Impact of the COVID-19 Market Turmoil on Investor Behavior: A Panel VAR Study of Bank Stocks in Borsa Istanbul
Abstract
1. Introduction
2. Market and Data
3. Methodology
4. Findings
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Aharon, David Y. 2020. Uncertainty, Fear and Herding Behavior: Evidence from Size-Ranked Portfolios. Journal of Behavioral Finance 22: 320–37. [Google Scholar] [CrossRef]
- Al-Nefaie, Abdullah H., and Theyazn H. H. Aldhyani. 2022. Predicting Close Price in Emerging Saudi Stock Exchange: Time Series Models. Electronics 11: 3443. [Google Scholar] [CrossRef]
- Arellano, Manuel, and Olympia Bover. 1995. Another look at the instrumental variable estimation of error-components models. Journal of Econometrics 68: 29–51. [Google Scholar] [CrossRef]
- Au, Shiu-Yik, Ming Dong, and Xinyao Zhou. 2023. Does Social Interaction Spread Fear Among Institutional Investors? Evidence from Coronavirus Disease 2019. Management Science. [Google Scholar] [CrossRef]
- Banerjee, Anirban, and Samarpan Nawn. 2024. Proprietary algorithmic traders and liquidity supply during the pandemic. Finance Research Letters 61: 105052. [Google Scholar] [CrossRef]
- Barber, Brad M., and Terrance Odean. 2008. All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The Review of Financial Studies 21: 785–818. [Google Scholar] [CrossRef]
- Bekiros, Stelios, Mouna Jlassi, Bryan Lucey, Kamel Naoui, and Gazi Salah Uddin. 2017. Herding behavior, market sentiment and volatility: Will the bubble resume? The North American Journal of Economics and Finance 42: 107–31. [Google Scholar] [CrossRef]
- Biais, Bruno, Thierry Foucault, and Sophie Moinas. 2015. Equilibrium fast trading. Journal of Financial Economics 116: 292–313. [Google Scholar] [CrossRef]
- Bing, Tao, and Hongkun Ma. 2021. COVID-19 pandemic effect on trading and returns: Evidence from the Chinese stock market. Economic Analysis and Policy 71: 384–396. [Google Scholar] [CrossRef]
- Brennan, Michael J., and H. Henry Cao. 1997. International portfolio flows. Journal of Finance 52: 1851–80. [Google Scholar] [CrossRef]
- Brogaard, Jonathan, Allen Carrion, Thibaut Moyaert, Ryan Riordan, Andriy Shkilko, and Konstantin Sokolov. 2018. High frequency trading and extreme price movements. Journal of Financial Economics 128: 253–65. [Google Scholar] [CrossRef]
- Brogaard, Jonathan, Terrence Hendershott, and Ryan Riordan. 2014. High-frequency trading and price discovery. The Review of Financial Studies 27: 2267–306. [Google Scholar] [CrossRef]
- Celik, Mehmet S., Mutlu B. Ozturk, and Ozkan Haykir. 2024. The effect of technological developments on the stock market: Evidence from emerging market. Applied Economics Letters 31: 118–21. [Google Scholar] [CrossRef]
- Choe, Hyuk, Bong-Chan Kho, and René M. Stulz. 1999. Do foreign investors destabilize stock markets? The Korean experience in 1997. Journal of Financial Economics 54: 227–64. [Google Scholar] [CrossRef]
- Chung, Kee H., and Chairat Chuwonganant. 2023. COVID-19 Pandemic and the stock market: Liquidity, price efficiency, and trading. Journal of Financial Markets 64: 100803. [Google Scholar] [CrossRef]
- Coval, Joshua D., and Tobias J. Moskowitz. 1999. Home bias at home: Local equity preference in domestic portfolios. The Journal of Finance 54: 2045–73. [Google Scholar] [CrossRef]
- Dalgıç, Nihan, Cumhur Ekinci, and Oğuz Ersan. 2021. Daily and intraday herding within different types of investors in Borsa Istanbul. Emerging Markets Finance and Trade 57: 1793–810. [Google Scholar] [CrossRef]
- Djalilov, Abdulaziz, and Numan Ülkü. 2021. Individual investors’ trading behavior in Moscow Exchange and the COVID-19 crisis. Journal of Behavioral and Experimental Finance 31: 100549. [Google Scholar] [CrossRef] [PubMed]
- Dospatliev, Lilko, Miroslava Ivanova, and Milen Varbanov. 2022. Effects of COVID-19 Pandemic on the Bulgarian Stock Market Returns. Axioms 11: 94. [Google Scholar] [CrossRef]
- Dospinescu, Nicoleta, and Octavian Dospinescu. 2019. A Profitability Regression Model in Financial Communication of Romanian Stock Exchange’s Companies. Ecoforum Journal 8: 1–4. [Google Scholar]
- Dvorak, Tomas. 2005. Do domestic investors have an information advantage? Evidence from Indonesia. The Journal of Finance 60: 817–39. [Google Scholar] [CrossRef]
- Foucault, Thierry, David Sraer, and David J. Thesmar. 2011. Individual investors and volatility. The Journal of Finance 66: 1369–406. [Google Scholar] [CrossRef]
- Foucault, Thierry, Roman Kozhan, and Wing Wah Tham. 2017. Toxic arbitrage. The Review of Financial Studies 30: 1053–94. [Google Scholar] [CrossRef]
- Frijns, Bart, Alireza Tourani-Rad, and Robert I. Webb. 2016. On the intraday relation between the VIX and its futures. Journal of Futures Markets 36: 870–86. [Google Scholar] [CrossRef]
- Gao, Bin, and Xihua Liu. 2020. Intraday sentiment and market returns. International Review of Economics & Finance 69: 48–62. [Google Scholar]
- Glossner, Simon, Pedro Matos, Stefano Ramelli, and Alexander F. Wagner. 2022. Do Institutional Investors Stabilize Equity Markets in Crisis Periods? Evidence from COVID-19. Available online: https://ssrn.com/abstract=3655271 (accessed on 2 February 2024). [CrossRef]
- Griffin, John M., Federico Nardari, and René M. Stulz. 2004. Are daily cross-border equity flows pushed or pulled? Review of Economics and Statistics 86: 641–57. [Google Scholar] [CrossRef]
- Griffin, John M., Jeffrey H. Harris, and Selim Topaloglu. 2003. The dynamics of institutional and individual trading. The Journal of Finance 58: 2285–320. [Google Scholar] [CrossRef]
- Grinblatt, Mark, and Matti Keloharju. 2000. The investment behavior and performance of various investor types: A study of Finland’s unique data set. Journal of Financial Economics 55: 43–67. [Google Scholar] [CrossRef]
- Grinblatt, Mark, and Matti Keloharju. 2001. How distance, language, and culture influence stockholdings and trades. The Journal of Finance 56: 1053–73. [Google Scholar] [CrossRef]
- Hasbrouck, Joel. 2018. High-Frequency Quoting: Short-Term Volatility in Bids and Offers. Journal of Financial and Quantitative Analysis 53: 613–41. [Google Scholar] [CrossRef]
- Henker, Julia, and Thomas Henker. 2010. Are retail investors the culprits? Evidence from Australian individual stock price bubbles. The European Journal of Finance 16: 281–304. [Google Scholar] [CrossRef]
- Hu, Wu-Yueh, Chih-Jen Huang, Heng-Yu Chang, and Wei-Ju Lin. 2015. The effect of investor sentiment on feedback trading and trading frequency: Evidence from Taiwan intraday data. Emerging Markets Finance and Trade 51 Suppl. 1: S111–20. [Google Scholar] [CrossRef]
- Huberman, Gur. 2001. Familiarity breeds investment. The Review of Financial Studies 14: 659–80. [Google Scholar] [CrossRef]
- Jinjarak, Yothin, Jon Wongswan, and Huanhuan Zheng. 2011. International fund investment and local market returns. Journal of Banking and Finance 35: 572–87. [Google Scholar] [CrossRef]
- Kamesaka, Akiko, John R. Nofsinger, and Hidetaka Kawakita. 2003. Investment patterns and performance of investor groups in Japan. Pacific-Basin Finance Journal 11: 1–22. [Google Scholar] [CrossRef]
- Kang, Jun-Koo, and René M. Stulz. 1997. Why is there a home bias? An analysis of foreign portfolio equity ownership in Japan. Journal of Financial Economics 46: 3–28. [Google Scholar] [CrossRef]
- Kirilenko, Andrei, Albert S. Kyle, Mehrdad Samadi, and Tugkan Tuzun. 2017. The flash crash: High-frequency trading in an electronic market. The Journal of Finance 72: 967–98. [Google Scholar] [CrossRef]
- Kumar, Alok, and Charles M. C. Lee. 2006. Retail investor sentiment and return comovements. The Journal of Finance 61: 2451–86. [Google Scholar] [CrossRef]
- Lee, Yi-Tsung, Ji-Chai Lin, and Yu-Jane Liu. 1999. Trading patterns of big versus small players in an emerging market: An empirical analysis. Journal of Banking and Finance 23: 701–25. [Google Scholar] [CrossRef]
- Mahmoodzadeh, Soheil, and Ramazan Gençay. 2017. Human vs. high-frequency traders, penny jumping, and tick size. Journal of Banking and Finance 85: 69–82. [Google Scholar] [CrossRef]
- Menkveld, Albert J. 2014. High-frequency traders and market structure. Financial Review 49: 333–444. [Google Scholar] [CrossRef]
- Ng, Lilian, and Fei Wu. 2007. The trading behavior of institutions and individuals in Chinese equity markets. Journal of Banking and Finance 31: 2695–710. [Google Scholar] [CrossRef]
- Nguyen, Huan Huu, Vu Minh Ngo, and Uyen Dinh Hoang Nguyen. 2023. The foreign investors’ behaviours during the COVID-19 Pandemic in emerging market. Applied Economics Letters 30: 384–90. [Google Scholar] [CrossRef]
- Ozik, Gideon, Ronnie Sadka, and Siyi Shen. 2021. Flattening the illiquidity curve: Retail trading during the COVID-19 lockdown. Journal of Financial and Quantitative Analysis 56: 2356–88. [Google Scholar] [CrossRef]
- Panyagometh, Kamphol. 2020. The Effects of Pandemic Event on the Stock Exchange of Thailand. Economies 8: 90. [Google Scholar] [CrossRef]
- Phansatan, Suwipa, John G. Powell, Suparatana Tanthanongsakkun, and Sirimon Treepongkaruna. 2012. Investor type trading behavior and trade performance: Evidence from the Thai stock market. Pacific-Basin Finance Journal 20: 1–23. [Google Scholar] [CrossRef]
- Richards, Anthony. 2005. Big fish in small ponds: The trading behavior and price impact of foreign investors in Asian emerging equity markets. Journal of Financial and Quantitative Analysis 40: 1–27. [Google Scholar] [CrossRef]
- Salisu, Afees A., and Xuan Vinh Vo. 2020. Predicting stock returns in the presence of COVID-19 Pandemic: The role of health news. International Review of Financial Analysis 71: 101546. [Google Scholar] [CrossRef]
- Shapira, Zur, and Itzhak Venezia. 2001. Patterns of behavior of professionally managed and independent investors. Journal of Banking and Finance 25: 1573–87. [Google Scholar] [CrossRef]
- Strauß, Nadine, Rens Vliegenthart, and Piet Verhoeven. 2018. Intraday news trading: The reciprocal relationships between the stock market and economic news. Communication Research 45: 1054–77. [Google Scholar] [CrossRef]
- Ülkü, Numan, and Enzo Weber. 2013. Identifying the interaction between stock market returns and trading flows of investor types: Looking into the day using daily data. Journal of Banking & Finance 37: 2733–49. [Google Scholar]
- Ülkü, Numan, Fahad Ali, Saidgozi Saydumarov, and Deniz Ikizlerli. 2023. COVID caused a negative bubble. Who profited? Who lost? How stock markets changed? Pacific-Basin Finance Journal 79: 102044. [Google Scholar] [CrossRef]
- Xu, Libo. 2021. Stock Return and the COVID-19 Pandemic: Evidence from Canada and the US. Finance Research Letters 38: 101872. [Google Scholar] [CrossRef] [PubMed]
Indicator | Panel A. Banks in the Sample | Panel B. Banks Not Included in the Sample | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AKBNK | GARAN | ISCTR | YKBNK | VAKBN | HALKB | TSKB | QNBFB | SKBNK | ICBCT | ALBRK | |
Number of domestic branches | 712 | 810 | 1066 | 779 | 940 | 1073 | 2 | 435 | 240 | 39 | 226 |
Number of ATMs | 5202 | 5306 | 6555 | 4526 | 4222 | 4059 | 0 | 2842 | 393 | 43 | 294 |
Number of employees | 12,140 | 18,486 | 22,890 | 15,795 | 16,821 | 20,042 | 392 | 10,837 | 3216 | 730 | 2918 |
Total assets (bn USD) | 65.81 | 73.30 | 94.79 | 69.69 | 67.68 | 75.92 | 7.15 | 31.32 | 5.99 | 3.02 | 8.17 |
Share of total assets among banks in Turkey (%) | 8.58 | 9.31 | 11.14 | 9.22 | 9.98 | 10.88 | 1.00 | 4.32 | 0.73 | 0.43 | 1.17 |
Net profit (bn USD) | 0.91 | 1.06 | 1.20 | 0.66 | 0.70 | 0.40 | 0.12 | 0.46 | −0.03 | 0.01 | 0.03 |
Share of net profit among banks in Turkey (%) | 11.62 | 13.22 | 13.02 | 7.72 | 6.01 | 3.69 | 1.51 | 5.63 | −1.47 | 0.09 | 0.17 |
IPO year | 1990 | 1990 | 1987 | 1987 | 2006 | 2007 | 1996 | 1996 | 1997 | 1996 | 2007 |
Free float ratio (%) | 59.06 | 50.15 | 32.83 | 38.35 | 25.31 | 48.89 | 44.39 | 0.12 | 20.55 | 7.16 | 46.61 |
Avg market cap (bn USD) | 6.68 | 7.55 | 5.08 | 3.68 | 2.44 | 1.33 | 0.56 | 26.44 | 0.24 | 0.69 | 0.34 |
Share of avg market cap in BIST (%) | 3.93 | 4.45 | 2.99 | 2.17 | 1.44 | 0.78 | 0.33 | 15.57 | 0.14 | 0.41 | 0.20 |
Avg daily turnover (mn USD) | 45.50 | 90.24 | 29.04 | 48.95 | 33.74 | 60.78 | 15.97 | 1.27 | 6.57 | 13.81 | 24.36 |
Share of avg daily turnover in BIST (%) | 1.63 | 3.25 | 1.05 | 1.73 | 1.22 | 2.31 | 0.59 | 0.04 | 0.27 | 0.49 | 1.03 |
Avg daily number of trades (thousands) | 12.38 | 21.87 | 10.54 | 11.60 | 9.92 | 16.69 | 7.69 | 1.30 | 4.22 | 7.89 | 10.99 |
Weight in the BIST 100 index | 6.24 | 6.58 | 2.83 | 2.32 | 1.22 | 1.39 | 0.48 | 0.16 | 0.18 | 0.10 | 0.21 |
Stock beta | 1.31 | 1.35 | 1.23 | 1.24 | 1.52 | 1.34 | 1.07 | 1.89 | 1.29 | 1.11 | 1.14 |
Number of analysts following the stock | 12 | 12 | 11 | 12 | 11 | 11 | 3 | 0 | 0 | 0 | 1 |
Foreign ownership in floating shares (%) | 64.87 | 69.99 | 55.97 | 37.25 | 63.52 | 43.21 | 34.06 | 0.01 | 8.66 | 0.69 | 13.70 |
Symbol | Investor Type | Definition |
---|---|---|
OSTB | Own Stock Trading Bank | Bank-owned broker with access to colocation, trading the owner bank’s stock |
HFTF | HFT Foreign | Broker with access to colocation, serving to foreign investors |
NHFTF | Non-HFT Foreign | Broker without access to colocation, serving to foreign investors |
OHFTB | Other HFT Bank | Bank-owned broker with access to colocation, trading another bank’s stock |
ONHFTB | Other Non-HFT Bank | Bank-owned broker without access to colocation, trading another bank’s stock |
HFTBr | HFT Broker | Non-bank-owned broker with access to colocation |
NHFTBr | Non-HFT Broker | Non-bank-owned broker without access to colocation |
Panel A. Pre-COVID-19 Period (2 January–19 February 2020) | ||||||||
RINTRADAY | OSTB | HFTF | NHFTF | OHFTB | ONHFTB | HFTBr | NHFTBr | |
RINTRADAY | ||||||||
OSTB | 0.01 * | |||||||
HFTF | 0.09 *** | −0.16 *** | ||||||
NHFTF | 0.12 *** | −0.03 *** | 0.05 *** | |||||
OHFTB | −0.01 | −0.47 *** | −0.28 *** | −0.22 *** | ||||
ONHFTB | −0.02 ** | −0.06 *** | −0.06 *** | −0.09 *** | −0.23 *** | |||
HFTBr | −0.09 *** | −0.07 *** | −0.15 *** | −0.13 *** | −0.41 *** | −0.02 ** | ||
NHFTBr | −0.08 *** | −0.02 ** | −0.12 *** | −0.06 *** | −0.31 *** | 0.00 | −0.02 ** | |
Panel B. COVID-19 Crash Period (20 February–23 March 2020) | ||||||||
RINTRADAY | OSTB | HFTF | NHFTF | OHFTB | ONHFTB | HFTBr | NHFTBr | |
RINTRADAY | ||||||||
OSTB | 0.03 *** | |||||||
HFTF | 0.02 * | −0.09 *** | ||||||
NHFTF | 0.10 *** | −0.09 *** | −0.12 *** | |||||
OHFTB | −0.04 *** | −0.31 *** | −0.25 *** | −0.18 *** | ||||
ONHFTB | −0.05 *** | −0.12 *** | −0.06 *** | −0.09 *** | −0.11 *** | |||
HFTBr | −0.01 | −0.16 *** | −0.15 *** | −0.01 | −0.45 *** | −0.10 *** | ||
NHFTBr | −0.00 | −0.11 *** | −0.11 *** | 0.03 *** | −0.46 *** | −0.04 *** | −0.02 |
RINTRADAY | OSTB | HFTF | NHFTF | |||||
Pre-Crash | Crash | Pre-Crash | Crash | Pre-Crash | Crash | Pre-Crash | Crash | |
RINTRADAY(-1) | −0.070 | 3 × 106 | 3 × 106 | 3 × 106 | ||||
0.000 | 0.017 | 0.007 | 0.000 | |||||
RINTRADAY(-2) | −0.069 | −0.067 | 3 × 106 | |||||
0.000 | 0.000 | 0.019 | ||||||
RINTRADAY(-3) | −0.020 | −0.035 | 4 × 106 | |||||
0.026 | 0.001 | 0.002 | ||||||
RINTRADAY(-4) | −0.022 | −0.031 | 2 × 106 | |||||
0.009 | 0.001 | 0.027 | ||||||
OSTB(-1) | 0.132 | −0.085 | ||||||
0.008 | 0.009 | |||||||
OSTB(-2) | 0.113 | 0.102 | 0.091 | |||||
0.023 | 0.040 | 0.039 | ||||||
OSTB(-3) | 0.194 | 0.122 | ||||||
0.000 | 0.000 | |||||||
OSTB(-4) | −8 × 10−10 | 9 × 10−10 | 0.099 | |||||
0.014 | 0.028 | 0.043 | ||||||
HFTF(-1) | 9 × 10−10 | 0.128 | 0.170 | |||||
0.004 | 0.000 | 0.000 | ||||||
HFTF(-2) | 0.124 | 0.223 | ||||||
0.000 | 0.000 | |||||||
HFTF(-3) | 0.117 | 0.233 | 0.114 | |||||
0.020 | 0.000 | 0.010 | ||||||
HFTF(-4) | −7 × 10−10 | 1 × 10−9 | ||||||
0.031 | 0.019 | |||||||
NHFTF(-1) | 9 × 10−10 | −0.188 | 0.227 | 0.466 | ||||
0.006 | 0.000 | 0.000 | 0.000 | |||||
NHFTF(-2) | 0.150 | 0.058 | ||||||
0.000 | 0.034 | |||||||
NHFTF(-3) | 0.142 | 0.151 | 0.106 | |||||
0.006 | 0.000 | 0.000 | ||||||
NHFTF(-4) | 1 × 10−9 | 0.142 | 0.129 | |||||
0.022 | 0.000 | 0.000 | ||||||
OHFTB(-1) | −0.081 | |||||||
0.012 | ||||||||
OHFTB(-2) | 0.106 | |||||||
0.015 | ||||||||
OHFTB(-3) | 0.135 | 0.131 | ||||||
0.005 | 0.000 | |||||||
OHFTB(-4) | −7 × 10−10 | |||||||
0.017 | ||||||||
ONHFTB(-1) | −0.141 | |||||||
0.000 | ||||||||
ONHFTB(-2) | ||||||||
ONHFTB(-3) | 0.115 | 0.154 | ||||||
0.025 | 0.000 | |||||||
ONHFTB(-4) | −7 × 10−10 | 0.053 | ||||||
0.027 | 0.031 | |||||||
HFTBr(-1) | −0.101 | −0.077 | ||||||
0.036 | 0.018 | |||||||
HFTBr(-2) | 0.100 | |||||||
0.023 | ||||||||
HFTBr(-3) | 0.112 | 0.117 | ||||||
0.022 | 0.000 | |||||||
HFTBr(-4) | −8 × 10−10 | |||||||
0.008 | ||||||||
NHFTBr(-1) | −0.107 | |||||||
0.001 | ||||||||
NHFTBr(-2) | 0.128 | 0.092 | ||||||
0.012 | 0.037 | |||||||
NHFTBr(-3) | 0.130 | 0.161 | ||||||
0.010 | 0.000 | |||||||
NHFTBR(-4) | −8 × 10−10 | |||||||
0.015 | ||||||||
Block exogeneity | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 |
Adj. R-squared | 0.019 | 0.031 | 0.040 | 0.034 | 0.088 | 0.100 | 0.232 | 0.225 |
OHFTB | ONHFTB | HFTBr | NHFTBr | |||||
Pre-Crash | Crash | Pre-Crash | Crash | Pre-Crash | Crash | Pre-Crash | Crash | |
RINTRADAY(-1) | −1 × 107 | −2 × 106 | 3 × 106 | 3 × 106 | ||||
0.000 | 0.002 | 0.039 | 0.001 | |||||
RINTRADAY(-2) | −4 × 106 | 2 × 106 | ||||||
0.047 | 0.016 | |||||||
RINTRADAY(-3) | ||||||||
RINTRADAY(-4) | −1 × 106 | 2 × 106 | ||||||
0.047 | 0.008 | |||||||
OSTB(-1) | 0.097 | 0.104 | 0.160 | |||||
0.000 | 0.021 | 0.001 | ||||||
OSTB(-2) | −0.162 | 0.185 | −0.136 | 0.170 | ||||
0.036 | 0.000 | 0.011 | 0.000 | |||||
OSTB(-3) | −0.239 | −0.149 | −0.172 | |||||
0.001 | 0.000 | 0.000 | ||||||
OSTB(-4) | −0.096 | |||||||
0.043 | ||||||||
HFTF(-1) | 0.112 | −0.080 | 0.179 | 0.185 | ||||
0.000 | 0.006 | 0.000 | 0.000 | |||||
HFTF(-2) | −0.150 | 0.206 | −0.196 | 0.123 | ||||
0.044 | 0.000 | 0.000 | 0.012 | |||||
HFTF(-3) | −0.202 | −0.172 | −0.166 | |||||
0.007 | 0.000 | 0.001 | ||||||
HFTF(-4) | −0.201 | |||||||
0.005 | ||||||||
NHFTF(-1) | −0.263 | 0.149 | −0.077 | 0.123 | ||||
0.001 | 0.000 | 0.013 | 0.017 | |||||
NHFTF(-2) | −0.179 | 0.181 | −0.154 | |||||
0.020 | 0.000 | 0.010 | ||||||
NHFTF(-3) | −0.220 | −0.089 | −0.149 | −0.129 | ||||
0.004 | 0.001 | 0.000 | 0.016 | |||||
NHFTF(-4) | −0.302 | −0.066 | ||||||
0.000 | 0.039 | |||||||
OHFTB(-1) | 0.224 | 0.163 | 0.101 | −0.085 | 0.093 | 0.194 | ||
0.001 | 0.031 | 0.000 | 0.003 | 0.036 | 0.000 | |||
OHFTB(-2) | 0.196 | −0.133 | 0.127 | |||||
0.000 | 0.011 | 0.008 | ||||||
OHFTB(-3) | −0.145 | −0.154 | −0.151 | |||||
0.044 | 0.000 | 0.001 | ||||||
OHFTB(-4) | ||||||||
ONHFTB(-1) | 0.224 | 0.181 | 0.114 | 0.083 | 0.195 | |||
0.000 | 0.000 | 0.014 | 0.005 | 0.000 | ||||
ONHFTB(-2) | 0.273 | −0.111 | ||||||
0.000 | 0.035 | |||||||
ONHFTB(-3) | −0.220 | −0.116 | 0.150 | −0.188 | ||||
0.004 | 0.000 | 0.000 | 0.000 | |||||
ONHFTB(-4) | 0.058 | −0.073 | −0.099 | |||||
0.042 | 0.014 | 0.035 | ||||||
HFTBr(-1) | 0.190 | 0.083 | −0.083 | 0.187 | 0.175 | |||
0.007 | 0.001 | 0.004 | 0.000 | 0.000 | ||||
HFTBr(-2) | 0.185 | −0.123 | 0.133 | |||||
0.000 | 0.021 | 0.006 | ||||||
HFTBr(-3) | −0.221 | −0.142 | 0.098 | |||||
0.002 | 0.000 | 0.031 | ||||||
HFTBr(-4) | ||||||||
NHFTBr(-1) | 0.128 | −0.092 | 0.111 | 0.070 | 0.276 | |||
0.000 | 0.002 | 0.016 | 0.019 | 0.000 | ||||
NHFTBr(-2) | −0.269 | 0.194 | −0.138 | 0.112 | 0.164 | |||
0.000 | 0.000 | 0.009 | 0.000 | 0.001 | ||||
NHFTBr(-3) | −0.248 | −0.175 | −0.178 | |||||
0.001 | 0.000 | 0.000 | ||||||
NHFTBr(-4) | −0.193 | |||||||
0.008 | ||||||||
Block exogeneity | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Adj. R-squared | 0.069 | 0.058 | 0.034 | 0.118 | 0.037 | 0.032 | 0.052 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekinci, C.; Ersan, O. Impact of the COVID-19 Market Turmoil on Investor Behavior: A Panel VAR Study of Bank Stocks in Borsa Istanbul. Int. J. Financial Stud. 2024, 12, 14. https://doi.org/10.3390/ijfs12010014
Ekinci C, Ersan O. Impact of the COVID-19 Market Turmoil on Investor Behavior: A Panel VAR Study of Bank Stocks in Borsa Istanbul. International Journal of Financial Studies. 2024; 12(1):14. https://doi.org/10.3390/ijfs12010014
Chicago/Turabian StyleEkinci, Cumhur, and Oğuz Ersan. 2024. "Impact of the COVID-19 Market Turmoil on Investor Behavior: A Panel VAR Study of Bank Stocks in Borsa Istanbul" International Journal of Financial Studies 12, no. 1: 14. https://doi.org/10.3390/ijfs12010014
APA StyleEkinci, C., & Ersan, O. (2024). Impact of the COVID-19 Market Turmoil on Investor Behavior: A Panel VAR Study of Bank Stocks in Borsa Istanbul. International Journal of Financial Studies, 12(1), 14. https://doi.org/10.3390/ijfs12010014