Antimicrobial Renal Injury in a Pediatric Intensive Care Unit: β-Lactams vs. Vancomycin
Abstract
:1. Introduction
2. Materials and Methods
Study Design and Patient Population
3. Results
Parameter | Vancomycin | Β-lactam |
---|---|---|
Patients, n | 57 | 112 |
Median age, years (IQR) | 2 (0.33–8) | 2 (0.5–9) |
0–6 months, n | 16 | 28 |
7 months–2 years, n | 14 | 37 |
3–8 years, n | 13 | 20 |
9–12 years, n | 0 | 6 |
13–18 years, n | 13 | 17 |
19–23 years, n | 1 | 4 |
Males, n (%) | 32 (56) | 59 (53) |
Median weight, kg (range) | 13.5 (2–108) | 12 (2–106) |
Diagnosis | ||
Bacteremia/Sepsis *, n (%) | 31 (54) | 28 (25) |
Fever/Neutropenia, n (%) | 0 | 5(4.5) |
Intra-Abdominal, n (%) | 0 | 8 (7) |
Meningitis **, n (%) | 9 (15.7) | 1 (0.9) |
Pneumonia, n (%) | 17 (29.8) | 29 (26) |
Pyelonephritis | 0 | 3 (2.7) |
Wound, n (%) | 0 | 1(0.9) |
Tracheitis ***, n (%) | 0 | 37 (33) |
Median baseline SCr (IQR) | 0.3 (0.25–0.7) | 0.28 (0.2–0.42) |
Parameter | Vancomycin | Cefepime | Piperacillin/Tazobactam |
---|---|---|---|
Patients, n | 57 | 85 | 27 |
Starting dose (mean ± SD) mg/kg | 51.8 ± 17.1/day | 51 ± 26/dose | 77 ± 22/dose |
Median starting dose (IQR) mg/kg | 60 (40–60) | 50 (38–55) | 80 (56–100) |
Therapeutic dose (mean ± SD) mg/kg/day | 63.5 ± 17.3 | N/A | N/A |
Serum trough level (Mean ± SD), mcg/mL | 17.8 ± 3.1 | N/A | N/A |
Every 4 h dosing interval, n (%) | 19 (33.3) | 0 | 1 (3.7) |
Every 6 h dosing interval, n (%) | 33 (57.9) | 38 (44.7) | 23 (85.2) |
Every 8 h dosing interval, n (%) | 5 (8.8) | 39 (45.9) | 3 (11.1) |
Every 12 h dosing interval, n (%) | 0 | 8 (9.4) | 0 |
Category | Vancomycin | β-Lactam |
---|---|---|
Mean | 10.9 * | 4.23 * |
SD | 10.2 | 6.45 |
Min | 1 | 1 |
Max | 37 | 34.1 |
Median | 9 | 1.6 |
Cohort | Variable | OR | CI |
---|---|---|---|
V | Concurrent nephrotoxin | 0.93 | 0.88–1.06 |
V | Duration of therapy * | 1.32 | 1.01–1.22 |
V | VA-ECLS * | 1.32 | 1.13–1.75 |
V | Vasoactives * | 1.41 | 1.11–1.37 |
V | PRISM score | 1.01 | 0.97–1.12 |
B | Concurrent nephrotoxin | 1.04 | 0.92–1.14 |
B | Duration of therapy | 1.05 | 0.98–1.1 |
B | Vasoactives | 1.05 | 0.85–1.2 |
B | PRISM score | 1.06 | 0.991.01 |
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar]
- Tunkel, A.R.; Hartman, B.J.; Kaplan, S.L.; Kaufman, B.A.; Roos, K.L.; Scheld, W.M.; Whitley, R.J. Practice guidelines for the management of bacterial meningitis. Clin. Infect. Dis. 2004, 39, 1267–1284. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.; Lomaestro, B.; Rotschafer, J.C.; Moellering, R., Jr.; Craig, W.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2009, 66, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus Aureus Infections in Adults and Children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Byington, C.L.; Shah, S.S.; Alverson, B.; Carter, E.R.; Harrison, C.; Kaplan, S.L.; Mace, S.E.; McCracken, G.H., Jr.; Moore, M.R.; et al. The Management of Community-Acquired Pneumonia in Infants and Children Older than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 53, e25–e76. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Patel, N.; Lomaestro, B.M.; Rodvold, K.A.; Drusano, G.L. Relationship between initial vancomycin concentration time profile and nephrotoxicity among hospitalized patients. Clin. Infect. Dis. 2009, 49, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Moellering, R.C., Jr. Vancomycin: A 50-year reassessment. Clin. Infect. Dis. 2006, 42, S3–S4. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin. Infect. Dis. 2006, 42, S35–S39. [Google Scholar] [CrossRef] [PubMed]
- Levine, D.P. Vancomycin: A history. Clin. Infect. Dis. 2006, 42, S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Aronoff, G.R.; Sloan, R.S.; Dinwiddie, C.B., Jr.; Glant, M.D.; Fineberg, N.S.; Luft, F.C. Effects of vancomycin on renal function in rats. Antimicrob. Agents Chemother. 1981, 19, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Lomaestro, B.; Graves, J.; Drusano, G.L. Larger vancomycin doses (atleast 4 grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob. Agents Chemother. 2008, 52, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Ingram, P.R.; Lye, D.C.; Tambyah, P.A.; Goh, W.P.; Tam, V.H.; Fisher, D.A. Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J. Antimicrob. Chemother. 2008, 62, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Munsch, J.; Ellison, J.; Nguyen, N.; Christensen, C.; Halilovic, J. Association of vancomycin trough concentrations and nephrotoxicity. Pharmacotherapy 2009, 29, 182e–291e. [Google Scholar] [CrossRef]
- McKamy, S.; Hernandez, E.; Jahng, M.; Moriwaki, T.; Deveikis, A.; Le, J. Incidence and risk factors influencing the development of vancomycin nephrotoxicity in children. J. Pediatr. 2011, 158, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Cies, J.J.; Shankar, V.S. Nephrotoxicity in Patients with Vancomycin Trough Concentrations of 15–20 μg/mL in a Pediatric Intensive Care Unit. Pharamcotherapy 2013, 33, 392–400. [Google Scholar] [CrossRef]
- Totapally, B.R.; Machado, J.; Lee, H.; Paredes, A.; Raszynski, A. Acute kidney injury during vancomycin therapy in critically ill children. Pharmacotherapy 2013, 33, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Knoderer, C.A.; Nichols, K.R.; Lyon, K.; Veverka, M.M.; Wilson, A.C. Are elevated vancomycin serum trough concentrations achieved within the first 7 days of therapy associated with acute kidney injury in children? J. Pediatr. Infect. Dis. Soc. 2014, 3, 127–131. [Google Scholar] [CrossRef]
- Moffett, B.S.; HIlvers, P.S.; Dinh, K.; Arikan, A.A.; Checchia, P.; Bronicki, R. Vancomycin associated acute kidney injury in pediatric cardiac intensive care patients. Congenit. Heart Dis. 2014. [Google Scholar] [CrossRef]
- Tune, B.M. Nephrotoxicity of beta-lactam antibiotics: Mechanisms and strategies for prevention. Pediatr. Nephrol. 1997, 11, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Turnbull, A.E.; Harris, A.D.; Milstone, A.M.; Hsu, A.J.; Cosgrove, S.E. Less is more: combination antibiotic therapy for the treatment of gram-negative bacteremia in pediatric patients. JAMA Pediatr. 2013. [Google Scholar] [CrossRef]
- Zengin, E.; Sarper, N.; Kılıç, S.C. Piperacillin/tazobactam monotherapy vs. piperacillin/tazobactam plus amikacin as initial empirical therapy for febrile neutropenia in children with acute leukemia. Pediatr. Hematol. Oncol. 2011. [Google Scholar] [CrossRef]
- Paul, M.; Dickstein, Y.; Schlesinger, A.; Grozinsky-Glasberg, S.; Soares-Weiser, K.; Leibovici, L. Beta-lactam versus beta-lactam-aminoglycoside combination therapy in cancer patients with neutropenia. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Munoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Akcan-Arikan, A.; Zappitelli, M.; Loftis, L.L.; Washburn, K.K.; Jefferson, L.S.; Goldstein, S.L. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007, 71, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Hassinger, A.B.; Backer, C.L.; Lane, J.C.; Haymond, S.; Wang, D.; Wald, E.L. Predictive power of serum cystatin C to detect acute kidney injury and pediatric-modified RIFLE class in children undergoing cardiac surgery. Pediatr. Crit. Care Med. 2012. [Google Scholar] [CrossRef]
- Krawczeski, C.D.; Vandevoorde, R.G.; Kathman, T.; Bennett, M.R.; Woo, J.G.; Wang, Y.; Griffiths, R.E.; Devarajan, P. Serum cystatin C is an early predictive biomarker of acute kidney injury after pediatric cardiopulmonary bypass. Clin. J. Am. Soc. Nephrol. 2010. [Google Scholar] [CrossRef]
- Kandasamy, Y.; Smith, R.; Wright, I.M. Measuring cystatin C to determine renal function in neonates. Pediatr. Crit. Care Med. 2013. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cies, J.J.; II, W.S.M.; Shankar, V.; Chopra, A. Antimicrobial Renal Injury in a Pediatric Intensive Care Unit: β-Lactams vs. Vancomycin. Pharmacy 2014, 2, 276-286. https://doi.org/10.3390/pharmacy2040276
Cies JJ, II WSM, Shankar V, Chopra A. Antimicrobial Renal Injury in a Pediatric Intensive Care Unit: β-Lactams vs. Vancomycin. Pharmacy. 2014; 2(4):276-286. https://doi.org/10.3390/pharmacy2040276
Chicago/Turabian StyleCies, Jeffrey J., Wayne S. Moore II, Venkat Shankar, and Arun Chopra. 2014. "Antimicrobial Renal Injury in a Pediatric Intensive Care Unit: β-Lactams vs. Vancomycin" Pharmacy 2, no. 4: 276-286. https://doi.org/10.3390/pharmacy2040276
APA StyleCies, J. J., II, W. S. M., Shankar, V., & Chopra, A. (2014). Antimicrobial Renal Injury in a Pediatric Intensive Care Unit: β-Lactams vs. Vancomycin. Pharmacy, 2(4), 276-286. https://doi.org/10.3390/pharmacy2040276