Impact of the COVID-19 Market Turmoil on Investor Behavior: A Panel VAR Study of Bank Stocks in Borsa Istanbul
Abstract
:1. Introduction
2. Market and Data
3. Methodology
4. Findings
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Aharon, David Y. 2020. Uncertainty, Fear and Herding Behavior: Evidence from Size-Ranked Portfolios. Journal of Behavioral Finance 22: 320–37. [Google Scholar] [CrossRef]
- Al-Nefaie, Abdullah H., and Theyazn H. H. Aldhyani. 2022. Predicting Close Price in Emerging Saudi Stock Exchange: Time Series Models. Electronics 11: 3443. [Google Scholar] [CrossRef]
- Arellano, Manuel, and Olympia Bover. 1995. Another look at the instrumental variable estimation of error-components models. Journal of Econometrics 68: 29–51. [Google Scholar] [CrossRef]
- Au, Shiu-Yik, Ming Dong, and Xinyao Zhou. 2023. Does Social Interaction Spread Fear Among Institutional Investors? Evidence from Coronavirus Disease 2019. Management Science. [Google Scholar] [CrossRef]
- Banerjee, Anirban, and Samarpan Nawn. 2024. Proprietary algorithmic traders and liquidity supply during the pandemic. Finance Research Letters 61: 105052. [Google Scholar] [CrossRef]
- Barber, Brad M., and Terrance Odean. 2008. All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The Review of Financial Studies 21: 785–818. [Google Scholar] [CrossRef]
- Bekiros, Stelios, Mouna Jlassi, Bryan Lucey, Kamel Naoui, and Gazi Salah Uddin. 2017. Herding behavior, market sentiment and volatility: Will the bubble resume? The North American Journal of Economics and Finance 42: 107–31. [Google Scholar] [CrossRef]
- Biais, Bruno, Thierry Foucault, and Sophie Moinas. 2015. Equilibrium fast trading. Journal of Financial Economics 116: 292–313. [Google Scholar] [CrossRef]
- Bing, Tao, and Hongkun Ma. 2021. COVID-19 pandemic effect on trading and returns: Evidence from the Chinese stock market. Economic Analysis and Policy 71: 384–396. [Google Scholar] [CrossRef]
- Brennan, Michael J., and H. Henry Cao. 1997. International portfolio flows. Journal of Finance 52: 1851–80. [Google Scholar] [CrossRef]
- Brogaard, Jonathan, Allen Carrion, Thibaut Moyaert, Ryan Riordan, Andriy Shkilko, and Konstantin Sokolov. 2018. High frequency trading and extreme price movements. Journal of Financial Economics 128: 253–65. [Google Scholar] [CrossRef]
- Brogaard, Jonathan, Terrence Hendershott, and Ryan Riordan. 2014. High-frequency trading and price discovery. The Review of Financial Studies 27: 2267–306. [Google Scholar] [CrossRef]
- Celik, Mehmet S., Mutlu B. Ozturk, and Ozkan Haykir. 2024. The effect of technological developments on the stock market: Evidence from emerging market. Applied Economics Letters 31: 118–21. [Google Scholar] [CrossRef]
- Choe, Hyuk, Bong-Chan Kho, and René M. Stulz. 1999. Do foreign investors destabilize stock markets? The Korean experience in 1997. Journal of Financial Economics 54: 227–64. [Google Scholar] [CrossRef]
- Chung, Kee H., and Chairat Chuwonganant. 2023. COVID-19 Pandemic and the stock market: Liquidity, price efficiency, and trading. Journal of Financial Markets 64: 100803. [Google Scholar] [CrossRef]
- Coval, Joshua D., and Tobias J. Moskowitz. 1999. Home bias at home: Local equity preference in domestic portfolios. The Journal of Finance 54: 2045–73. [Google Scholar] [CrossRef]
- Dalgıç, Nihan, Cumhur Ekinci, and Oğuz Ersan. 2021. Daily and intraday herding within different types of investors in Borsa Istanbul. Emerging Markets Finance and Trade 57: 1793–810. [Google Scholar] [CrossRef]
- Djalilov, Abdulaziz, and Numan Ülkü. 2021. Individual investors’ trading behavior in Moscow Exchange and the COVID-19 crisis. Journal of Behavioral and Experimental Finance 31: 100549. [Google Scholar] [CrossRef] [PubMed]
- Dospatliev, Lilko, Miroslava Ivanova, and Milen Varbanov. 2022. Effects of COVID-19 Pandemic on the Bulgarian Stock Market Returns. Axioms 11: 94. [Google Scholar] [CrossRef]
- Dospinescu, Nicoleta, and Octavian Dospinescu. 2019. A Profitability Regression Model in Financial Communication of Romanian Stock Exchange’s Companies. Ecoforum Journal 8: 1–4. [Google Scholar]
- Dvorak, Tomas. 2005. Do domestic investors have an information advantage? Evidence from Indonesia. The Journal of Finance 60: 817–39. [Google Scholar] [CrossRef]
- Foucault, Thierry, David Sraer, and David J. Thesmar. 2011. Individual investors and volatility. The Journal of Finance 66: 1369–406. [Google Scholar] [CrossRef]
- Foucault, Thierry, Roman Kozhan, and Wing Wah Tham. 2017. Toxic arbitrage. The Review of Financial Studies 30: 1053–94. [Google Scholar] [CrossRef]
- Frijns, Bart, Alireza Tourani-Rad, and Robert I. Webb. 2016. On the intraday relation between the VIX and its futures. Journal of Futures Markets 36: 870–86. [Google Scholar] [CrossRef]
- Gao, Bin, and Xihua Liu. 2020. Intraday sentiment and market returns. International Review of Economics & Finance 69: 48–62. [Google Scholar]
- Glossner, Simon, Pedro Matos, Stefano Ramelli, and Alexander F. Wagner. 2022. Do Institutional Investors Stabilize Equity Markets in Crisis Periods? Evidence from COVID-19. Available online: https://ssrn.com/abstract=3655271 (accessed on 2 February 2024). [CrossRef]
- Griffin, John M., Federico Nardari, and René M. Stulz. 2004. Are daily cross-border equity flows pushed or pulled? Review of Economics and Statistics 86: 641–57. [Google Scholar] [CrossRef]
- Griffin, John M., Jeffrey H. Harris, and Selim Topaloglu. 2003. The dynamics of institutional and individual trading. The Journal of Finance 58: 2285–320. [Google Scholar] [CrossRef]
- Grinblatt, Mark, and Matti Keloharju. 2000. The investment behavior and performance of various investor types: A study of Finland’s unique data set. Journal of Financial Economics 55: 43–67. [Google Scholar] [CrossRef]
- Grinblatt, Mark, and Matti Keloharju. 2001. How distance, language, and culture influence stockholdings and trades. The Journal of Finance 56: 1053–73. [Google Scholar] [CrossRef]
- Hasbrouck, Joel. 2018. High-Frequency Quoting: Short-Term Volatility in Bids and Offers. Journal of Financial and Quantitative Analysis 53: 613–41. [Google Scholar] [CrossRef]
- Henker, Julia, and Thomas Henker. 2010. Are retail investors the culprits? Evidence from Australian individual stock price bubbles. The European Journal of Finance 16: 281–304. [Google Scholar] [CrossRef]
- Hu, Wu-Yueh, Chih-Jen Huang, Heng-Yu Chang, and Wei-Ju Lin. 2015. The effect of investor sentiment on feedback trading and trading frequency: Evidence from Taiwan intraday data. Emerging Markets Finance and Trade 51: S111–20. [Google Scholar] [CrossRef]
- Huberman, Gur. 2001. Familiarity breeds investment. The Review of Financial Studies 14: 659–80. [Google Scholar] [CrossRef]
- Jinjarak, Yothin, Jon Wongswan, and Huanhuan Zheng. 2011. International fund investment and local market returns. Journal of Banking and Finance 35: 572–87. [Google Scholar] [CrossRef]
- Kamesaka, Akiko, John R. Nofsinger, and Hidetaka Kawakita. 2003. Investment patterns and performance of investor groups in Japan. Pacific-Basin Finance Journal 11: 1–22. [Google Scholar] [CrossRef]
- Kang, Jun-Koo, and René M. Stulz. 1997. Why is there a home bias? An analysis of foreign portfolio equity ownership in Japan. Journal of Financial Economics 46: 3–28. [Google Scholar] [CrossRef]
- Kirilenko, Andrei, Albert S. Kyle, Mehrdad Samadi, and Tugkan Tuzun. 2017. The flash crash: High-frequency trading in an electronic market. The Journal of Finance 72: 967–98. [Google Scholar] [CrossRef]
- Kumar, Alok, and Charles M. C. Lee. 2006. Retail investor sentiment and return comovements. The Journal of Finance 61: 2451–86. [Google Scholar] [CrossRef]
- Lee, Yi-Tsung, Ji-Chai Lin, and Yu-Jane Liu. 1999. Trading patterns of big versus small players in an emerging market: An empirical analysis. Journal of Banking and Finance 23: 701–25. [Google Scholar] [CrossRef]
- Mahmoodzadeh, Soheil, and Ramazan Gençay. 2017. Human vs. high-frequency traders, penny jumping, and tick size. Journal of Banking and Finance 85: 69–82. [Google Scholar] [CrossRef]
- Menkveld, Albert J. 2014. High-frequency traders and market structure. Financial Review 49: 333–444. [Google Scholar] [CrossRef]
- Ng, Lilian, and Fei Wu. 2007. The trading behavior of institutions and individuals in Chinese equity markets. Journal of Banking and Finance 31: 2695–710. [Google Scholar] [CrossRef]
- Nguyen, Huan Huu, Vu Minh Ngo, and Uyen Dinh Hoang Nguyen. 2023. The foreign investors’ behaviours during the COVID-19 Pandemic in emerging market. Applied Economics Letters 30: 384–90. [Google Scholar] [CrossRef]
- Ozik, Gideon, Ronnie Sadka, and Siyi Shen. 2021. Flattening the illiquidity curve: Retail trading during the COVID-19 lockdown. Journal of Financial and Quantitative Analysis 56: 2356–88. [Google Scholar] [CrossRef]
- Panyagometh, Kamphol. 2020. The Effects of Pandemic Event on the Stock Exchange of Thailand. Economies 8: 90. [Google Scholar] [CrossRef]
- Phansatan, Suwipa, John G. Powell, Suparatana Tanthanongsakkun, and Sirimon Treepongkaruna. 2012. Investor type trading behavior and trade performance: Evidence from the Thai stock market. Pacific-Basin Finance Journal 20: 1–23. [Google Scholar] [CrossRef]
- Richards, Anthony. 2005. Big fish in small ponds: The trading behavior and price impact of foreign investors in Asian emerging equity markets. Journal of Financial and Quantitative Analysis 40: 1–27. [Google Scholar] [CrossRef]
- Salisu, Afees A., and Xuan Vinh Vo. 2020. Predicting stock returns in the presence of COVID-19 Pandemic: The role of health news. International Review of Financial Analysis 71: 101546. [Google Scholar] [CrossRef]
- Shapira, Zur, and Itzhak Venezia. 2001. Patterns of behavior of professionally managed and independent investors. Journal of Banking and Finance 25: 1573–87. [Google Scholar] [CrossRef]
- Strauß, Nadine, Rens Vliegenthart, and Piet Verhoeven. 2018. Intraday news trading: The reciprocal relationships between the stock market and economic news. Communication Research 45: 1054–77. [Google Scholar] [CrossRef]
- Ülkü, Numan, and Enzo Weber. 2013. Identifying the interaction between stock market returns and trading flows of investor types: Looking into the day using daily data. Journal of Banking & Finance 37: 2733–49. [Google Scholar]
- Ülkü, Numan, Fahad Ali, Saidgozi Saydumarov, and Deniz Ikizlerli. 2023. COVID caused a negative bubble. Who profited? Who lost? How stock markets changed? Pacific-Basin Finance Journal 79: 102044. [Google Scholar] [CrossRef]
- Xu, Libo. 2021. Stock Return and the COVID-19 Pandemic: Evidence from Canada and the US. Finance Research Letters 38: 101872. [Google Scholar] [CrossRef] [PubMed]
Indicator | Panel A. Banks in the Sample | Panel B. Banks Not Included in the Sample | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AKBNK | GARAN | ISCTR | YKBNK | VAKBN | HALKB | TSKB | QNBFB | SKBNK | ICBCT | ALBRK | |
Number of domestic branches | 712 | 810 | 1066 | 779 | 940 | 1073 | 2 | 435 | 240 | 39 | 226 |
Number of ATMs | 5202 | 5306 | 6555 | 4526 | 4222 | 4059 | 0 | 2842 | 393 | 43 | 294 |
Number of employees | 12,140 | 18,486 | 22,890 | 15,795 | 16,821 | 20,042 | 392 | 10,837 | 3216 | 730 | 2918 |
Total assets (bn USD) | 65.81 | 73.30 | 94.79 | 69.69 | 67.68 | 75.92 | 7.15 | 31.32 | 5.99 | 3.02 | 8.17 |
Share of total assets among banks in Turkey (%) | 8.58 | 9.31 | 11.14 | 9.22 | 9.98 | 10.88 | 1.00 | 4.32 | 0.73 | 0.43 | 1.17 |
Net profit (bn USD) | 0.91 | 1.06 | 1.20 | 0.66 | 0.70 | 0.40 | 0.12 | 0.46 | −0.03 | 0.01 | 0.03 |
Share of net profit among banks in Turkey (%) | 11.62 | 13.22 | 13.02 | 7.72 | 6.01 | 3.69 | 1.51 | 5.63 | −1.47 | 0.09 | 0.17 |
IPO year | 1990 | 1990 | 1987 | 1987 | 2006 | 2007 | 1996 | 1996 | 1997 | 1996 | 2007 |
Free float ratio (%) | 59.06 | 50.15 | 32.83 | 38.35 | 25.31 | 48.89 | 44.39 | 0.12 | 20.55 | 7.16 | 46.61 |
Avg market cap (bn USD) | 6.68 | 7.55 | 5.08 | 3.68 | 2.44 | 1.33 | 0.56 | 26.44 | 0.24 | 0.69 | 0.34 |
Share of avg market cap in BIST (%) | 3.93 | 4.45 | 2.99 | 2.17 | 1.44 | 0.78 | 0.33 | 15.57 | 0.14 | 0.41 | 0.20 |
Avg daily turnover (mn USD) | 45.50 | 90.24 | 29.04 | 48.95 | 33.74 | 60.78 | 15.97 | 1.27 | 6.57 | 13.81 | 24.36 |
Share of avg daily turnover in BIST (%) | 1.63 | 3.25 | 1.05 | 1.73 | 1.22 | 2.31 | 0.59 | 0.04 | 0.27 | 0.49 | 1.03 |
Avg daily number of trades (thousands) | 12.38 | 21.87 | 10.54 | 11.60 | 9.92 | 16.69 | 7.69 | 1.30 | 4.22 | 7.89 | 10.99 |
Weight in the BIST 100 index | 6.24 | 6.58 | 2.83 | 2.32 | 1.22 | 1.39 | 0.48 | 0.16 | 0.18 | 0.10 | 0.21 |
Stock beta | 1.31 | 1.35 | 1.23 | 1.24 | 1.52 | 1.34 | 1.07 | 1.89 | 1.29 | 1.11 | 1.14 |
Number of analysts following the stock | 12 | 12 | 11 | 12 | 11 | 11 | 3 | 0 | 0 | 0 | 1 |
Foreign ownership in floating shares (%) | 64.87 | 69.99 | 55.97 | 37.25 | 63.52 | 43.21 | 34.06 | 0.01 | 8.66 | 0.69 | 13.70 |
Symbol | Investor Type | Definition |
---|---|---|
OSTB | Own Stock Trading Bank | Bank-owned broker with access to colocation, trading the owner bank’s stock |
HFTF | HFT Foreign | Broker with access to colocation, serving to foreign investors |
NHFTF | Non-HFT Foreign | Broker without access to colocation, serving to foreign investors |
OHFTB | Other HFT Bank | Bank-owned broker with access to colocation, trading another bank’s stock |
ONHFTB | Other Non-HFT Bank | Bank-owned broker without access to colocation, trading another bank’s stock |
HFTBr | HFT Broker | Non-bank-owned broker with access to colocation |
NHFTBr | Non-HFT Broker | Non-bank-owned broker without access to colocation |
Panel A. Pre-COVID-19 Period (2 January–19 February 2020) | ||||||||
RINTRADAY | OSTB | HFTF | NHFTF | OHFTB | ONHFTB | HFTBr | NHFTBr | |
RINTRADAY | ||||||||
OSTB | 0.01 * | |||||||
HFTF | 0.09 *** | −0.16 *** | ||||||
NHFTF | 0.12 *** | −0.03 *** | 0.05 *** | |||||
OHFTB | −0.01 | −0.47 *** | −0.28 *** | −0.22 *** | ||||
ONHFTB | −0.02 ** | −0.06 *** | −0.06 *** | −0.09 *** | −0.23 *** | |||
HFTBr | −0.09 *** | −0.07 *** | −0.15 *** | −0.13 *** | −0.41 *** | −0.02 ** | ||
NHFTBr | −0.08 *** | −0.02 ** | −0.12 *** | −0.06 *** | −0.31 *** | 0.00 | −0.02 ** | |
Panel B. COVID-19 Crash Period (20 February–23 March 2020) | ||||||||
RINTRADAY | OSTB | HFTF | NHFTF | OHFTB | ONHFTB | HFTBr | NHFTBr | |
RINTRADAY | ||||||||
OSTB | 0.03 *** | |||||||
HFTF | 0.02 * | −0.09 *** | ||||||
NHFTF | 0.10 *** | −0.09 *** | −0.12 *** | |||||
OHFTB | −0.04 *** | −0.31 *** | −0.25 *** | −0.18 *** | ||||
ONHFTB | −0.05 *** | −0.12 *** | −0.06 *** | −0.09 *** | −0.11 *** | |||
HFTBr | −0.01 | −0.16 *** | −0.15 *** | −0.01 | −0.45 *** | −0.10 *** | ||
NHFTBr | −0.00 | −0.11 *** | −0.11 *** | 0.03 *** | −0.46 *** | −0.04 *** | −0.02 |
RINTRADAY | OSTB | HFTF | NHFTF | |||||
Pre-Crash | Crash | Pre-Crash | Crash | Pre-Crash | Crash | Pre-Crash | Crash | |
RINTRADAY(-1) | −0.070 | 3 × 106 | 3 × 106 | 3 × 106 | ||||
0.000 | 0.017 | 0.007 | 0.000 | |||||
RINTRADAY(-2) | −0.069 | −0.067 | 3 × 106 | |||||
0.000 | 0.000 | 0.019 | ||||||
RINTRADAY(-3) | −0.020 | −0.035 | 4 × 106 | |||||
0.026 | 0.001 | 0.002 | ||||||
RINTRADAY(-4) | −0.022 | −0.031 | 2 × 106 | |||||
0.009 | 0.001 | 0.027 | ||||||
OSTB(-1) | 0.132 | −0.085 | ||||||
0.008 | 0.009 | |||||||
OSTB(-2) | 0.113 | 0.102 | 0.091 | |||||
0.023 | 0.040 | 0.039 | ||||||
OSTB(-3) | 0.194 | 0.122 | ||||||
0.000 | 0.000 | |||||||
OSTB(-4) | −8 × 10−10 | 9 × 10−10 | 0.099 | |||||
0.014 | 0.028 | 0.043 | ||||||
HFTF(-1) | 9 × 10−10 | 0.128 | 0.170 | |||||
0.004 | 0.000 | 0.000 | ||||||
HFTF(-2) | 0.124 | 0.223 | ||||||
0.000 | 0.000 | |||||||
HFTF(-3) | 0.117 | 0.233 | 0.114 | |||||
0.020 | 0.000 | 0.010 | ||||||
HFTF(-4) | −7 × 10−10 | 1 × 10−9 | ||||||
0.031 | 0.019 | |||||||
NHFTF(-1) | 9 × 10−10 | −0.188 | 0.227 | 0.466 | ||||
0.006 | 0.000 | 0.000 | 0.000 | |||||
NHFTF(-2) | 0.150 | 0.058 | ||||||
0.000 | 0.034 | |||||||
NHFTF(-3) | 0.142 | 0.151 | 0.106 | |||||
0.006 | 0.000 | 0.000 | ||||||
NHFTF(-4) | 1 × 10−9 | 0.142 | 0.129 | |||||
0.022 | 0.000 | 0.000 | ||||||
OHFTB(-1) | −0.081 | |||||||
0.012 | ||||||||
OHFTB(-2) | 0.106 | |||||||
0.015 | ||||||||
OHFTB(-3) | 0.135 | 0.131 | ||||||
0.005 | 0.000 | |||||||
OHFTB(-4) | −7 × 10−10 | |||||||
0.017 | ||||||||
ONHFTB(-1) | −0.141 | |||||||
0.000 | ||||||||
ONHFTB(-2) | ||||||||
ONHFTB(-3) | 0.115 | 0.154 | ||||||
0.025 | 0.000 | |||||||
ONHFTB(-4) | −7 × 10−10 | 0.053 | ||||||
0.027 | 0.031 | |||||||
HFTBr(-1) | −0.101 | −0.077 | ||||||
0.036 | 0.018 | |||||||
HFTBr(-2) | 0.100 | |||||||
0.023 | ||||||||
HFTBr(-3) | 0.112 | 0.117 | ||||||
0.022 | 0.000 | |||||||
HFTBr(-4) | −8 × 10−10 | |||||||
0.008 | ||||||||
NHFTBr(-1) | −0.107 | |||||||
0.001 | ||||||||
NHFTBr(-2) | 0.128 | 0.092 | ||||||
0.012 | 0.037 | |||||||
NHFTBr(-3) | 0.130 | 0.161 | ||||||
0.010 | 0.000 | |||||||
NHFTBR(-4) | −8 × 10−10 | |||||||
0.015 | ||||||||
Block exogeneity | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 |
Adj. R-squared | 0.019 | 0.031 | 0.040 | 0.034 | 0.088 | 0.100 | 0.232 | 0.225 |
OHFTB | ONHFTB | HFTBr | NHFTBr | |||||
Pre-Crash | Crash | Pre-Crash | Crash | Pre-Crash | Crash | Pre-Crash | Crash | |
RINTRADAY(-1) | −1 × 107 | −2 × 106 | 3 × 106 | 3 × 106 | ||||
0.000 | 0.002 | 0.039 | 0.001 | |||||
RINTRADAY(-2) | −4 × 106 | 2 × 106 | ||||||
0.047 | 0.016 | |||||||
RINTRADAY(-3) | ||||||||
RINTRADAY(-4) | −1 × 106 | 2 × 106 | ||||||
0.047 | 0.008 | |||||||
OSTB(-1) | 0.097 | 0.104 | 0.160 | |||||
0.000 | 0.021 | 0.001 | ||||||
OSTB(-2) | −0.162 | 0.185 | −0.136 | 0.170 | ||||
0.036 | 0.000 | 0.011 | 0.000 | |||||
OSTB(-3) | −0.239 | −0.149 | −0.172 | |||||
0.001 | 0.000 | 0.000 | ||||||
OSTB(-4) | −0.096 | |||||||
0.043 | ||||||||
HFTF(-1) | 0.112 | −0.080 | 0.179 | 0.185 | ||||
0.000 | 0.006 | 0.000 | 0.000 | |||||
HFTF(-2) | −0.150 | 0.206 | −0.196 | 0.123 | ||||
0.044 | 0.000 | 0.000 | 0.012 | |||||
HFTF(-3) | −0.202 | −0.172 | −0.166 | |||||
0.007 | 0.000 | 0.001 | ||||||
HFTF(-4) | −0.201 | |||||||
0.005 | ||||||||
NHFTF(-1) | −0.263 | 0.149 | −0.077 | 0.123 | ||||
0.001 | 0.000 | 0.013 | 0.017 | |||||
NHFTF(-2) | −0.179 | 0.181 | −0.154 | |||||
0.020 | 0.000 | 0.010 | ||||||
NHFTF(-3) | −0.220 | −0.089 | −0.149 | −0.129 | ||||
0.004 | 0.001 | 0.000 | 0.016 | |||||
NHFTF(-4) | −0.302 | −0.066 | ||||||
0.000 | 0.039 | |||||||
OHFTB(-1) | 0.224 | 0.163 | 0.101 | −0.085 | 0.093 | 0.194 | ||
0.001 | 0.031 | 0.000 | 0.003 | 0.036 | 0.000 | |||
OHFTB(-2) | 0.196 | −0.133 | 0.127 | |||||
0.000 | 0.011 | 0.008 | ||||||
OHFTB(-3) | −0.145 | −0.154 | −0.151 | |||||
0.044 | 0.000 | 0.001 | ||||||
OHFTB(-4) | ||||||||
ONHFTB(-1) | 0.224 | 0.181 | 0.114 | 0.083 | 0.195 | |||
0.000 | 0.000 | 0.014 | 0.005 | 0.000 | ||||
ONHFTB(-2) | 0.273 | −0.111 | ||||||
0.000 | 0.035 | |||||||
ONHFTB(-3) | −0.220 | −0.116 | 0.150 | −0.188 | ||||
0.004 | 0.000 | 0.000 | 0.000 | |||||
ONHFTB(-4) | 0.058 | −0.073 | −0.099 | |||||
0.042 | 0.014 | 0.035 | ||||||
HFTBr(-1) | 0.190 | 0.083 | −0.083 | 0.187 | 0.175 | |||
0.007 | 0.001 | 0.004 | 0.000 | 0.000 | ||||
HFTBr(-2) | 0.185 | −0.123 | 0.133 | |||||
0.000 | 0.021 | 0.006 | ||||||
HFTBr(-3) | −0.221 | −0.142 | 0.098 | |||||
0.002 | 0.000 | 0.031 | ||||||
HFTBr(-4) | ||||||||
NHFTBr(-1) | 0.128 | −0.092 | 0.111 | 0.070 | 0.276 | |||
0.000 | 0.002 | 0.016 | 0.019 | 0.000 | ||||
NHFTBr(-2) | −0.269 | 0.194 | −0.138 | 0.112 | 0.164 | |||
0.000 | 0.000 | 0.009 | 0.000 | 0.001 | ||||
NHFTBr(-3) | −0.248 | −0.175 | −0.178 | |||||
0.001 | 0.000 | 0.000 | ||||||
NHFTBr(-4) | −0.193 | |||||||
0.008 | ||||||||
Block exogeneity | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Adj. R-squared | 0.069 | 0.058 | 0.034 | 0.118 | 0.037 | 0.032 | 0.052 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekinci, C.; Ersan, O. Impact of the COVID-19 Market Turmoil on Investor Behavior: A Panel VAR Study of Bank Stocks in Borsa Istanbul. Int. J. Financial Stud. 2024, 12, 14. https://doi.org/10.3390/ijfs12010014
Ekinci C, Ersan O. Impact of the COVID-19 Market Turmoil on Investor Behavior: A Panel VAR Study of Bank Stocks in Borsa Istanbul. International Journal of Financial Studies. 2024; 12(1):14. https://doi.org/10.3390/ijfs12010014
Chicago/Turabian StyleEkinci, Cumhur, and Oğuz Ersan. 2024. "Impact of the COVID-19 Market Turmoil on Investor Behavior: A Panel VAR Study of Bank Stocks in Borsa Istanbul" International Journal of Financial Studies 12, no. 1: 14. https://doi.org/10.3390/ijfs12010014
APA StyleEkinci, C., & Ersan, O. (2024). Impact of the COVID-19 Market Turmoil on Investor Behavior: A Panel VAR Study of Bank Stocks in Borsa Istanbul. International Journal of Financial Studies, 12(1), 14. https://doi.org/10.3390/ijfs12010014