARCH (1.1) |
South Africa | 1.528 | 1 | 0.233 ** | 1 | 0.087 | 1 | ARCH (1) |
Turkey | 18.988 *** | 1 | 0.235 *** | 1 | 0.342 ** | 1 | GARCH (1.1) |
Ukraine | 14.642 *** | 1 | 0.910 *** | 1 | 0.013 | 1 | ARCH (1) |
United Kingdom | 12.748 *** | 1 | 0.284 *** | 1 | 0.671 *** | 1 | GARCH (1.1) |
United States | 3.534 * | 1 | 0.240 *** | 1 | 0.529 *** | 1 | GARCH (1.1) |
Before Adjustment | After Adjustment | ||||
---|---|---|---|---|---|
Variables | VIF | 1/VIF | Variables | VIF | 1/VIF |
LRL | 18.50 | 0.054056 | LGOV | 1.93 | 0.519271 |
LCC | 14.71 | 0.067997 | LINF | 1.86 | 0.536269 |
LGES | 12.67 | 0.078949 | LGE | 1.43 | 0.698374 |
LRQ | 9.33 | 0.107192 | LEO | 1.19 | 0.840286 |
LVA | 5.84 | 0.171193 | LGPR | 1.19 | 0.841946 |
LPR | 4.60 | 0.217270 | LNFA | 1.08 | 0.924650 |
LINF | 3.98 | 0.251376 | LFSI | 1.07 | 0.933759 |
LPSAV | 3.85 | 0.259690 | LTOT | 1.07 | 0.937868 |
LGE | 1.76 | 0.567772 | |||
LEO | 1.52 | 0.659860 | |||
LGPR | 1.23 | 0.810774 | |||
LTOT | 1.21 | 0.824561 | |||
LFSI | 1.14 | 0.874646 | |||
LNFA | 1.12 | 0.895233 | |||
Mean VIF | 6.81 | Mean VIF | 1.35 |
Variables | KMO |
---|---|
LRL | 0.9017 |
LCC | 0.9499 |
LGES | 0.8750 |
LRQ | 0.8934 |
LVA | 0.8490 |
LPSAV | 0.9149 |
Global | 0.8938 |
Component | Eigenvalue | Difference | Proportion | Cumulative |
---|---|---|---|---|
Comp1 | 5.20752 | 4.87925 | 0.8679 | 0.8679 |
Comp2 | 0.328266 | 0.0829152 | 0.0547 | 0.9226 |
Comp3 | 0.245351 | 0.135609 | 0.0409 | 0.9635 |
Comp4 | 0.109741 | 0.0416597 | 0.0183 | 0.9818 |
Comp5 | 0.0680815 | 0.0270409 | 0.0113 | 0.9932 |
Comp6 | 0.0410407 | . | 0.0068 | 1.0000 |
Variables | IPS | LLC | ||
---|---|---|---|---|
At -Level | At 1st Difference | At -Level | At 1st Difference | |
LREER | −1.8526 ** | −7.4067 *** | −2.1527 ** | −7.5430 *** |
LvolREER | −6.7832 *** | −12.4694 *** | −6.6276 *** | −11.5410 *** |
LGOV | 1.9355 | −7.1686 *** | −0.3437 *** | −5.1387 *** |
LINF | −5.0595 *** | −11.7821 *** | −4.5786 *** | −11.3073 *** |
LEO | −0.8408 | −11.5581 *** | −2.6478 *** | −10.6673 *** |
LGE | 6.0432 | −7.0256 *** | 4.2388 | −7.6865 *** |
LNFA | −2.3080 ** | −10.5560 *** | −2.5106 *** | −9.3712 *** |
LTOT | −3.1409 *** | −11.1417 *** | −4.0842 *** | −10.9031 *** |
LGPR | −2.6980 *** | −19.3475 *** | −2.3896 *** | −16.7706 *** |
LFSI | −5.0591 *** | −5.7356 *** | −7.2731 *** | 7.2731 *** |
Statistical Tests | First Model | Second Model |
---|---|---|
T-Statistic | T-Statistic | |
Modified Dickey–Fuller t | −6.4418 *** | −11.2848 *** |
Dickey–Fuller t | −5.2023 *** | −8.6455 *** |
Augmented Dickey–Fuller t | −3.8188 *** | −4.8143 *** |
Unadjusted modified Dickey–Fuller t | −7.0321 *** | −14.0775 *** |
Unadjusted Dickey–Fuller t | −5.3502 *** | −9.1036 *** |
JKS Non-Causality Test | First Model | Second Model |
---|---|---|
Coefficient | Coefficient | |
HPJ Wald test | 4.2 × 103 *** | 503.0808 *** |
Results for the Half-Panel Jackknife estimator | ||
Variables | Coefficient | Coefficient |
LGOV | 0.0240338 *** | −0.0105531 |
LINF | 0.0208784 ** | −0.0377991 |
LEO | 0.0347769 | −0.0594093 |
LGE | −0.2769037 *** | 0.6820226 *** |
LNFA | −0.2126026 *** | −0.7896211 *** |
LTOT | 0.1038832 *** | 0.2439186 |
LGPR | −0.0600962 *** | −0.1352261 |
LFSI | 0.0052017 | 0.3226467 *** |
Hausman | First Model | Second Model |
---|---|---|
(PMG-DFE) | (PMG-DFE) | |
Chi2(8) | 0.00 | 0.23 |
Prob > chi2 | 1.000 | 1.000 |
ARDL | First Model | Second Model |
---|---|---|
Long-run | ||
Variables | Coefficient | Coefficient |
LGOV | 0.016645 *** | −0.0101429 * |
LINF | −0.0313548 ** | −0.147768 *** |
LEO | −0.4994962 *** | 0.3226624 ** |
LGE | −0.2185323 *** | −0.5370293 *** |
LNFA | 20.14888 *** | 0.1909442 |
LTOT | 0.4403974 *** | 0.221024 * |
LGPR | −0.2473494 *** | 0.1117538 ** |
LFSI | 0.0341662 *** | 0.1006153 *** |
Short-run | ||
Variables | Coefficient | Coefficient |
ecm (−1) | −0.3860637 *** | −0.8011185 *** |
∆LGOV (−1) | −0.0028859 * | −0.2261304 |
∆LINF (−2) | −0.0037685 | 0.2599307 *** |
∆LEO (−1) | −0.3268897 *** | −0.0919094 |
∆LGE (−1) | 0.1029746 * | −0.0774257 |
∆LNFA (−1) | −130.92474 * | 760.10511 |
∆LTOT (−1) | −0.25039 | −0.1370355 |
∆LGPR (−1) | 0.0339424 | −0.0417815 |
∆LFSI (−1) | 0.0119542 | −0.0469236 |
2008 crisis | −0.020583 *** | 0.2215251 *** |
2020 crisis | −0.0306016 ** | 0.1102393 ** |
2022 crisis | 0.1269055 *** | 0.4936015 ** |
Cons | −40.165036 *** | 30.387903 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben El Rhadbane, A.; El Moudden, A. Monetary Governance and Currencies Resilience in Times of Crisis. Int. J. Financial Stud. 2025, 13, 162. https://doi.org/10.3390/ijfs13030162
Ben El Rhadbane A, El Moudden A. Monetary Governance and Currencies Resilience in Times of Crisis. International Journal of Financial Studies. 2025; 13(3):162. https://doi.org/10.3390/ijfs13030162
Chicago/Turabian StyleBen El Rhadbane, Ayyoub, and Abdeslam El Moudden. 2025. "Monetary Governance and Currencies Resilience in Times of Crisis" International Journal of Financial Studies 13, no. 3: 162. https://doi.org/10.3390/ijfs13030162
APA StyleBen El Rhadbane, A., & El Moudden, A. (2025). Monetary Governance and Currencies Resilience in Times of Crisis. International Journal of Financial Studies, 13(3), 162. https://doi.org/10.3390/ijfs13030162