Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions
Abstract
:1. Introduction
2. Literature Review
2.1. The Credit Union Movement and Banking
2.2. Merton DD Model
3. Theoretical Development and Model Comparison
4. Data and Model Specification
4.1. Data and Sample Selection
4.2. Estimation Method
4.3. Choice of Hazard Function Covariates
5. Empirical Evidence and Results
5.1. Hazard Function Estimation Results
5.2. Out-of-Sample Forecasts
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
The Merton DD Model
1 | Taiwan Economic Journal (TEJ) defines financial distress as including the following nine situations: bounced check, bank run, shutdown and bankruptcy, CPA opinion (for instance, accountants hold negative opinions toward continuous operation, or they doubt the assumption of continuous operation.), rearrangement, asking for bailout (but if a company only requires an interest decrease, it is not financially distressed), taking over, total delisting (excluding companies whose book value per share is less than 5 dollars), work stoppage because of financial problems, negative net worth, etc. Quasi-Financial distress indicators include appropriating and draining company fund, temporary shutdown, a bounced check by the president of a company, shrinking banks, severe deficit, work stoppage because of economic downturn, and a decrease in value, etc. |
References
- Agarwal, Vineet, and Richard Taffler. 2008. Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking and Finance 32: 1541–51. [Google Scholar] [CrossRef] [Green Version]
- Altman, Edward I. 1968. Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy. Journal of Finance 23: 589–609. [Google Scholar] [CrossRef]
- Altman, Edward I. 1993. Corporate Financial Distress and Bankruptcy: A Complete Guide to Predicting and Avoiding Distress and Profiting from Bankruptcy, 2nd ed. New York: John Wiley. [Google Scholar]
- Beaver, William H. 1966. Financial ratios as predictors of failure. Journal of Accounting Research 4: 71–111, Empirical research in accounting: Selected studies. [Google Scholar] [CrossRef]
- Beaver, William H. 1968a. Alternative accounting measures as predictors of failure. Accounting Review 43: 113–22. [Google Scholar]
- Beaver, William H. 1968b. Market prices, financial ratios, and the prediction of failure. Journal of Accounting Research 1: 170–92. [Google Scholar] [CrossRef]
- Bharath, Sreedhar T., and Tyler Shumway. 2004. Forecasting default with the KMV-Merton model. AFA 2006 Boston Meetings Paper. SSRN. Available online: https://ssrn.com/abstract=637342 (accessed on 26 April 2022).
- Bharath, Sreedhar T., and Tyler Shumway. 2008. Forecasting Default with the Merton Distance to Default Model. Review of Financial Studies 21: 1339–69. [Google Scholar] [CrossRef]
- Black, Fischer, and Myron Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81: 637–59. [Google Scholar] [CrossRef] [Green Version]
- Bonfim, Diana. 2009. Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics. Journal of Banking and Finance 33: 281–99. [Google Scholar] [CrossRef] [Green Version]
- Boubaker, Sabri, Alexis Cellier, Riadh Manita, and Asif Saeed. 2020. Does corporate social responsibility reduce financial distress risk? Economic Modelling 91: 835–51. [Google Scholar] [CrossRef]
- Campbell, John Y., Jens Hilscher, and Jan Szilagyi. 2008. In search of distress risk. The Journal of Finance 63: 2899–939. [Google Scholar] [CrossRef] [Green Version]
- Chava, Sudheers, and Robert A. Jarrow. 2004. Bankruptcy prediction with industry effects. Review of Finance 8: 537–69. [Google Scholar] [CrossRef]
- Chen, Wei-Sen, and Yin-Kuan Du. 2009. Using neural networks and data mining techniques for the financial distress prediction model. Expert Systems with Applications 36: 4075–86. [Google Scholar] [CrossRef]
- Chen, Po-Chi, Ming-Miin Yu, Ching-Cheng Chang, and Shih-Hsun Hsu. 2007. Productivity change in Taiwan’s farmers’ credit unions: A nonparametric risk-adjusted Malmquist approach. Agricultural Economics 36: 221–31. [Google Scholar] [CrossRef] [Green Version]
- Chen, Chih-Chun, Chun-Da Chen, and Donald Lien. 2020. Financial distress prediction model: The effects of corporate governance indicators. Journal of Forecasting 39: 1238–52. [Google Scholar] [CrossRef]
- Cheng, Ching-Hsue, Chia-Pang Chan, and Yu-Jheng Sheu. 2019. A novel purity-based k nearest neighbors imputation method and its application in financial distress prediction. Engineering Applications of Artificial Intelligence 81: 283–99. [Google Scholar] [CrossRef]
- Cole, Rebel A., and Jeffery W. unther Gunther. 1995. Separating the likelihood and timing of bank failure. Journal of Banking and Finance 19: 1073–89. [Google Scholar] [CrossRef]
- Cole, Rebel A., and Jeffery W. unther Gunther. 1998. Predicting bank failures: A comparison of on- and off-site monitoring systems. Journal of Financial Services Research 13: 103–17. [Google Scholar] [CrossRef]
- Cox, D. R. 1972. Regression models and life tables. Journal of the Royal Statistical Society Series B 34: 187–220. [Google Scholar] [CrossRef]
- Crapp, Harvey R., and Maxwell Stevenson. 1987. Development of a method to assess the relevant variables and the probability of financial distress. Australian Journal of Management 12: 221–36. [Google Scholar] [CrossRef]
- Crosbie, Peter, and Jeffrey Bohn. 2002. Modeling Default Risk. Technical Report. Kaysville: KMV, LLC. [Google Scholar]
- Deakin, Edward B. 1972. A discriminant analysis of predictors of business failure. Journal of Accounting Research 10: 167–79. [Google Scholar] [CrossRef]
- Duffie, Darrell, and David Lando. 2001. Term structures of credit spreads with incomplete accounting information. Econometrica 69: 633–64. [Google Scholar] [CrossRef] [Green Version]
- Duffie, Darrell, Leandro Saita, and Ke Wang. 2007. Multi-Period Corporate Default Prediction with Stochastic Covariates. Journal of Financial Economics 83: 635–65. [Google Scholar] [CrossRef] [Green Version]
- Edminster, Robert O. 1972. An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative Analysis 2: 1477–93. [Google Scholar] [CrossRef]
- Estrella, Arturo, Sangkyun Park, and Stavros Peristiani. 2000. Capital ratios as predictors of bank failure. Federal Reserve Bank of New York Economic Policy Review 6: 33–52. [Google Scholar]
- Feinberg, Robert M. 2001. The competitive role of credit unions in small local financial services markets. Review of Economics and Statistics 83: 560–63. [Google Scholar] [CrossRef]
- Feinberg, Robert M., and A.F.M. Ataur Rahman. 2001. A causality test of the relationship between bank and credit union lending rates in local markets. Economics Letters 71: 271–75. [Google Scholar] [CrossRef]
- Fisher, Edwin O., Robert Heinkel, and Josef Zechner. 1989. Dynamic capital structure choice: Theory and tests. Journal of Finance 44: 19–40. [Google Scholar] [CrossRef]
- Goddard, John A., Donal G. McKillop, and John O.S. Wilson. 2002. The growth of US credit unions. Journal of Banking and Finance 22: 2327–56. [Google Scholar] [CrossRef]
- Goddard, John A., Donal G. McKillop, and John O.S. Wilson. 2008a. The diversification and performance of US credit unions. Journal of Banking and Finance 32: 1836–49. [Google Scholar] [CrossRef]
- Goddard, John A., Donal G. McKillop, and John O.S. Wilson. 2008b. What drives the performance of cooperative financial institutions? Evidence for US credit unions. Applied Financial Economics 18: 879–93. [Google Scholar] [CrossRef]
- Goddard, John A., Donal G. McKillop, and John O.S. Wilson. 2009. Consolidation in the US Credit Union Sector: Determinants of the hazard of Acquisition. Journal of Financial Services Research 36: 231–52. [Google Scholar] [CrossRef]
- Hillegeist, Stephen A., Elizabeth K. Keating, Donald P. Cram, and Kyle G. Lundstedt. 2004. Assessing the probability of bankruptcy. Review of Accounting Studies 9: 5–34. [Google Scholar] [CrossRef]
- Jones, F. 1987. Current techniques in bankruptcy prediction. Journal of Accounting Literature 6: 131–64. [Google Scholar]
- Jones, Stewart, David Johnstone, and Roy Wilson. 2015. An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. Journal of Banking and Finance 56: 72–85. [Google Scholar] [CrossRef]
- Jones, Stewart, David Johnstone, and Roy Wilson. 2017. Predicting corporate bankruptcy: An evaluation of alternative statistical frameworks. Journal of Business Finance and Accounting 44: 3–34. [Google Scholar] [CrossRef]
- Kealhofer, Stephen. 2003. Quantifying credit risk I:default prediction. Financial Analysts Journal 59: 30–44. [Google Scholar] [CrossRef]
- Kealhofer, Stephen, and M. Kurbat. 2001. The Default Prediction Power of the Merton Approach. In Relative to Debt Ratings and Accounting Variables. Kaysville: KMV LLC. [Google Scholar]
- Kharadia, V. C., and R. A. Collins. 1981. Forecasting credit union failures. Journal of Economics and Business 33: 147–52. [Google Scholar]
- King, Thomas B., Daniel Nuxoll, and Timothy J. Yeager. 2006. Are the causes of bank distress changing? Can researcher keep up? Federal Reserve Bank of St. Louis Review 88: 57–80. [Google Scholar] [CrossRef] [Green Version]
- Kleinert, Mareike Kira. 2014. Comparison of Bankruptcy Prediction Models of Altman (1969), Ohlson (1980) and Zmijewski (1984) on German and Belgian Listed Companies between 2008–2013. Master’s thesis, University of Twente, Enschede, The Netherlands. [Google Scholar]
- Kolari, James, Dennis Glennon, Hwan Shin, and Michele Caputo. 2002. Predicting large US commercial bank failures. Journal of Economics and Business 54: 361–87. [Google Scholar] [CrossRef]
- Korol, Tomasz. 2013. Early warning models against bankruptcy risk for Central European and Latin American enterprises. Economic Modelling 31: 22–30. [Google Scholar] [CrossRef]
- Lane, William R., Stephen W. Looney, and James W. Wansley. 1986. An application of the cox proportional hazards model to bank failure. Journal of Banking and Finance 10: 511–31. [Google Scholar] [CrossRef]
- Lanine, Gleb, and Rudi Vander Vennet. 2006. Failure prediction in the Russian bank sector with logit and trait recognition models. Expert Systems with Applications 30: 463–78. [Google Scholar] [CrossRef]
- Lee, Suk Hun, and Jorge L. Urrutia. 1996. Analysis and prediction of insolvency in the property-liability insurance industry: A comparison of logit and hazard models. The Journal of Risk and Insurance 63: 121–30. [Google Scholar] [CrossRef]
- Leland, Hayne E. 1994. Corporate debt value, bond covenants, and optimal capital structure. Journal of Finance 49: 1213–52. [Google Scholar] [CrossRef]
- Lin, Tzong-Huei. 2009. A cross model study of corporate financial distress prediction in Taiwan: Multiple discriminant analysis, logit, probit and neural networks models. Neurocomputing 72: 3507–16. [Google Scholar] [CrossRef]
- Lin, Fengyi, Deron Liang, and Enchia Chen. 2011. Financial ratio selection for business crisis prediction. Expert Systems with Applications 38: 15094–102. [Google Scholar] [CrossRef]
- Lizares, Regina M., and Carlos C. Bautista. 2021. Corporate financial distress: The case of publicly listed firms in an emerging market economy. Journal of International Financial Management and Accounting 32: 5–20. [Google Scholar] [CrossRef]
- Merton, Robert C. 1974. On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance 29: 449–70. [Google Scholar]
- Nuxoll, Daniel A., John O’Keefe, and Katherine Samolyk. 2003. Do local economic data improve off-site models that monitor bank performance? FDIC Banking Review 15: 39–53. [Google Scholar]
- Ohlson, James A. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research 19: 109–31. [Google Scholar] [CrossRef] [Green Version]
- Pille, Peter, and Joseph C. Paradi. 2002. Financial performance analysis of Ontario (Canada) Credit Unions: An application of DEA in the regulatory environment. European Journal of Operational Research 139: 339–50. [Google Scholar] [CrossRef]
- Schmid, Frank. 2006. When for-profits and not-for profits compete: Theory and empirical evidence from retail banking. Managerial Finance 31: 50–71. [Google Scholar] [CrossRef]
- Shepheard-Walwyn, Tim, and Robert Litterman. 1998. Building a coherent risk measurement and capital optimisation model for financial firms. Federal Reserve Bank of New York Economic Policy Review 4: 171–82. [Google Scholar] [CrossRef] [Green Version]
- Shumway, Tyler. 2001. Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business 74: 101–24. [Google Scholar] [CrossRef] [Green Version]
- Sobehart, Jorge R., and Sean C. Keenan. 1999. An Introduction to Market-Based Credit Analysis. New York: Moody’s Investors Services. [Google Scholar]
- Sobehart, Jorge R., and Sean C. Keenan. 2002a. Hybrid Contingent Claims Models: A Practical Approach to Modelling Default Risk. In Credit Rating: Methodologies, Rationale, and Default Risk. Edited by Michael Ong. New York: Risk Books, pp. 125–45. [Google Scholar]
- Sobehart, Jorge R., and Sean C. Keenan. 2002b. The Need for Hybrid Models. Risk February, 73–77. [Google Scholar]
- Sobehart, Jorge R., and Roger M. Stein. 2000. Moody’s Public firm Risk Model: A Hybrid Approach to Modeling Short Term Default Risk. New York: Moody’s Investors Services. [Google Scholar]
- Stein, Roger M. 2000. Evidence on the Incompleteness of Merton-type Structural Models for Default Prediction. New York: Moody’s Investors Services. [Google Scholar]
- Sun, Jie, Hui Li, Qing-Hua Huang, and Kai-Yu He. 2014. Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. Knowledge-Based Systems 57: 41–56. [Google Scholar] [CrossRef]
- Tokle, Robert J., and Joanne G. Tokle. 2000. The influence of credit union and savings and loan competition on bank deposit rates in Idaho and Montana. Review of Industrial Organization 17: 427–39. [Google Scholar] [CrossRef]
- Trujillo-Ponce, Antonio, Reyes Samaniego-Medina, and Clara Cardone-Riportella. 2014. Examining what best explains corporate credit risk: Accounting-based versus market-based models. Journal of Business Economics and Management 15: 253–76. [Google Scholar] [CrossRef] [Green Version]
- Tykvová, Tereza, and Mariela Borell. 2012. Do private equity owners increase risk of financial distress and bankruptcy? Journal of Corporate Finance 18: 138–50. [Google Scholar] [CrossRef] [Green Version]
- Vassalou, Maria, and Yuhang Xing. 2004. Default Risk in Equity Returns. Journal of Finance 59: 831–68. [Google Scholar] [CrossRef]
- Wheelock, David C., and Paul W. Wilson. 1995. Explaining bank failure: Deposit insurance, regulation and efficiency. Review of Economics and Statistics 77: 689–700. [Google Scholar] [CrossRef] [Green Version]
- Wheelock, David C., and Paul W. Wilson. 2000. Why do banks disappear? The determinants of US bank failures and acquisitions. Review of Economics and Statistics 82: 127–38. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y., Clive Gaunt, and Stephen F. Gray. 2010. A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting and Economics 6: 34–45. [Google Scholar] [CrossRef]
- Zmijewski, Mark E. 1984. Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research 22: 59–82. [Google Scholar] [CrossRef]
Category | Covariate | Definition |
---|---|---|
region_type | EAST | region(west-0,east-1) (dummy identifying the eastern credit unions) |
common_bond | MULT | single-0,multiple-1(dummy identifying multiple common bond credit unions) |
age | LAGE | natural logarithm of (current year—year of formation) |
size | LASSET | natural logarithm of total assets |
asset_quality | CAP_ADE | net worth/total assets (capital to assets ratio) |
asset_quality | LOAN_RATIO | total loans/total assets |
asset_quality | LOAN_COV | overdue_loan_Coverage (overdue_reserves/overdue_loans) |
financial risk | LIQ | current_assets/total_assets |
financial risk | RES_CAP | reserves/total_loans |
managerial_efficiency | OPE_EFF | operating_expenses/total_assets |
managerial_efficiency | INC_CAP | total_income/total_assets |
managerial_efficiency | LAB_COST | salaries/total_income |
growth | MEM_GRO | membership growth (membership change/members at start) |
growth | LOAN_GRO | loan growth (loan change/loans at start) |
growth | SHARE_GRO | share growth (share change/shares at start) |
profitability | STO_RET | stock return |
profitability | ROA | net income/total assets (return on assets) |
macro_factor* | M1b | money supply growth rate |
macro_factor* | GDP | annual average rate of GDP |
macro_factor* | RATE | average interest rate of deposits(local banks) |
macro_factor* | RATE_SPR | spreads from deposit and loan (local banks) |
expected default frequency | π_merton | Merton DD expected default frequency |
expected default frequency | π_ shumway | Merton DD Shumway expected default frequency |
asset volatility | σv_merton | Merton DD standard deviation |
asset volatility | σv_shumway | Merton DD Shumway standard deviation |
Variable | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|
LAGE | 3.276 | 0.539 | 0.000 | 3.870 |
LASSET | 3.705 | 0.968 | 0.400 | 7.290 |
CAP_ADE (%) | 8.573 | 3.587 | 0.012 | 48.311 |
LOAN_RATIO (%) | 52.910 | 18.316 | 5.583 | 95.978 |
LOAN_COV (%) | 5.967 | 22.140 | 0.000 | 120.079 |
LIQ (%) | 29.999 | 17.884 | 0.000 | 99.267 |
RES_CAP (%) | 17.707 | 13.123 | 0.014 | 268.685 |
OPE_EFF (%) | 2.778 | 1.496 | 0.020 | 30.616 |
INC_CAP (%) | 5.214 | 2.765 | 0.045 | 75.574 |
LAB_COST (%) | 14.690 | 8.504 | 0.000 | 80.517 |
MEM_GRO (%) | 1.340 | 7.095 | −100.000 | 90.160 |
LOAN_GRO (%) | −0.726 | 27.905 | −87.061 | 1062.873 |
SHARE_GRO (%) | 2.462 | 8.711 | −57.939 | 132.582 |
STO_RET (%) | 2.122 | 1.235 | 0.000 | 9.120 |
ROA (%) | 2.481 | 2.341 | −23.058 | 49.318 |
M1b(%) | 8.115 | 6.944 | −2.938 | 18.977 |
GDP(%) | 2.392 | 3.136 | −2.492 | 6.388 |
RATE(%) | 2.164 | 1.219 | 1.110 | 4.620 |
RATE_SPR(%) | 2.479 | 0.473 | 1.760 | 3.150 |
π_merton (%) | 8.835 | 19.229 | 0.000 | 100.000 |
π_shumway (%) | 16.709 | 18.625 | 0.000 | 100.000 |
σv_merton (%) | 34.183 | 275.567 | 1.117 | 4897.295 |
σv_shumway (%) | 29.126 | 107.200 | 3.974 | 1959.254 |
All Sample Credit Unions | Distress Credit Unions | |
---|---|---|
Distribution by region_type | ||
West | 0.813 | 0.817 |
East | 0.187 | 0.183 |
Distribution by common bond | ||
Single | 0.164 | 0.172 |
Multiple | 0.836 | 0.828 |
Distribution by year of formation | ||
1961–1970 | 0.088 | 0.072 |
1971–1980 | 0.499 | 0.453 |
1981–1990 | 0.212 | 0.183 |
1991–2000 | 0.144 | 0.283 |
2001–2009 | 0.057 | 0.009 |
2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | |
---|---|---|---|---|---|---|---|---|---|
number | 307 | 308 | 308 | 310 | 310 | 311 | 313 | 314 | 314 |
LASSET | 3.6300 | 3.6500 | 3.6700 | 3.7000 | 3.7200 | 3.7300 | 3.7400 | 3.7400 | 3.7500 |
CAP_ADE | 0.0708 | 0.0716 | 0.0776 | 0.0815 | 0.0848 | 0.0887 | 0.0923 | 0.1005 | 0.1030 |
LOAN_RATIO | 0.6403 | 0.6045 | 0.5591 | 0.5170 | 0.4978 | 0.5020 | 0.4976 | 0.4888 | 0.4573 |
LOAN_COV | 5.9400 | 7.5700 | 7.7000 | 4.9500 | 6.9700 | 5.5800 | 4.9500 | 5.1200 | 4.9500 |
LIQ | 0.2367 | 0.2553 | 0.2521 | 0.2661 | 0.2822 | 0.3133 | 0.3302 | 0.3540 | 0.4062 |
RES_CAP | 0.1143 | 0.1209 | 0.1420 | 0.1669 | 0.1897 | 0.1940 | 0.2019 | 0.2216 | 0.2488 |
OPE_EFF | 0.0292 | 0.0310 | 0.0275 | 0.0267 | 0.0279 | 0.0265 | 0.0262 | 0.0277 | 0.0274 |
INC_CAP | 0.0732 | 0.0678 | 0.0538 | 0.0485 | 0.0485 | 0.0469 | 0.0455 | 0.0458 | 0.0396 |
LAB_COST | 0.1123 | 0.1224 | 0.1467 | 0.1546 | 0.1518 | 0.1579 | 0.1533 | 0.1499 | 0.1725 |
MEM_GRO | 0.0080 | 0.0103 | 0.0261 | 0.0249 | 0.0205 | 0.0140 | 0.0071 | 0.0048 | 0.0050 |
LOAN_GRO | −0.0095 | −0.0193 | −0.0412 | −0.0434 | 0.0106 | 0.0671 | 0.0157 | 0.0044 | −0.0512 |
SHARE_GRO | 0.0277 | 0.0288 | 0.0358 | 0.0420 | 0.0393 | 0.0162 | 0.0115 | 0.0079 | 0.0131 |
STO_RET | 0.0388 | 0.0323 | 0.0238 | 0.0192 | 0.0181 | 0.0169 | 0.0170 | 0.0151 | 0.0103 |
ROA | 0.0459 | 0.0376 | 0.0264 | 0.0221 | 0.0208 | 0.0210 | 0.0199 | 0.0181 | 0.0120 |
M1b | 0.1058 | −0.0102 | 0.1701 | 0.1183 | 0.1898 | 0.0710 | 0.0530 | 0.0644 | −0.0294 |
GDP | −0.0249 | 0.0487 | 0.0267 | 0.0638 | 0.0324 | 0.0432 | 0.0541 | −0.0135 | −0.0147 |
RATE | 0.0462 | 0.0409 | 0.0238 | 0.0147 | 0.0111 | 0.0122 | 0.0140 | 0.0153 | 0.0171 |
RATE_SPR | 0.0299 | 0.0290 | 0.0315 | 0.0263 | 0.0255 | 0.0245 | 0.0209 | 0.0183 | −0.0176 |
π_merton | 0.0888 | 0.0823 | 0.0819 | 0.0817 | 0.0835 | 0.0843 | 0.0831 | 0.1042 | 0.1046 |
π_shumway | 0.1391 | 0.1394 | 0.1574 | 0.1668 | 0.1718 | 0.1724 | 0.1689 | 0.1919 | 0.1950 |
σv_merton | 0.3395 | 0.3386 | 0.3386 | 0.3377 | 0.3385 | 0.3378 | 0.3359 | 0.3543 | 0.3543 |
σv_shumway | 0.2714 | 0.2750 | 0.2828 | 0.2861 | 0.2895 | 0.2929 | 0.2926 | 0.3151 | 0.3146 |
π_α_up | 0.4230 | 0.4288 | 0.4405 | 0.4464 | 0.4490 | 0.4502 | 0.4459 | 0.4568 | 0.4589 |
π_α_down | 0.1150 | 0.1136 | 0.1293 | 0.1372 | 0.1418 | 0.1426 | 0.1400 | 0.1631 | 0.1659 |
π_β_up | 0.4614 | 0.4671 | 0.4915 | 0.5040 | 0.5102 | 0.5119 | 0.5040 | 0.5469 | 0.5471 |
π_β_down | 0.0653 | 0.0676 | 0.0789 | 0.0850 | 0.0892 | 0.0876 | 0.0862 | 0.1017 | 0.1053 |
Distress_rate | 0.0325 | 0.0357 | 0.0747 | 0.1226 | 0.1742 | 0.1576 | 0.1438 | 0.1592 | 0.1688 |
2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | |
---|---|---|---|---|---|---|---|---|---|
No distress num | 297 | 297 | 285 | 272 | 256 | 262 | 268 | 264 | 261 |
LASSET | 3.6400 | 3.6800 | 3.7300 | 3.7600 | 3.8000 | 3.8200 | 3.8100 | 3.8200 | 3.8600 |
CAP_ADE | 0.0707 | 0.0714 | 0.0771 | 0.0808 | 0.0835 | 0.0872 | 0.0905 | 0.0981 | 0.0991 |
LOAN_RATIO | 0.6399 | 0.6028 | 0.5647 | 0.5337 | 0.5147 | 0.5152 | 0.5045 | 0.4985 | 0.4567 |
LOAN_COV | 5.7900 | 7.5100 | 8.1800 | 4.8200 | 7.4900 | 6.1200 | 5.6600 | 5.5500 | 5.5000 |
LIQ | 0.2418 | 0.2616 | 0.2542 | 0.2633 | 0.2778 | 0.3098 | 0.3310 | 0.3546 | 0.4158 |
RES_CAP | 0.1127 | 0.1212 | 0.1379 | 0.1560 | 0.1699 | 0.1773 | 0.1921 | 0.2080 | 0.2340 |
OPE_EFF | 0.0295 | 0.0313 | 0.0275 | 0.0266 | 0.0273 | 0.0265 | 0.0257 | 0.0272 | 0.0257 |
INC_CAP | 0.0744 | 0.0693 | 0.0554 | 0.0506 | 0.0507 | 0.0493 | 0.0472 | 0.0478 | 0.0411 |
LAB_COST | 0.1089 | 0.1168 | 0.1367 | 0.1414 | 0.1327 | 0.1421 | 0.1383 | 0.1327 | 0.1505 |
MEM_GRO | 0.0078 | 0.0117 | 0.0289 | 0.0283 | 0.0220 | 0.0164 | 0.0094 | 0.007 | 0.011 |
LOAN_GRO | −0.0111 | −0.0166 | −0.0433 | −0.0412 | 0.0198 | 0.0164 | 0.0135 | −0.0043 | −0.0411 |
SHARE_GRO | 0.0274 | 0.0317 | 0.0380 | 0.0406 | 0.0435 | 0.0211 | 0.0121 | 0.0107 | 0.0195 |
STO_RET | 0.0395 | 0.0328 | 0.0250 | 0.0208 | 0.0198 | 0.0189 | 0.0186 | 0.0167 | 0.0114 |
ROA | 0.0470 | 0.0388 | 0.0281 | 0.0244 | 0.0245 | 0.0238 | 0.0222 | 0.0206 | 0.0151 |
M1b | 0.1058 | −0.0102 | 0.1701 | 0.1183 | 0.1898 | 0.0710 | 0.0530 | 0.0644 | −0.0294 |
GDP | −0.0249 | 0.0487 | 0.0267 | 0.0638 | 0.0324 | 0.0432 | 0.0541 | −0.0135 | −0.0147 |
RATE | 0.0462 | 0.0409 | 0.0238 | 0.0147 | 0.0111 | 0.0122 | 0.0140 | 0.0153 | 0.0171 |
RATE_SPR | 0.0299 | 0.0290 | 0.0315 | 0.0263 | 0.0255 | 0.0245 | 0.0209 | 0.0183 | −0.0176 |
π_merton | 0.0850 | 0.0812 | 0.0759 | 0.0685 | 0.0740 | 0.0705 | 0.0702 | 0.0967 | 0.0988 |
π_shumway | 0.1352 | 0.1375 | 0.1473 | 0.1512 | 0.1529 | 0.1562 | 0.1526 | 0.1783 | 0.1874 |
σv_merton | 0.3370 | 0.3430 | 0.3237 | 0.3149 | 0.3376 | 0.3142 | 0.1438 | 0.3554 | 0.3568 |
σv_shumway | 0.2686 | 0.2754 | 0.2724 | 0.2709 | 0.2771 | 0.2749 | 0.2062 | 0.3023 | 0.3047 |
π_α_up | 0.4223 | 0.4293 | 0.4340 | 0.4379 | 0.4384 | 0.4439 | 0.4362 | 0.4523 | 0.4562 |
π_α_down | 0.1111 | 0.1119 | 0.1200 | 0.1220 | 0.1249 | 0.1271 | 0.1248 | 0.1503 | 0.1589 |
π_β_up | 0.4563 | 0.4639 | 0.4758 | 0.4805 | 0.4793 | 0.4882 | 0.4798 | 0.5260 | 0.5354 |
π_β_down | 0.0624 | 0.0664 | 0.0723 | 0.0742 | 0.0784 | 0.0763 | 0.0739 | 0.0927 | 0.0998 |
Distress num | 10 | 11 | 23 | 38 | 54 | 49 | 45 | 50 | 53 |
LASSET | 3.3500 | 2.8800 | 2.9600 | 3.3400 | 3.3500 | 3.2400 | 3.2800 | 3.3100 | 3.2000 |
CAP_ADE | 0.0759 | 0.0759 | 0.0843 | 0.0862 | 0.0908 | 0.0965 | 0.1031 | 0.1129 | 0.1219 |
LOAN_RATIO | 0.6531 | 0.6520 | 0.4896 | 0.4051 | 0.4177 | 0.4319 | 0.4570 | 0.4374 | 0.4603 |
LOAN_COV | 10.390 | 9.2900 | 1.7400 | 5.9500 | 4.4800 | 2.6400 | 0.6950 | 2.9000 | 2.2500 |
LIQ | 0.0866 | 0.0836 | 0.2260 | 0.2863 | 0.3027 | 0.3318 | 0.3252 | 0.3503 | 0.3585 |
RES_CAP | 0.1613 | 0.1138 | 0.1925 | 0.2383 | 0.2838 | 0.2830 | 0.2598 | 0.2939 | 0.3212 |
OPE_EFF | 0.0190 | 0.0229 | 0.0275 | 0.0272 | 0.0308 | 0.0260 | 0.0288 | 0.0304 | 0.0358 |
INC_CAP | 0.0373 | 0.0284 | 0.0337 | 0.0338 | 0.0382 | 0.0338 | 0.0355 | 0.0353 | 0.0325 |
LAB_COST | 0.2140 | 0.2752 | 0.2708 | 0.2452 | 0.2427 | 0.2424 | 0.2431 | 0.2407 | 0.2807 |
MEM_GRO | 0.0159 | −0.0275 | −0.0092 | 0.0012 | 0.0134 | 0.0010 | −0.0072 | −0.0066 | −0.0224 |
LOAN_GRO | 0.0379 | −0.0930 | −0.0143 | −0.0521 | −0.0332 | 0.0590 | 0.0285 | 0.0502 | −0.1007 |
SHARE_GRO | 0.0346 | −0.0497 | 0.0078 | 0.0529 | 0.0197 | −0.0105 | 0.0085 | −0.0071 | −0.0185 |
STO_RET | 0.0166 | 0.0134 | 0.0072 | 0.0086 | 0.0098 | 0.0059 | 0.0077 | 0.0068 | 0.0047 |
ROA | 0.0045 | 0.0055 | 0.0055 | 0.0057 | 0.0035 | 0.0060 | 0.0062 | 0.0049 | −0.0033 |
M1b | 0.1058 | −0.0102 | 0.1701 | 0.1183 | 0.1898 | 0.0710 | 0.0530 | 0.0644 | −0.0294 |
GDP | −0.0249 | 0.0487 | 0.0267 | 0.0638 | 0.0324 | 0.0432 | 0.0541 | −0.0135 | −0.0147 |
RATE | 0.0462 | 0.0409 | 0.0238 | 0.0147 | 0.0111 | 0.0122 | 0.0140 | 0.0153 | 0.0171 |
RATE_SPR | 0.0299 | 0.0290 | 0.0315 | 0.0263 | 0.0255 | 0.0245 | 0.0209 | 0.0183 | −0.0176 |
π_merton | 0.2015 | 0.1116 | 0.1566 | 0.1775 | 0.1287 | 0.1575 | 0.1603 | 0.1437 | 0.1332 |
π_shumway | 0.2542 | 0.1892 | 0.2832 | 0.2778 | 0.2609 | 0.2591 | 0.2660 | 0.2636 | 0.2322 |
σv_merton | 0.4142 | 0.2191 | 0.5236 | 0.5067 | 0.3432 | 0.4642 | 1.4769 | 0.3482 | 0.3420 |
σv_shumway | 0.3551 | 0.2637 | 0.4107 | 0.3961 | 0.3486 | 0.3887 | 0.8067 | 0.3828 | 0.3633 |
π_α_up | 0.4450 | 0.4136 | 0.5204 | 0.5066 | 0.4991 | 0.4835 | 0.5034 | 0.4808 | 0.4721 |
π_α_down | 0.2302 | 0.1568 | 0.2441 | 0.2437 | 0.2221 | 0.2250 | 0.2309 | 0.2308 | 0.2001 |
π_β_up | 0.6121 | 0.5518 | 0.6852 | 0.6703 | 0.6565 | 0.6384 | 0.6483 | 0.6575 | 0.6050 |
π_β_down | 0.1525 | 0.0990 | 0.1599 | 0.1617 | 0.1402 | 0.1479 | 0.1594 | 0.1492 | 0.1321 |
Equation | I | II | III | IV | V | VI | VII | VIII |
---|---|---|---|---|---|---|---|---|
Sample | 01~03 | 04~06 | 07~09 | All | EAST | WEST | Single | MULT |
π_merton | 0.043 (0.07) | −8.522 (−0.90) | 0.712 (0.15) | −1.424 (−1.48) | −5.408 (−0.90) | −2.146 ** (−2.18) | −5.527 (−1.50) | −0.274 (−0.26) |
π_shumway | −0.411 (-0.12) | 5.286 (0.49) | 28.338 * (1.87) | 5.276 (1.19) | 16.165 (1.14) | 1.154 (0.25) | −1.703 (-0.18) | 5.830 (1.14) |
σv_merton | −0.449 (−1.54) | 4.297 (1.24) | −0.575 ** (−1.98) | −0.569 (−0.55) | 0.080 (0.07) | |||
σv_shumway | −0.459 (−0.54) | −0.397 (−0.25) | 1.922 (1.87) | 1.785 ** (2.21) | −18.14 ** (−2.71) | 2.264 *** (2.79) | 1.352 (0.66) | 0.209 (0.53) |
π_α_up | −0.796 (−1.06) | −3.812 (−0.64) | −3.339 (−0.50) | −3.454 ** (−2.45) | −15.76 *** (−3.23) | −3.361 ** (−2.26) | −7.712 (−1.59) | −4.729 *** (−3.16) |
π_α_down | −1.334 (−0.39) | 0.593 (0.05) | −13.201 (−0.79) | −3.191 (−0.74) | −30.98 * (−1.71) | 0.892 (0.20) | 11.072 (1.14) | −3.835 (−0.77) |
π_β_up | 0.778 (0.91) | 1.049 (0.22) | −1.756 (0.56) | 0.737 (0.71) | 7.695 * (1.92) | 1.863 * (1.69) | 1.060 (0.35) | 1.375 (1.21) |
π_β_down | 7.222 *** (3.52) | 1.873 (0.76) | −17.406 (−0.75) | 3.214 * (1.70) | 49.11 *** (2.95) | 2.145 (1.14) | 1.307 (0.19) | 2.694 (1.26) |
LAGE | −0.51 (−1.20) | 1.426 (0.92) | 5.078 *** (3.06) | 0.870 ** (2.35) | 0.954 (1.33) | 1.269 ** (2.54) | 0.189 (0.29) | 1.502 *** (3.25) |
LASSET | 0.132 (1.31) | −1.646 (−1.35) | −14.078 *** (−6.46) | −1.514 *** (−6.52) | −3.172 *** (−3.55) | −1.287 *** (−5.31) | −0.413 (−1.14) | −2.892 *** (−8.84) |
CAP_ADE | 0.506 (0.19) | −5.078 (−0.59) | 5.098 (0.39) | −7.97 ** (−2.46) | −14.204 (−1.62) | −5.956* (−1.68) | −0.572 (−0.07) | −15.036 *** (−4.06) |
LOAN_RATIO | 0.406 (1.04) | −1.975 (−1.07) | −6.371 ** (−2.36) | −0.542 (−0.84) | −2.590 (−1.13) | −0.483 (−0.70) | −0.633 (−0.415) | −0.250 (−0.34) |
LOAN_COV | −0.001 (−0.78) | −0.0045 (−1.14) | 0.0026 (0.32) | −0.0002 (−0.13) | 0.0015 (0.22) | −0.0004 (−0.19) | −0.0026 (−0.79) | −0.0007 (−0.24) |
LIQ | −0.617 ** (−2.35) | −1.270 (−1.06) | −2.275 (−1.16) | −1.393 *** (−2.74) | −2.163 (−1.29) | −1.226 ** (−2.29) | −1.111 (−0.97) | −1.299 ** (−2.28) |
RES_CAP | −0.115 (−0.18) | 1.792 (1.59) | −2.675 (−1.29) | 1.990 *** (3.55) | 0.707 (0.19) | 1.985 *** (3.50) | 2.907 * (1.71) | 1.496 ** (2.48) |
OPE_EFF | −1.175 (−0.83) | −1.520 (−0.11) | −14.327 (−1.12) | 8.718 ** (2.53) | 0.676 (0.12) | 8.072 * (1.72) | 50.877 *** (3.15) | 7.567 ** (2.12) |
INC_CAP | 0.322 (0.47) | −8.869 (−1.02) | 3.470 (0.30) | −2.239 (−1.14) | 3.170 (0.32) | −2.210 (−1.05) | −48.004 *** (−3.62) | −0.290 (−0.15) |
LAB_COST | 1.180 *** (2.76) | 3.329 *** (3.02) | 13.182 *** (5.33) | 7.312 *** (11.53) | 14.235 *** (6.29) | 5.873 *** (8.77) | 2.248 (1.63) | 7.892 *** (10.88) |
MEM_GRO | 0.085 (0.34) | 1.497 (1.26) | −3.324 (−1.31) | −0.523 (−0.87) | −0.588 (−0.39) | −0.514 (−0.78) | −2.2696 * (−1.89) | 0.114 (0.16) |
LOAN_GRO | 0.029 (0.18) | 0.713 * (1.79) | −0.087 (−0.16) | 0.216 (1.51) | 0.544 (0.76) | 0.249 * (1.70) | 0.159 (0.88) | 0.072 (0.30) |
SHARE_GRO | −0.614 ** (−2.00) | 0.370 (0.41) | 7.236 *** (3.18) | 1.112 ** (2.10) | 1.094 (0.74) | 1.310 ** (2.26) | 1.496 * (1.74) | 1.075 (1.53) |
ROA | 0.420 (0.49) | −21.892 *** (−4.25) | −32.769 *** (−3.10) | −9.802 *** (−4.97) | −6.692 (−1.34) | −8.193 *** (−3.70) | −2.245 (−0.50) | −14.012 *** (−6.22) |
M1b | 0.906 ** (2.51) | −1.741 (1.25) | 3.489 (1.55) | 0.313 (0.30) | −1.756 (-0.68) | 1.177 (1.01) | −4.073 (−1.53) | 1.272 (1.11) |
GDP | 2.365 ** (2.54) | −12.656 * (−1.77) | −2.316 (−0.74) | −1.599 (−0.85) | −6.502 (−1.42) | 0.062 (0.03) | −9.384 ** (−2.03) | −0.099 (−0.05) |
RATE | 5.464 (0.62) | −9.992 (−0.46) | 12.754 (1.28) | −10.608 (−0.47) | 5.571 (0.57) | |||
RATE_SPR | −68.56 *** (−3.04) | −34.799 (−0.62) | −71.190 *** (−2.90) | 56.11 (1.03) | −104.52 *** (−4.24) | |||
Observations | 922 | 929 | 941 | 2792 | 520 | 2272 | 457 | 2335 |
Credit unions | 308 | 311 | 314 | 314 | 58 | 256 | 53 | 261 |
distress | 44 | 141 | 148 | 333 | 61 | 272 | 57 | 276 |
Adjusted R-squared | 0.2411 | 0.4874 | 0.5145 | 0.3688 | 0.4177 | 0.3683 | 0.425 | 0.3756 |
Models | I | II | III | IV | V | VI | VII | VIII |
---|---|---|---|---|---|---|---|---|
Methods | Merton | Shumway | Merton & Shumway | Hazard & Merton | Hazard | Hazard & Shumway | Hazard & EDF | Logit |
π_merton | 1.264 *** (4.18) | −4.951 *** (−5.8) | 1.104 ** (1.98) | −1.685 ** (−2.09) | 0.500 (0.37) | |||
π_shumway | 2.563 ** (2.13) | 4.461 *** (3.59) | 1.135 (1.00) | 1.776 (1.52) | 3.343 (1.26) | |||
π_β_down | 6.086 *** (3.47) | 9.157 *** (5.03) | 2.92 * (1.79) | 4.053 ** (2.36) | −3.536 (−0.90) | |||
z-score | −0.005 (−1.14) | −0.007 * (−1.91) | −0.008 * (−1.95) | −0.036 * (−1.70) | ||||
LAGE | 0.714 ** (2.10) | 0.716 ** (2.11) | 0.645 * (1.90) | 0.602 * (1.77) | 0.012 (0.03) | |||
LASSET | −1.497 *** (−6.54) | −1.502 *** (−6.55) | −1.471 *** (−6.44) | −1.459 *** (−6.39) | −0.312 ** (−2.03) | |||
CAP_ADE | −5.791 ** (−2.04) | −6.197 ** (−2.19) | −5.108 * (−1.77) | −4.958 * (−1.72) | 0.769 (0.15) | |||
LIQ | −1.039 *** (−2.71) | −1.030 *** (−2.60) | −1.029 *** (−2.67) | −1.047 *** (−2.72) | −2.696 *** (−3.07) | |||
RES_CAP | 2.336 *** (4.59) | 2.337 *** (4.59) | 2.227 *** (4.39) | 2.180 *** (4.29) | 1.655 (1.36) | |||
OPE_EFF | 6.866 ** (2.31) | 7.143 ** (2.41) | 6.404 ** (2.17) | 6.506 ** (2.21) | −1.341 (−0.09) | |||
LAB_COST | 7.658 *** (12.46) | 7.673 *** (12.48) | 7.414 *** (12.06) | 7.317 *** (11.88) | −1.893 (−1.18) | |||
SHARE_GRO | 1.065 ** (2.29) | 1.086 ** (2.33) | 0.966 ** (2.08) | 0.946 ** (2.04) | −1.047 (−0.53) | |||
ROA | −10.888 *** (−6.02) | −10.925 *** (−6.04) | −10.167 *** (−5.61) | −9.820 *** (−5.40) | −686.3 *** (−13.94) | |||
RATE_SPR | −71.25 *** (−5.92) | −73.39 *** (−6.12) | −66.97 *** (−5.51) | −66.60 *** (−5.48) | 149.19 *** (5.02) | |||
Observations | 2793 | 2793 | 2973 | 2793 | 2793 | 2793 | 2793 | 2793 |
Hausman test | 1.82(0.17) | 53.08(0.00) | 67.00(0.00) | 69.35(0.00) | 70.55(0.00) | 81.31(0.00) | 82.85(0.00) | |
Adjusted R-squared | 0.0058 | 0.2404 | 0.2502 | 0.3613 | 0.3605 | 0.3664 | 0.3672 | |
F-statistic | 17.53 | 3.80 | 3.93 | 5.87 | 5.87 | 5.95 | 5.95 | |
RMSE | 2.7551 | 2.5649 | 2.5475 | 2.2666 | 2.2689 | 2.2644 | 2.2622 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.-M.; Wang, M.-C.; Lin, L. Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions. Int. J. Financial Stud. 2022, 10, 30. https://doi.org/10.3390/ijfs10020030
Kang C-M, Wang M-C, Lin L. Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions. International Journal of Financial Studies. 2022; 10(2):30. https://doi.org/10.3390/ijfs10020030
Chicago/Turabian StyleKang, Chien-Min, Ming-Chieh Wang, and Lin Lin. 2022. "Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions" International Journal of Financial Studies 10, no. 2: 30. https://doi.org/10.3390/ijfs10020030
APA StyleKang, C. -M., Wang, M. -C., & Lin, L. (2022). Financial Distress Prediction of Cooperative Financial Institutions—Evidence for Taiwan Credit Unions. International Journal of Financial Studies, 10(2), 30. https://doi.org/10.3390/ijfs10020030