Market Shocks and Stock Volatility: Evidence from Emerging and Developed Markets
Abstract
:1. Introduction
2. Literature Review
2.1. Volatility in Emerging and Developed Markets
2.2. Financial Crisis 2008 and Stock Market Volatility
2.3. Global Pandemic and Stock Market Volatility
3. Data and Methodology
3.1. Unit Root Test
3.2. Econometrics Models
3.2.1. GARCH (1,1) Model
3.2.2. Nonlinear GARCH models
3.2.3. EGARCH (1,1)
3.2.4. TGARCH (1,1)
4. Results and Discussion
5. Conclusions and Policy Implications
5.1. Implications of the Study
5.2. Limitation and Scope for Future Research
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agosto, Arianna, and Alessia Cafferata. 2020. Financial bubbles: A study of co-explosivity in the cryptocurrency market. Risks 8: 34. [Google Scholar] [CrossRef]
- Alberg, Dima, Haim Shalit, and Rami Yosef. 2008. Estimating stock market volatility using asymmetric GARCH models. Applied Financial Economics 18: 1201–8. [Google Scholar] [CrossRef]
- Albulescu, Claudiu Tiberiu. 2021. COVID-19 and the United States financial markets’ volatility. Finance Research Letters 38: 101699. [Google Scholar] [CrossRef] [PubMed]
- Assaf, Ata. 2016. MENA stock market volatility persistence: Evidence before and after the financial crisis of 2008. Research in International Business and Finance 36: 222–40. [Google Scholar] [CrossRef]
- Awartani, Basel M. A, and Valentina Corradi. 2005. Predicting the volatility of the S&P-500 stock index via GARCH models: The role of asymmetries. International Journal of Forecasting 21: 167–83. [Google Scholar] [CrossRef]
- Awijen, Haithem, Hachmi Ben Ameur, Zied Ftiti, and Waël Louhichi. 2023. Forecasting oil price in times of crisis: A new evidence from machine learning versus deep learning models. Annals of Operations Research. [Google Scholar] [CrossRef]
- Baek, Seungho, Sunil K. Mohanty, and Mina Glambosky. 2020. COVID-19 and stock market volatility: An industry level analysis. Finance Research Letters 37: 101748. [Google Scholar] [CrossRef] [PubMed]
- Baruník, Jozef, Evžen Kočenda, and Lukáš Vácha. 2016. Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers. Journal of Financial Markets 27: 55–78. [Google Scholar] [CrossRef]
- Bentes, Sónia R. 2021. How COVID-19 has affected stock market persistence? Evidence from the G7’s. Physica A: Statistical Mechanics and Its Applications 581: 126210. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, Mukul, Sanjay Taneja, and Ramona Rupeika-Apoga. 2023. Demystifying the Effect of the News (Shocks) on Crypto Market Volatility. Journal of Risk and Financial Management 16: 136. [Google Scholar] [CrossRef]
- Bianconi, Marcelo, Joe A. Yoshino, and Mariana O. Machado De Sousa. 2013. BRIC and the U.S. financial crisis: An empirical investigation of stock and bond markets. Emerging Markets Review 14: 76–109. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307–27. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1987. A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. The Review of Economics and Statistics 69: 542. [Google Scholar] [CrossRef]
- Bollerslev, Tim, Robert F. Engle, and Daniel B. Nelso. 1994. Arch models. Handbook of Econometrics 4: 2959–3038. [Google Scholar]
- Bora, Debakshi, and Daisy Basistha. 2021. The outbreak of COVID-19 pandemic and its impact on stock market volatility: Evidence from a worst-affected economy. Journal of Public Affairs 21: e2623. [Google Scholar] [CrossRef]
- Bouzgarrou, Houssam, Zied Ftiti, Waël Louhichi, and Mohamed Yousfi. 2023. What can we learn about the market reaction to macroeconomic surprise? Evidence from the COVID-19 crisis. Research in International Business and Finance 64: 101876. [Google Scholar] [CrossRef] [PubMed]
- Brooks, Chris, Simon P. Burke, and Gita Persand. 2001. Benchmarks and the accuracy of GARCH model estimation. International Journal of Forecasting 17: 45–56. [Google Scholar] [CrossRef]
- Campbell, J. Y., and L. Hentschel. 1992. An asymmetric model of changing volatility in stock returns. Journal of Financial Economics 31: 281–318. [Google Scholar] [CrossRef]
- Cheung, Yin-Wong, and Kon S. Lai. 1995. Lag order and critical values of the augmented dickey-fuller test. Journal of Business and Economic Statistics 13: 277–80. [Google Scholar] [CrossRef]
- Christie, Andrew A. 1982. The stochastic behavior of common stock variances. Value, leverage and interest rate effects. Journal of Financial Economics 10: 407–32. [Google Scholar] [CrossRef]
- Ding, Zhuanxin, Clive WJ Granger, and Robert F. Engle. 1993. A long memory property of stock market returns and a new model. Journal of Empirical Finance 1: 83–106. [Google Scholar] [CrossRef]
- Dooley, Michael, and Michael Hutchison. 2009. Transmission of the U.S. subprime crisis to emerging markets: Evidence on the decoupling-recoupling hypothesis. Journal of International Money and Finance 28: 1331–49. [Google Scholar] [CrossRef]
- Drakos, Konstantinos. 2010. Terrorism activity, investor sentiment, and stock returns. Review of Financial Economics 19: 128–35. [Google Scholar] [CrossRef]
- Duffee, Gregory R. 2002. Balance Sheet Explanations for Asymmetric Volatility. University of California at Berkeley Working Paper. Available online: http://faculty.haas.berkeley.edu/duffee/ (accessed on 1 August 2023).
- Eichengreen, Barry, and Yung Chul Park. 2008. Asia and the Decoupling Myth. Applied Economics 44: 3407–19. [Google Scholar]
- Eichengreen, Barry, Ashoka Mody, Milan Nedeljkovic, and Lucio Sarno. 2012. How the Subprime Crisis went global: Evidence from bank credit default swap spreads. Journal of International Money and Finance 31: 1299–318. [Google Scholar] [CrossRef]
- Engelhardt, Nils, Miguel Krause, Daniel Neukirchen, and Peter N. Posch. 2021. Trust and stock market volatility during the COVID-19 crisis. Finance Research Letters 38: 101873. [Google Scholar] [CrossRef]
- Engle, Robert F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 50: 987. [Google Scholar] [CrossRef]
- Engle, Robert F., and Victor K. Ng. 1993. Measuring and Testing the Impact of News on Volatility. The Journal of Finance 48: 1749–78. [Google Scholar] [CrossRef]
- Fernandes, Leonardo H. S., Elie Bouri, José W. L. Silva, Lucian Bejan, and Fernando H. A. de Araujo. 2022. The resilience of cryptocurrency market efficiency to COVID-19 shock. Physica A: Statistical Mechanics and Its Applications 607: 128218. [Google Scholar] [CrossRef] [PubMed]
- Franses, Philip Hans, and Dick Van Dijk. 1996. Forecasting Stock Market Volatility Using (Non-Linear) Garch Models. Journal of Forecasting 15: 229–35. [Google Scholar] [CrossRef]
- Ftiti, Zied, Hachmi Ben Ameur, and Waël Louhichi. 2021a. Does non-fundamental news related to COVID-19 matter for stock returns? Evidence from Shanghai stock market. Economic Modelling 99: 105484. [Google Scholar] [CrossRef]
- Ftiti, Zied, Wael Louhichi, and Hachmi Ben Ameur. 2021b. Cryptocurrency volatility forecasting: What can we learn from the first wave of the COVID-19 outbreak? Annals of Operations Research 16: 1–26. [Google Scholar] [CrossRef] [PubMed]
- Gao, Xue, Yixin Ren, and Muhammad Umar. 2022. To what extent does COVID-19 drive stock market volatility? A comparison between the U.S. and China. Economic Research-Ekonomska Istrazivanja 35: 1686–706. [Google Scholar] [CrossRef]
- Glosten, Lawrence R., Ravi Jagannathan, and David E. Runkle Runkle. 1993. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Finance 48: 1779–801. [Google Scholar] [CrossRef]
- Harjoto, Maretno Agus, and Fabrizio Rossi. 2021. Market reaction to the COVID-19 pandemic: Evidence from emerging markets. International Journal of Emerging Markets 18: 1–26. [Google Scholar] [CrossRef]
- Hasan, Fakhrul, Mary Fiona Ross Bellenstedt, and Mohammad Raijul Islam. 2023. Demand and Supply Disruptions During the COVID-19 Crisis on Firm Productivity. Global Journal of Flexible Systems Management 24: 87–105. [Google Scholar] [CrossRef] [PubMed]
- Inacio, Claudio Marcio Cassela, Jr., and Sergio Adriani David. 2022. Price Dynamics and Measuring the Contagion between Brent Crude and Heating Oil (US-Diesel) Pre and Post COVID-19 Outbreak. Engineering Proceedings 18: 8. [Google Scholar] [CrossRef]
- Insaidoo, Michael, Lilian Arthur, Samuel Amoako, and Francis Kwaw Andoh. 2021. Stock market performance and COVID-19 pandemic: Evidence from a developing economy. Journal of Chinese Economic and Foreign Trade Studies 14: 60–73. [Google Scholar] [CrossRef]
- Jawadi, Fredj, Waël Louhichi, Hachmi Ben Ameur, and Zied Ftiti. 2019. Do jumps and co-jumps improve volatility forecasting of oil and currency markets? The Energy Journal 40. [Google Scholar] [CrossRef]
- Jawadi, Fredj, Zied Ftiti, and Waël Louhichi. 2020. Forecasting energy futures volatility with threshold augmented heterogeneous autoregressive jump models. Econometric Reviews 39: 54–70. [Google Scholar] [CrossRef]
- Jin, Xiaoye, and Ximeng An. 2016. Global financial crisis and emerging stock market contagion: A volatility impulse response function approach. Research in International Business and Finance 36: 179–95. [Google Scholar] [CrossRef]
- Karunanayake, Indika, Abbas Valadkhani, and Martin O’brien. 2010. Financial crises and international stock market volatility transmission. Australian Economic Papers 49: 209–21. [Google Scholar] [CrossRef]
- Koutmos, Gregory, and G. Geoffrey Booth. 1995. Asymmetric volatility transmission in international stock markets. Journal of International Money and Finance 14: 747–62. [Google Scholar] [CrossRef]
- Kusumahadi, Teresia Angelia, and Fikri C. Permana. 2021. Impact of COVID-19 on Global Stock Market Volatility. Source: Journal of Economic Integration 36: 20–45. [Google Scholar] [CrossRef]
- Le, Thai-Ha, Anh Tu Le, and Ha-Chi Le. 2021. The historic oil price fluctuation during the COVID-19 pandemic: What are the causes? Research in International Business and Finance 58: 101489. [Google Scholar] [CrossRef] [PubMed]
- Lin, Zhe. 2018. Modelling and forecasting the stock market volatility of SSE Composite Index using GARCH models. Future Generation Computer Systems 79: 960–72. [Google Scholar] [CrossRef]
- Luchtenberg, Kimberly F., and Quang Viet Vu. 2015. The 2008 financial crisis: Stock market contagion and its determinants. Research in International Business and Finance 33: 178–203. [Google Scholar] [CrossRef]
- Madani, Mohamed Arbi, and Zied Ftiti. 2024. Understanding Intraday Oil Price Dynamics during the COVID-19 Pandemic: New Evidence from Oil and Stock Investor Sentiments. The Energy Journal 45. [Google Scholar] [CrossRef]
- Mazumder, M. Imtiaz, and Nazneen Ahmad. 2010. Greed, financial innovation or laxity of regulation?: A close look into the 2007–2009 financial crisis and stock market volatility. Studies in Economics and Finance 27: 110–34. [Google Scholar] [CrossRef]
- Mazur, Mieszko, Man Dang, and Miguel Vega. 2021. COVID-19 and the march 2020 stock market crash. Evidence from S&P1500. Finance Research Letters 38: 101690. [Google Scholar] [CrossRef]
- Mishra, Pabitra Kumar, and Santosh Kumar Mishra. 2021. COVID-19 pandemic and stock market reaction: Empirical insights from 15 Asian countries. Transnational Corporations Review 13: 139–55. [Google Scholar] [CrossRef]
- Muguto, Lorraine, and Paul-Francois Muzindutsi. 2022. A Comparative Analysis of the Nature of Stock Return Volatility in BRICS and G7 Markets. Journal of Risk and Financial Management 15: 85. [Google Scholar] [CrossRef]
- Narayan, Paresh Kumar. 2020. Has COVID-19 Changed Exchange Rate Resistance to Shocks? Asian Economics Letters 1: 1–4. [Google Scholar] [CrossRef]
- Narayan, Paresh Kumar. 2022. Understanding exchange rate shocks during COVID-19. Finance Research Letters 45: 102181. [Google Scholar] [CrossRef] [PubMed]
- Nelson, Daniel B. 1991. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica 59: 347. [Google Scholar] [CrossRef]
- Ozdemir, Dilek, Mahak Sharma, Amandeep Dhir, and Tugrul Daim. 2022. Supply chain resilience during the COVID-19 pandemic. Technology in Society 68: 101847. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, Oktay. 2021. Impact of COVID-19 on stock market efficiency: Evidence from developed countries. Research in International Business and Finance 58: 101445. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, I. 2022. Romance and assonance in the german calderón. Anuario Calderoniano 15: 449–70. [Google Scholar] [CrossRef]
- Rababah, Abedalqader, Lara Al-Haddad, Muhammad Safdar Sial, Zheng Chunmei, and Jacob Cherian. 2020. Analyzing the effects of COVID-19 pandemic on the financial performance of Chinese listed companies. Journal of Public Affairs 20: e2440. [Google Scholar] [CrossRef]
- Raza, Naveed, Syed Jawad Hussain Shahzad, Aviral Kumar Tiwari, and Muhammad Shahbaz. 2016. Asymmetric impact of gold, oil prices and their volatilities on stock prices of emerging markets. Resources Policy 49: 290–301. [Google Scholar] [CrossRef]
- Sahoo, Manamani. 2021. COVID-19 impact on stock market: Evidence from the Indian stock market. Journal of Public Affairs 21: e2621. [Google Scholar] [CrossRef]
- Sarfaraz, Amir Homayoun, Amir Karbassi Yazdi, Thomas Hanne, Özaydin Gizem, Kaveh Khalili-Damghani, and Saiedeh Molla Husseinagha. 2023. Artificial neural network (ANN)-based estimation of the influence of COVID-19 pandemic on dynamic and emerging financial markets. Technological Forecasting and Social Change 190: 122470. [Google Scholar] [CrossRef]
- Schwert, G. William. 2011. Stock Volatility during the Recent Financial Crisis. European Financial Management 17: 789–805. [Google Scholar] [CrossRef]
- Sharma, Sudhi, Vaibhav Aggarwal, and Miklesh Prasad Yadav. 2021. Comparison of linear and non-linear GARCH models for forecasting volatility of select emerging countries. Journal of Advances in Management Research 18: 526–47. [Google Scholar] [CrossRef]
- Shen, Huayu, Mengyao Fu, Hongyu Pan, Zhongfu Yu, and Yongquan Chen. 2020. The Impact of the COVID-19 Pandemic on Firm Performance. Emerging Markets Finance and Trade 56: 2213–30. [Google Scholar] [CrossRef]
- Singhania, Monica, and Jugal Anchalia. 2013. Volatility in Asian stock markets and global financial crisis. Journal of Advances in Management Research 10: 333–51. [Google Scholar] [CrossRef]
- Su, Chi-Wei, Meng Qin, Ran Tao, and Muhammad Umar. 2020. Financial implications of fourth industrial revolution: Can bitcoin improve prospects of energy investment? Technological Forecasting and Social Change 158: 120178. [Google Scholar] [CrossRef] [PubMed]
- Su, Fei, and Lei Wang. 2020. Conditional Volatility Persistence and Realized Volatility Asymmetry: Evidence from the Chinese Stock Markets. Emerging Markets Finance and Trade 56: 3252–69. [Google Scholar] [CrossRef]
- Syriopoulos, Theodore, Beljid Makram, and Adel Boubaker. 2015. Stock market volatility spillovers and portfolio hedging: BRICS and the financial crisis. International Review of Financial Analysis 39: 7–18. [Google Scholar] [CrossRef]
- Szczygielski, Jan Jakub, and Chimwemwe Chipeta. 2023. Properties of returns and variance and the implications for time series modelling: Evidence from South Africa. Modern Finance 1: 35–55. [Google Scholar] [CrossRef]
- Teräsvirta, Timo. 2009. An Introduction to Univariate GARCH Models. In Handbook of Financial Time Series. BBerlin/Heidelberg, Germany: Springer, pp. 17–42. [Google Scholar] [CrossRef]
- Timmermann, Allan, and Clive W. J. Granger. 2004. Efficient market hypothesis and forecasting. International Journal of Forecasting 20: 15–27. [Google Scholar] [CrossRef]
- Uddin, Moshfique, Anup Chowdhury, Keith Anderson, and Kausik Chaudhuri. 2021. The effect of COVID-19 pandemic on global stock market volatility: Can economic strength help to manage the uncertainty? Journal of Business Research 128: 31–44. [Google Scholar] [CrossRef] [PubMed]
- Umar, Muhammad, Nawazish Mirza, Syed Kumail Abbas Rizvi, and Mehreen Furqan. 2021. Asymmetric Volatility Structure of Equity Returns: Evidence from an Emerging Market. The Quarterly Review of Economics and Finance. [Google Scholar] [CrossRef]
- Verma, Dippi, and Praveen Kumar Sinha. 2020. Has COVID 19 Infected Indian Stock Market Volatility? Evidence from NSE. AAYAM: AKGIM Journal of Management 10: 25–35. [Google Scholar]
- Wang, Jian-Xin, and Minxian Yang. 2018. Conditional Volatility Persistence. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3080693#:~:text=We%20show%20that%20daily%20volatility,termed%20%E2%80%9Cconditional%20volatility%20persistence%E2%80%9D (accessed on 1 August 2023).
- Wang, Ping, and Peijie Wang. 2010. Price and volatility spillovers between the Greater China Markets and the developed markets of US and Japan. Global Finance Journal 21: 304–17. [Google Scholar] [CrossRef]
- Yousfi, Mohamed, Younes Ben Zaied, Nidhaleddine Ben Cheikh, Béchir Ben Lahouel, and Houssem Bouzgarrou. 2021. Effects of the COVID-19 pandemic on the US stock market and uncertainty: A comparative assessment between the first and second waves. Technological Forecasting and Social Change 167: 120710. [Google Scholar] [CrossRef]
- Zakoian, Jean-Michel. 1994. Threshold heteroskedastic models. Journal of Economic Dynamics and Control 18: 931–55. [Google Scholar] [CrossRef]
- Zaremba, Adam, Renatas Kizys, David Y. Aharon, and Ender Demir. 2020. Infected Markets: Novel Coronavirus, Government Interventions, and Stock Return Volatility around the Globe. Finance Research Letters 35: 101597. [Google Scholar] [CrossRef] [PubMed]
- Zehri, Chokri. 2021. Stock market comovements: Evidence from the COVID-19 pandemic. Journal of Economic Asymmetries 24: e00228. [Google Scholar] [CrossRef]
- Živkov, Dejan, Slavica Manić, and Jasmina Đurašković. 2020. Short and long-term volatility transmission from oil to agricultural commodities—The robust quantile regression approach. Borsa Istanbul Review 20: S11–S25. [Google Scholar] [CrossRef]
Panel A: Emerging Markets | Panel B: Developed Markets | ||||
---|---|---|---|---|---|
No | Country | Stock Index | No | Country | Stock Index |
1 | Brazil | BOVESPA | 1 | Italy | FTSE Italia All Share |
2 | China | SSE Composite Index | 2 | Canada | S&P/TSX |
3 | India | S&P BSE Sensex | 3 | France | CAC 40 |
4 | Indonesia | IDX Composite | 4 | Germany | DAX |
5 | Mexico | S&P/BMV IPC | 5 | Japan | Nikkei 225 |
6 | Russia | MOEX 10 | 6 | UK | FTSE 100 |
7 | Turkey | BIST 100 | 7 | USA | Nasdaq 100 |
Financial Crisis 2008 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Emerging Markets | Developed Markets | |||||||||||||
Brazil | China | India | Indonesia | Mexico | Russia | Turkey | Italy | Canada | France | Germany | Japan | UK | USA | |
Mean | −0.00016 | −0.0001 | −0.0006 | −0.00016 | 0.00115 | 0.00451 | −0.00014 | 0.000639 | 0.000364 | 0.000639 | 0.000913 | 0.00097 | 0.000622 | 0.000661 |
Std. Dev. | 0.02013 | 0.02461 | 0.02392 | 0.02013 | 0.02290 | 0.04496 | 0.02167 | 0.016917 | 0.01925 | 0.016917 | 0.022076 | 0.019971 | 0.018603 | 0.018618 |
Skewness | 0.52851 | 0.29322 | −0.2414 | 0.52851 | −0.50268 | −0.26875 | −0.00709 | 0.346537 | 0.529006 | 0.346537 | 0.337511 | −0.21279 | −0.00176 | −0.13567 |
Kurtosis | 7.47020 | 4.27715 | 7.30864 | 7.47020 | 6.51196 | 6.59539 | 5.92288 | 5.558396 | 7.673469 | 5.558396 | 9.052083 | 8.248362 | 7.715285 | 8.427461 |
Jarque-Bera | 532.776 | 49.178 | 479.336 | 532.776 | 142.898 | 769.509 | 238.152 | 177.9855 | 581.6712 | 177.9855 | 939.4451 | 702.4027 | 563.2593 | 748.1174 |
Global Pandemic 2020 | ||||||||||||||
Emerging Markets | Developed Markets | |||||||||||||
Brazil | China | India | Indonesia | Mexico | Russia | Turkey | Italy | Canada | France | Germany | Japan | UK | USA | |
Mean | −0.0001 | −0.00036 | −0.00066 | −0.0001 | −0.0003 | −0.00041 | −0.0004 | −0.00015 | −0.00043 | −0.00015 | −0.0004 | −0.0004 | −0.00025 | −0.00051 |
Std. Dev. | 0.01339 | 0.01119 | 0.01625 | 0.01339 | 0.01283 | 0.01390 | 0.01281 | 0.014091 | 0.015348 | 0.014091 | 0.013967 | 0.015579 | 0.014159 | 0.017092 |
Skewness | −0.0606 | 0.8642 | 1.7477 | −0.0606 | 0.5295 | 0.8386 | 0.7821 | 1.328546 | 1.779271 | 1.328546 | −0.10913 | 1.406124 | 1.209096 | 1.063167 |
Kurtosis | 11.6080 | 10.2188 | 20.0065 | 11.6080 | 6.04577 | 11.8588 | 10.8211 | 14.36878 | 30.79849 | 14.36878 | 7.165834 | 17.08043 | 16.03325 | 20.28078 |
Jarque-Bera | 1500.782 | 1115.752 | 6104.162 | 1500.784 | 2100.567 | 1646.16 | 1401.47 | 2998.804 | 17082.87 | 2998.804 | 368.3384 | 4587.221 | 3851.051 | 6631.334 |
ADF | PP | |||
---|---|---|---|---|
T Statistics | Probability | T Statistics | Probability | |
Financial Crisis 2008 | ||||
Panel A: Emerging markets | ||||
Brazil | −20.99 | 0.000 *** | −20.99 | 0.000 *** |
China | −24.77 | 0.000 *** | −24.78 | 0.000 *** |
India | −22.87 | 0.000 *** | −22.81 | 0.000 *** |
Indonesia | −20.99 | 0.000 *** | −20.99 | 0.000 *** |
Mexico | −14.25 | 0.001 *** | −14.32 | 0.001 *** |
Russia | −14.75 | 0.001 *** | −14.72 | 0.001 *** |
Turkey | −18.32 | 0.000 *** | −20.12 | 0.000 *** |
Panel B: Developed markets | ||||
Italy | −26.71 | 0.000 *** | −26.71 | 0.000 *** |
Canada | −28.11 | 0.000 *** | −28.23 | 0.001 *** |
France | −26.71 | 0.000 *** | −26.71 | 0.000 *** |
Germany | −26.05 | 0.001 *** | −26.24 | 0.001 *** |
Japan | −12.62 | 0.000 *** | −27.97 | 0.000 *** |
UK | −12.29 | 0.001 *** | −27.68 | 0.000 *** |
USA | −21.94 | 0.000 *** | −29.44 | 0.000 *** |
Global Pandemic 2019 | ||||
Panel A: Emerging markets | ||||
Brazil | −11.11 | 0.000 *** | −21.78 | 0.000 *** |
China | −21.81 | 0.000 *** | −21.81 | 0.000 *** |
India | −17.16 | 0.000 *** | −24.72 | 0.000 *** |
Indonesia | −11.11 | 0.000 *** | −21.78 | 0.000 *** |
Mexico | −22.82 | 0.000 *** | −22.82 | 0.000 *** |
Russia | −22.38 | 0.001 *** | −22.53 | 0.000 *** |
Turkey | −20.46 | 0.000 *** | −22.20 | 0.000 *** |
Panel B: Developed markets | ||||
Italy | −11.37 | 0.000 *** | −28.87 | 0.000 *** |
Canada | −11.38 | 0.000 *** | −28.81 | 0.000 *** |
France | −13.77 | 0.000 *** | −21.74 | 0.000 *** |
Germany | −14.42 | 0.000 *** | −28.48 | 0.000 *** |
Japan | −17.13 | 0.000 *** | −23.55 | 0.000 *** |
UK | −18.01 | 0.000 *** | −23.95 | 0.000 *** |
USA | −16.71 | 0.000 *** | −23.18 | 0.000 *** |
Financial Crisis 2008 | Global Pandemic 2019 | |||
---|---|---|---|---|
ARCH LM Statistics | Prob. Chi Square (1) | ARCH LM Statistics | Prob. Chi Square (1) | |
Panel A: Emerging Markets | ||||
Brazil | 23.66 | 0.000 *** | 30.03 | 0.000 *** |
China | 24.65 | 0.000 *** | 36.62 | 0.000 *** |
India | 27.51 | 0.000 *** | 24.71 | 0.000 *** |
Indonesia | 28.61 | 0.000 *** | 30.03 | 0.000 *** |
Mexico | 47.32 | 0.000 *** | 41.10 | 0.000 *** |
Russia | 35.77 | 0.000 *** | 30.81 | 0.000 *** |
Turkey | 28.21 | 0.000 *** | 32.01 | 0.000 *** |
Panel B: Developed Markets | ||||
Italy | 37.18 | 0.000 *** | 65.36 | 0.000 *** |
Canada | 95.66 | 0.000 *** | 65.65 | 0.000 *** |
France | 37.18 | 0.000 *** | 65.36 | 0.000 *** |
Germany | 51.55 | 0.000 *** | 66.02 | 0.000 *** |
Japan | 24.00 | 0.000 *** | 36.56 | 0.000 *** |
UK | 21.84 | 0.000 *** | 36.66 | 0.000 *** |
USA | 22.39 | 0.000 *** | 33.24 | 0.000 *** |
GARCH (1,1) | |||
---|---|---|---|
α0 | α1 | Β | |
Financial Crisis 2008 Panel A: Emerging markets | |||
Brazil | 0.00027 *** | 0.0111 *** | 0.747 *** |
China | 0.00097 *** | 0.0018 *** | 0.970 *** |
India | 0.00011 *** | 0.0146 *** | 0.851 *** |
Indonesia | 0.00021 *** | 0.0011 *** | 0.746 *** |
Mexico | 0.00054 *** | 0.0053 *** | 0.844 *** |
Russia | 0.00053 *** | 0.0051 *** | 0.868 *** |
Turkey | 0.00012 *** | 0.0018 *** | 0.911 *** |
Panel B: Developed markets | |||
Italy | 0.00053 *** | 0.0032 *** | 0.850 *** |
Canada | 0.00024 *** | 0.0121 *** | 0.872 *** |
France | 0.00053 *** | 0.0031 *** | 0.850 *** |
Germany | 0.00046 *** | 0.0042 *** | 0.852 *** |
Japan | 0.00029 *** | 0.0103 *** | 0.891 *** |
UK | 0.00021 *** | 0.0021 *** | 0.879 *** |
USA | 0.00013 *** | 0.0094 *** | 0.903 *** |
Global pandemic 2019 Panel A: Emerging markets | |||
Brazil | 0.00012 *** | 0.0051 *** | 0.664 *** |
China | 0.00034 *** | 0.0083 *** | 0.892 *** |
India | 0.00045 *** | 0.0119 *** | 0.701 *** |
Indonesia | 0.00012 *** | 0.0025 *** | 0.664 *** |
Mexico | 0.00045 *** | 0.0015 *** | 0.824 *** |
Russia | 0.00065 *** | 0.0035 *** | 0.825 *** |
Turkey | 0.00014 *** | 0.0121 *** | 0.812 *** |
Panel B: Developed Markets | |||
Italy | 0.00051 *** | 0.0069 *** | 0.716 *** |
Canada | 0.00060 *** | 0.0004 *** | 0.789 *** |
France | 0.00057 *** | 0.0013 *** | 0.775 *** |
Germany | 0.00025 *** | 0.0098 *** | 0.654 *** |
Japan | 0.00081 *** | 0.0070 *** | 0.728 *** |
UK | 0.00068 *** | 0.0184 *** | 0.784 *** |
USA | 0.00053 *** | 0.0015 *** | 0.620 *** |
EGARCH | TGARCH | |||||||
---|---|---|---|---|---|---|---|---|
α0 | α1 | β | γ | α0 | α1 | Β | Γ | |
Financial crisis 2008 | ||||||||
Panel A: Emerging markets | ||||||||
Brazil | 0.0027 *** | 0.159 *** | 0.757 *** | −0.151 *** | 0.00012 *** | 0.053 *** | 0.806 *** | 0.296 *** |
China | 0.0051 *** | 0.179 *** | 0.968 *** | −0.172 *** | 0.00021 *** | 0.041 *** | 0.826 *** | 0.106 *** |
India | 0.0051 *** | 0.212 *** | 0.777 *** | −0.094 *** | 0.00061 *** | 0.051 *** | 0.874 *** | 0.182 *** |
Indonesia | 0.0170 *** | 0.159 *** | 0.857 *** | −0.151 *** | 0.00012 *** | 0.053 *** | 0.804 *** | 0.296 *** |
Mexico | 0.0012 *** | 0.150 *** | 0.888 *** | −0.143 *** | 0.00052 *** | 0.034 *** | 0.915 *** | 0.258 *** |
Russia | 0.0153 *** | 0.148 *** | 0.880 *** | −0.105 *** | 0.00038 *** | 0.093 *** | 0.877 *** | 0.102 *** |
Turkey | 0.0011 *** | 0.131 *** | 0.812 *** | −0.101 *** | 0.00032 *** | 0.081 *** | 0.902 *** | 0.112 *** |
Panel B: Developed markets | ||||||||
Italy | 0.0018 *** | 0.113 *** | 0.817 *** | −0.153 *** | 0.00095 *** | 0.022 ** | 0.887 *** | 0.222 *** |
Canada | 0.0017 *** | 0.123 ** | 0.816 *** | −0.135 *** | 0.00012 *** | 0.018 ** | 0.897 *** | 0.209 *** |
France | 0.0018 *** | 0.013 ** | 0.807 *** | −0.153 *** | 0.00095 *** | 0.022 *** | 0.887 *** | 0.222 *** |
Germany | 0.0086 *** | 0.085 *** | 0.896 *** | −0.168 *** | 0.00017 *** | 0.032 *** | 0.902 *** | 0.228 *** |
Japan | 0.0057 *** | 0.103 *** | 0.881 *** | −0.150 *** | 0.00013 *** | 0.040 ** | 0.911 *** | 0.174 *** |
UK | 0.0092 *** | 0.116 *** | 0.898 *** | −0.145 *** | 0.00096 *** | 0.063 *** | 0.925 *** | 0.164 *** |
USA | 0.0019 *** | 0.011 *** | 0.907 *** | −0.139 *** | 0.00012 *** | 0.023 *** | 0.949 *** | 0.172 *** |
Global pandemic 2019 | ||||||||
Panel A: Emerging markets | ||||||||
Brazil | 0.0082 *** | 0.036 *** | 0.941 *** | −0.099 *** | 0.00031 *** | 0.060 ** | 0.919 *** | 0.262 *** |
China | 0.0031 *** | 0.117 *** | 0.856 *** | −0.139 *** | 0.00056 ** | 0.059 *** | 0.849 *** | 0.242 *** |
India | 0.0142 ** | 0.051 *** | 0.876 *** | −0.250 *** | 0.00023 *** | 0.054 *** | 0.824 *** | 0.456 *** |
Indonesia | 0.0080 *** | 0.136 *** | 0.741 *** | −0.099 *** | 0.00031 *** | 0.060 *** | 0.919 *** | 0.262 *** |
Mexico | 0.0087 *** | 0.109 ** | 0.875 *** | −0.087 *** | 0.00035 *** | 0.025 *** | 0.876 *** | 0.164 *** |
Russia | 0.0060 *** | 0.100 *** | 0.886 *** | −0.154 *** | 0.00051 *** | 0.135 *** | 0.825 *** | 0.273 *** |
Turkey | 0.0081 *** | 0.030 *** | 0.810 *** | −0.181 *** | 0.00024 *** | 0.110 *** | 0.811 *** | 0.172 *** |
Panel B: Developed markets | ||||||||
Italy | 0.0021 ** | 0.101 *** | 0.888 *** | −0.216 *** | 0.00013 *** | 0.056 *** | 0.933 *** | 0.282 *** |
Canada | 0.0041 ** | 0.142 *** | 0.791 *** | −0.215 *** | 0.00034 *** | 0.051 *** | 0.916 *** | 0.019 *** |
France | 0.0012 *** | 0.141 *** | 0.788 *** | −0.216 *** | 0.00013 *** | 0.057 *** | 0.935 *** | 0.292 *** |
Germany | 0.0047 *** | 0.105 ** | 0.863 *** | −0.094 *** | 0.00014 *** | 0.054 *** | 0.941 *** | 0.228 *** |
Japan | 0.0029 *** | 0.153 *** | 0.808 *** | −0.277 *** | 0.00011 *** | 0.022 *** | 0.855 *** | 0.521 *** |
UK | 0.0061 *** | 0.016 *** | 0.918 *** | −0.161 *** | 0.00092 *** | 0.046 *** | 0.949 *** | 0.251 *** |
USA | 0.0057 *** | 0.030 *** | 0.911 *** | −0.351 *** | 0.00030 *** | 0.038 *** | 0.841 *** | 0.262 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabash, M.I.; Chalissery, N.; Nishad, T.M.; Al-Absy, M.S.M. Market Shocks and Stock Volatility: Evidence from Emerging and Developed Markets. Int. J. Financial Stud. 2024, 12, 2. https://doi.org/10.3390/ijfs12010002
Tabash MI, Chalissery N, Nishad TM, Al-Absy MSM. Market Shocks and Stock Volatility: Evidence from Emerging and Developed Markets. International Journal of Financial Studies. 2024; 12(1):2. https://doi.org/10.3390/ijfs12010002
Chicago/Turabian StyleTabash, Mosab I., Neenu Chalissery, T. Mohamed Nishad, and Mujeeb Saif Mohsen Al-Absy. 2024. "Market Shocks and Stock Volatility: Evidence from Emerging and Developed Markets" International Journal of Financial Studies 12, no. 1: 2. https://doi.org/10.3390/ijfs12010002
APA StyleTabash, M. I., Chalissery, N., Nishad, T. M., & Al-Absy, M. S. M. (2024). Market Shocks and Stock Volatility: Evidence from Emerging and Developed Markets. International Journal of Financial Studies, 12(1), 2. https://doi.org/10.3390/ijfs12010002