A Review of Vitamin D Deficiency in the Critical Care Population
Abstract
:1. Introduction
Function | Effect |
---|---|
Calcium and phosphorus homeostasis | Bone health |
Cell growth and regulation | Anti-proliferation, apoptosis, cancer |
Immune function | Multiple sclerosis, IBS , TIDM, psoriasis, RA |
Renin-angiotensin regulation | Lowered risk for HF, TIIDM, HTN |
Neuromuscular regulation | Muscle strength, balance |
2. Concentrations of Vitamin D and Clinical Outcomes in Observational Studies
No. of Patients | Initial Serum 25(OH)D Status | No. of Patients | Percent of Patients (%) | Outcomes | Summary of Results |
---|---|---|---|---|---|
100 [16] | Normal | 21 | 21.0 | 28-day mortality was not significantly different between the four groups | No significant association between 25(OH)D concentrations and length of ICU stay. 79% of patients had low 25(OH)D concentrations |
Insufficient | 32 | 32.0 | |||
Deficient | 26 | 26.0 | |||
Undetectable | 21 | 21.0 | |||
170 [17] | Severe septic patients (10.1 ng/mL) a | 98 | 57.6 | 28-day mortality was not statically different between the two groups with rates of 27.9% in severe septic patients and 11.1% in trauma patients | No significant association between low 25(OH)D concentrations and outcomes |
Non-septic trauma patients (18.4 ng/mL) | 72 | 42.4 | |||
2,399 [18] | Sufficient | 844 | 35.2 | Adjusted 30-day morality odds ratio was 1.00, 1.36, and 1.69, respectively | Preadmission 25(OH)D deficiency is associated with mortality |
Insufficient | 918 | 38.3 | |||
Deficient | 637 | 26.6 | |||
1,325 [19] | Sufficient | 668 | 50.4 | Adjusted 30-day mortality odds ratio was 1.00, 1.35, and 1.94 b respectively | 25(OH)D deficiency is significantly associated with all-cause mortality |
Insufficient | 472 | 35.6 | |||
Deficient | 185 | 14 | |||
2,075 [20] | Sufficient | 769 | 37.1 | Adjusted 30-day mortality odds ratio was 1.00, 1.41 c, and 1.61 d ,respectively | Preadmission 25(OH)D deficiency is significantly associated with acute kidney injury and mortality |
Insufficient | 804 | 38.7 | |||
Deficient | 502 | 24.2 | |||
100 [21] | Sufficient | 21 | 21.0 | Hospital-free days were significantly different between patients with deficiency and sufficiency e | Deficient patients had fewer hospital-free days. No significant relationship between 25(OH)D concentrations and mortality |
Insufficient | 55 | 55.0 | |||
Deficient | 24 | 24.0 | |||
196 [22] | Sufficient | 37 | 18.5 | Mean time-to-alive at ICU discharge was 5.9 ± 5.4, 6.8 ± 6.0, and 10.6 ±8.4 respectively | 25(OH)D insufficiency is associated with longer time-to-alive ICU discharge but was not associated with mortality |
Insufficient | 109 | 55.9 | |||
Deficient | 50 | 25.6 |
3. Vitamin D Supplementation
No. of Patients | Treatment groups | Initial Serum 25(OH)D | Intervention | Outcome | Summary of Results |
---|---|---|---|---|---|
22 [24] | Critical Care Patients (N = 10) | 10 ± 4.2 mcg/L | 200 IU vitamin D IV | 25(OH)D levels were higher in the high dose group on days 2, 6, and 7 a. No outcome available | 25(OH)D levels were lower in the non-survivors compared with survivors b. Doses studied did not normalize 25(OH)D serum concentrations. |
Critical Care Patients (N = 12) | 10 ± 4.2 mcg/L | 500 IU vitamin D IV | |||
Ambulatory Controls (N = 62) | 20.1 ± 8.9 mcg/L | Placebo | |||
33 [25] | Group A (N = 12) | 5.6 ± 2.2 ng/mL | Placebo | 6.2 ± 2.8 ng/mL 25(OH)D | 97% of critically ill patients were vitamin D deficient. Group B showed a statistically significant increase in 25(OH)D concentrations. |
Group B (N = 11) | 3.7 ± 2.6 ng/mL | 60,000 IU 25(OH)D3 PO | 46 ± 16.5 ng/mL 25(OH)D c | ||
Group C (N = 10) | 5 ± 2.6 ng/mL | 2 mcg 1,25(OH)2D3 IV | 5 ± 2.3 ng/mL 25(OH)D | ||
25 [26] | Vitamin D group (N = 12) | 13.1 ng/mL | Single enteral dose of 540,000 IU vitamin D3 PO or per tube | 38.2 ng/mL25(OH)D d,e | The mean serum 25(OH)D increased in the treatment group 25 ng/mL. Deficiency was corrected in 2 days with no adverse effects. |
Placebo (N = 13) | 14.1 ng/mL | Placebo | 13.7 ng/mL 25(OH)D |
4. Conclusion
Conflicts of Interest
References
- Jones, G. Vitamin D. In Modern Nutrition in Health and Diseases, 11th ed.; Ross, A.C., Caballero, B., Cousins, R.J., Tucker, K.L., Ziegler, T.R., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2012; pp. 278–292. [Google Scholar]
- Vieth, R.; Cole, D.E.; Hawker, G.A.; Trang, H.M.; Rubin, L.A. Wintertime vitamin D insufficiency is common in young Candian women, and their vitamin D intake does not prevent it. Eur. J. Clin. Nutr. 2001, 55, 1091–1097. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. New Engl. J. Med. 2007, 357, 266–281. [Google Scholar]
- Schöttker, B.; Haug, U.; Schomburg, L.; Köhrle, J.; Perna, L.; Müller, H.; Holleczek, B.; Brenner, H. Strong associations of 25-hydroxyvitamin D concentrations with all-cause, cardiovascular, cancer, and respiratory disease mortality in a large cohort study. Am. J. Clin. Nutr. 2013, 97, 782–793. [Google Scholar] [CrossRef]
- Grandi, N.C.; Breitling, L.P.; Brenner, H. Vitamin D and cardiovascular disease: systematic review and meta-analysis of prospective studies. Prev. Med. 2010, 51, 228–233. [Google Scholar] [CrossRef]
- Chiu, K.C.; Chu, A.; Go, V.L.; Saad, M.F. Hypovitaminosis D is associated with insulin resistance and ß cell dysfunction. Am. J. Clin. Nutr. 2004, 79, 820–825. [Google Scholar]
- Nikooyeh, B.; Neyestani, T.R.; Farvid, M.; Alavi-Majd, H.; Houshiarrad, A.; Kalayi, A.; Shariatzadeh, N.; Gharavi, A.; Heravifard, S.; Tayebinejad, N.; et al. Daily consumption of vitamin D − or vitamin D + calcium-fortified yogurt drink improved glycemic control in patients with type 2 diabetes: a randomized clinical trial. Am. J. Clin. Nutr. 2011, 93, 764–771. [Google Scholar] [CrossRef]
- Sutherland, E.R.; Goleva, E.; Jackson, L.P.; Stevens, A.D.; Leung, D.Y.M. Vitamin D levels, lung function, and steroid response in adult asthma. Am. J. Respir. Crit. Care Med. 2010, 181, 699–704. [Google Scholar] [CrossRef]
- Sun, J. Vitamin D and mucosal immune function. Curr. Opin. Gastroenterol. 2010, 26, 591–595. [Google Scholar] [CrossRef]
- Ginde, A.A.; Mansbach, J.M.; Camargo, C.A.J. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2009, 169, 384–390. [Google Scholar] [CrossRef]
- Schöttker, B.; Ball, D.; Gellert, C.; Brenner, H. Serum 25-hydroxyvitamin D levels and overall mortality. A systematic review and meta-analysis of prospective cohort studies. Ageing Res. Rev. 2013, 12, 708–718. [Google Scholar] [CrossRef]
- Belenchia, A.M.; Tosh, A.K.; Hillman, L.S.; Peterson, C.A. Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 774–781. [Google Scholar] [CrossRef]
- Ramagopalan, S.; Heger, A.; Berlanga, A.J.; Maugeri1, N.J.; Lincoln, M.R.; Burrell1, A.; Handunnetthi1, L.; Handel1, A.E.; Disanto, G.; Orton, S.M.; et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 2010, 20, 1352–1360. [Google Scholar] [CrossRef]
- Schwalfenberg, G. Vitamin D and diabetes; improvement of glycemic control with vitamin D3 repletion. Can. Fam. Physician 2008, 54, 864–866. [Google Scholar]
- Schwalfenberg, G.K. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol. Nutr. Food Res. 2011, 55, 96–108. [Google Scholar] [CrossRef]
- Lucidarme, O.; Messai, E.; Mazzoni, T.; Arcade, M.; du Cheyron, D. Incidence and risk factors of vitamin D deficiency in critically ill patients: results from a prospective observational study. Intensive Care Med. 2010, 36, 1609–1611. [Google Scholar] [CrossRef]
- Cecchi, A.; Bonizzoli, M.; Douar, S.; Mangini, M.; Paladini, S.; Gazzini, B.; Degl’Innocenti, S.; Linden, M.; Zagli, G.; Peris, A. Vitamin D deficiency in septic patients at ICU admission is not a mortality predictor. Minerva Anestesiol. 2011, 77, 1184–1189. (in Italian). [Google Scholar]
- Braun, A.; Chang, D.; Mahadevappa, K.; Christopher, K.B. Association of low serum 25-hydroxyvitamin D levels and mortality in the critically ill. Crit. Care Med. 2011, 39, 671–677. [Google Scholar] [CrossRef]
- Braun, A.B.; Gibbons, F.K.; Litonjua, A.A.; Giovannucci, E.; Christopher, K.B. Low serum 25-hydroxyvitamin D at critical care initiation is associated with increased mortality. Crit. Care Med. 2012, 40, 63–72. [Google Scholar] [CrossRef]
- Braun, A.B.; Litonjua, A.A.; Moromizato, T.; Gibbons, F.K.; Giovannucci, E.; Christopher, K.B. Association of low serum 25-hydroxyvitamin D levels and acute kidney injury in the critically ill. Crit. Care Med. 2012, 40, 3170–3179. [Google Scholar] [CrossRef]
- Ostermann, M.; Chang, R.W. Acute kidney injury in the intensive care unit according to RIFLE. Crit. Care Med. 2007, 35, 1837–1843. [Google Scholar] [CrossRef]
- Nair, P.; Lee, P.; Reynolds, C.; Nguyen, N.D.; Myburgh, J.; Eisman, J.A.; Center, J.R. Significant perturbation of vitamin D-parathyroid-calcium axis and adverse clinical outcomes in critically ill patients. Intensive Care Med. 2013, 39, 267–274. [Google Scholar] [CrossRef]
- Higgins, D.M.; Wischmeyer, P.E.; Queensland, K.M.; Sillau, S.H.; Sufit, A.J.; Heyland, D.K. Relationship of vitamin D deficiency to clinical outcomes in critically ill patients. J. Parenter. Enteral Nutr. 2012, 36, 713–720. [Google Scholar] [CrossRef]
- Van den Berghe, G.; van Roosbroeck, D.; Vanhove, P.; Wouters, P.J.; de Pourcq, L.; Bouillon, R. Bone turnover in prolonged critical illness: effect of vitamin D. J. Clin. Endocrinol. Metab. 2003, 88, 4623–4632. [Google Scholar] [CrossRef]
- Mata-Granados, J.M.; Vargas-Vasserot, J.; Ferreiro-Vera, C.; de Castro, L.; Pavón, R.G.; Gómez, J.M.Q. Evaluation of vitamin D endocrine system (VDES) status and response to treatment of patients in inten–sive care units (ICUs) using an on-line SPE-LC-MS/MS method. J. Steroid Biochem. Mol. Biol. 2010, 121, 452–455. [Google Scholar] [CrossRef]
- Amrein, K.; Sourij, H.; Wagner, G.; Holl, A.; Pieber, T.R.; Smolle, K.H.; Stojakovic, T.; Schnedl1, C.; Dobnig, H. Short-term effects of high-dose oral vitamin D3 in critically ill vitamin D deficient patients: a randomized, double-blind, placebo-controlled pilot study. Crit. Care 2011. [Google Scholar] [CrossRef]
- Hathcock, J.N.; Shao, A.; Vieth, R.; Heaney, R. Risk assessment for vitamin D. Am. J. Clin. Nutr. 2007, 85, 6–18. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Massey, K.; Dickerson, R.N.; Brown, R.O. A Review of Vitamin D Deficiency in the Critical Care Population. Pharmacy 2014, 2, 40-49. https://doi.org/10.3390/pharmacy2010040
Massey K, Dickerson RN, Brown RO. A Review of Vitamin D Deficiency in the Critical Care Population. Pharmacy. 2014; 2(1):40-49. https://doi.org/10.3390/pharmacy2010040
Chicago/Turabian StyleMassey, Kelly, Roland N. Dickerson, and Rex O. Brown. 2014. "A Review of Vitamin D Deficiency in the Critical Care Population" Pharmacy 2, no. 1: 40-49. https://doi.org/10.3390/pharmacy2010040
APA StyleMassey, K., Dickerson, R. N., & Brown, R. O. (2014). A Review of Vitamin D Deficiency in the Critical Care Population. Pharmacy, 2(1), 40-49. https://doi.org/10.3390/pharmacy2010040