The Value of Pharmacogenomics for White and Indigenous Americans after Kidney Transplantation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Relling, M.V.; Evans, W.E. Pharmacogenomics in the clinic. Nature 2015, 526, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Salvadori, M.; Tsalouchos, A. Pharmacogenetics of immunosuppressant drugs: A new aspect for individualized therapy. World J. Transplant. 2020, 10, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Birdwell, K. Role of pharmacogenomics in dialysis and transplantation. Curr. Opin. Nephrol. Hypertens. 2014, 23, 570–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, S.M.; Crisamore, K.R.; Empey, P.E. Clinical Pharmacogenomics: Applications in Nephrology. Clin. J. Am. Soc. Nephrol. 2018, 13, 1561–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef] [Green Version]
- Caudle, K.E.; Klein, T.E.; Hoffman, J.M.; Muller, D.J.; Whirl-Carrillo, M.; Gong, L.; McDonagh, E.M.; Sangkuhl, K.; Thorn, C.F.; Schwab, M.; et al. Incorporation of pharmacogenomics into routine clinical practice: The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr. Drug Metab. 2014, 15, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, M.; Castaneda-Hernandez, G.; Ross, C.J.; Carleton, B.C. Use of pharmacogenomics in pediatric renal transplant recipients. Front. Genet. 2015, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, J.W.; Liu, C.D.; Yang, J.K.; Liao, D.Y.; Liang, Z.J.; Xie, X.; Zhou, Q.Z.; Xue, K.Y.; Guo, W.B.; et al. Comprehensive signature analysis of drug metabolism differences in the White, Black and Asian prostate cancer patients. Aging 2021, 13, 16316–16340. [Google Scholar] [CrossRef]
- Shimizu, T.; Ochiai, H.; Asell, F.; Yokono, Y.; Kikuchi, Y.; Nitta, M.; Hama, Y.; Yamaguchi, S.; Hashimoto, M.; Taki, K.; et al. Bioinformatics research on inter-racial difference in drug metabolism II. Analysis on relationship between enzyme activities of CYP2D6 and CYP2C19 and their relevant genotypes. Drug Metab. Pharmacokinet. 2003, 18, 71–78. [Google Scholar] [CrossRef]
- Pilch, N.A.; Bowman, L.J.; Taber, D.J. Immunosuppression trends in solid organ transplantation: The future of individualization, monitoring, and management. Pharmacotherapy 2021, 41, 119–131. [Google Scholar] [CrossRef]
- Cossart, A.R.; Isbel, N.M.; Scuderi, C.; Campbell, S.B.; Staatz, C.E. Pharmacokinetic and Pharmacodynamic Considerations in Relation to Calcineurin Usage in Elderly Kidney Transplant Recipients. Front. Pharmacol. 2021, 12, 635165. [Google Scholar] [CrossRef] [PubMed]
- Sommerer, C.; Giese, T.; Meuer, S.; Zeier, M. Pharmacodynamic monitoring of calcineurin inhibitor therapy: Is there a clinical benefit? Nephrol. Dial. Transplant. 2009, 24, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St Peter, W.L. Management of Polypharmacy in Dialysis Patients. Semin. Dial. 2015, 28, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Manley, H.J.; Garvin, C.G.; Drayer, D.K.; Reid, G.M.; Bender, W.L.; Neufeld, T.K.; Hebbar, S.; Muther, R.S. Medication prescribing patterns in ambulatory haemodialysis patients: Comparisons of USRDS to a large not-for-profit dialysis provider. Nephrol. Dial. Transplant. 2004, 19, 1842–1848. [Google Scholar] [CrossRef]
- Schmidt, I.M.; Hubner, S.; Nadal, J.; Titze, S.; Schmid, M.; Barthlein, B.; Schlieper, G.; Dienemann, T.; Schultheiss, U.T.; Meiselbach, H.; et al. Patterns of medication use and the burden of polypharmacy in patients with chronic kidney disease: The German Chronic Kidney Disease study. Clin. Kidney J. 2019, 12, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Prasad, G.V.R. CYP3A5 polymorphisms in renal transplant recipients: Influence on tacrolimus treatment. Pharmgenomics. Pers. Med. 2018, 11, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Campagne, O.; Mager, D.E.; Brazeau, D.; Venuto, R.C.; Tornatore, K.M. Tacrolimus Population Pharmacokinetics and Multiple CYP3A5 Genotypes in Black and White Renal Transplant Recipients. J. Clin. Pharmacol. 2018, 58, 1184–1195. [Google Scholar] [CrossRef]
- Dorji, P.W.; Tshering, G.; Na-Bangchang, K. CYP2C9, CYP2C19, CYP2D6 and CYP3A5 polymorphisms in South-East and East Asian populations: A systematic review. J. Clin. Pharm. Ther. 2019, 44, 508–524. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.G.; Wood, A.J.; Kim, R.B.; Stein, C.M.; Wilkinson, G.R. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004, 5, 243–272. [Google Scholar] [CrossRef]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Lamba, J.K.; Lin, Y.S.; Schuetz, E.G.; Thummel, K.E. Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 2002, 54, 1271–1294. [Google Scholar] [CrossRef]
- Hall, Y.N.; Choi, A.I.; Xu, P.; O’Hare, A.M.; Chertow, G.M. Racial ethnic differences in rates and determinants of deceased donor kidney transplantation. J. Am. Soc. Nephrol. 2011, 22, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Keddis, M.T.; Sharma, A.; Ilyas, M.; Zhang, N.; Khamash, H.; Leischow, S.J.; Heilman, R.L. Transplant center assessment of the inequity in the kidney transplant process and outcomes for the Indigenous American patients. PLoS ONE 2018, 13, e0207819. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.M.; Claw, K.G.; Woodahl, E.L.; Robinson, R.F.; Boyer, B.B.; Burke, W.; Thummel, K.E. P450 Pharmacogenetics in Indigenous North American Populations. J. Pers. Med. 2018, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Chakkera, H.A.; Chang, Y.H.; Bodner, J.K.; Behmen, S.; Heilman, R.L.; Reddy, K.S.; Mulligan, D.C.; Moss, A.A.; Khamash, H.; Katariya, N.; et al. Genetic differences in Native Americans and tacrolimus dosing after kidney transplantation. Transplant. Proc. 2013, 45, 137–141. [Google Scholar] [CrossRef]
- Grover, A.; Frassetto, L.A.; Benet, L.Z.; Chakkera, H.A. Pharmacokinetic differences corroborate observed low tacrolimus dosage in Native American renal transplant patients. Drug Metab. Dispos. 2011, 39, 2017–2019. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, I.; Kolonko, A.; Chudek, J.; Nowak, L.; Farnik, M.; Wiecek, A. Influence of Polypharmacy on the Quality of Life in Stable Kidney Transplant Recipients. Transplant. Proc. 2018, 50, 1896–1899. [Google Scholar] [CrossRef] [PubMed]
- Marienne, J.; Laville, S.M.; Caillard, P.; Batteux, B.; Gras-Champel, V.; Masmoudi, K.; Choukroun, G.; Liabeuf, S. Evaluation of Changes Over Time in the Drug Burden and Medication Regimen Complexity in ESRD Patients Before and After Renal Transplantation. Kidney Int. Rep. 2021, 6, 128–137. [Google Scholar] [CrossRef]
- Low, J.K.; Crawford, K.; Manias, E.; Williams, A. Quantifying the medication burden of kidney transplant recipients in the first year post-transplantation. Int. J. Clin. Pharm. 2018, 40, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- van Oosten, M.J.M.; Logtenberg, S.J.J.; Hemmelder, M.H.; Leegte, M.J.H.; Bilo, H.J.G.; Jager, K.J.; Stel, V.S. Polypharmacy and medication use in patients with chronic kidney disease with and without kidney replacement therapy compared to matched controls. Clin. Kidney J. 2021, 14, 2497–2523. [Google Scholar] [CrossRef]
- Moradi, O.; Karimzadeh, I.; Davani-Davari, D.; Shafiekhani, M.; Sagheb, M.M.; Raees-Jalali, G.A. Drug-Drug Interactions among Kidney Transplant Recipients in The Outpatient Setting. Int. J. Organ Transplant. Med. 2020, 11, 185–195. [Google Scholar]
- Henderson, L.M.; Robinson, R.F.; Ray, L.; Khan, B.A.; Li, T.; Dillard, D.A.; Schilling, B.D.; Mosley, M.; Janssen, P.L.; Fohner, A.E.; et al. VKORC1 and Novel CYP2C9 Variation Predict Warfarin Response in Alaska Native and American Indian People. Clin. Transl. Sci. 2019, 12, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Rieder, M.J.; Reiner, A.P.; Gage, B.F.; Nickerson, D.A.; Eby, C.S.; McLeod, H.L.; Blough, D.K.; Thummel, K.E.; Veenstra, D.L.; Rettie, A.E. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 2005, 352, 2285–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genomes Project, C.; Abecasis, G.R.; Auton, A.; Brooks, L.D.; DePristo, M.A.; Durbin, R.M.; Handsaker, R.E.; Kang, H.M.; Marth, G.T.; McVean, G.A. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Fohner, A.E.; Robinson, R.; Yracheta, J.; Dillard, D.A.; Schilling, B.; Khan, B.; Hopkins, S.; Boyer, B.; Black, J.; Wiener, H.; et al. Variation in genes controlling warfarin disposition and response in American Indian and Alaska Native people: CYP2C9, VKORC1, CYP4F2, CYP4F11, GGCX. Pharmacogenet. Genom. 2015, 25, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanik, M.V.; Irvin, M.R.; Beasley, T.M.; Jacobson, P.A.; Julian, B.A.; Limdi, N.A. Influence of Kidney Transplant Status on Warfarin Dose, Anticoagulation Control, and Risk of Hemorrhage. Pharmacotherapy 2017, 37, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Fohner, A.; Muzquiz, L.I.; Austin, M.A.; Gaedigk, A.; Gordon, A.; Thornton, T.; Rieder, M.J.; Pershouse, M.A.; Putnam, E.A.; Howlett, K.; et al. Pharmacogenetics in American Indian populations: Analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes. Pharmacogenet. Genom. 2013, 23, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Leitao, L.P.C.; Souza, T.P.; Rodrigues, J.C.G.; Fernandes, M.R.; Santos, S.; Santos, N.P.C. The Metabolization Profile of the CYP2D6 Gene in Amerindian Populations: A Review. Genes 2020, 11, 262. [Google Scholar] [CrossRef] [Green Version]
- Haberstick, B.C.; Smolen, A.; Williams, R.B.; Bishop, G.D.; Foshee, V.A.; Thornberry, T.P.; Conger, R.; Siegler, I.C.; Zhang, X.; Boardman, J.D.; et al. Population frequencies of the Triallelic 5HTTLPR in six Ethnicially diverse samples from North America, Southeast Asia, and Africa. Behav. Genet. 2015, 45, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Huddart, R.; Fohner, A.E.; Whirl-Carrillo, M.; Wojcik, G.L.; Gignoux, C.R.; Popejoy, A.B.; Bustamante, C.D.; Altman, R.B.; Klein, T.E. Standardized Biogeographic Grouping System for Annotating Populations in Pharmacogenetic Research. Clin. Pharmacol. Ther. 2019, 105, 1256–1262. [Google Scholar] [CrossRef]
Descriptives | ||||
---|---|---|---|---|
Ethnicity | ||||
White (N = 50) | Indigenous American (N = 31) | Total (N = 81) | p-Value | |
Gender, n (%) | 0.032 1 | |||
female | 20 (40.0%) | 20 (64.5%) | 40 (49.4%) | |
Age | 0.010 2 | |||
N | 50 | 31 | 81 | |
Mean (SD) | 55.5 (14.98) | 47.0 (11.63) | 52.2 (14.34) | |
Beta blocker, n (%) | ||||
8 (16.0%) | 14 (45.2%) | 43 (53.1%) | ||
Antidepressant, n (%) | ||||
19 (38.0%) | 5 (16.1%) | 24 (29.6%) | ||
Anticoagulation, n (%) | ||||
11 (22.0%) | 2 (6.45%) | 13 (16.0%) | ||
Pain Medication, n (%) | ||||
24 (48.0%) | 19 (61.3%) | 43 (53.1%) | ||
Statin, n (%) | ||||
12 (24.0%) | 8 25.8%) | 20 (24.7%) | ||
Causes of end stage kidney disease, n (%) | ||||
Diabetes (DM) | 6 (12.0%) | 15 (48.4%) | 21 (25.9%) | |
DM and glomerular disease | 0 (0.0%) | 1 (3.2%) | 1 (1.2%) | |
Hypertension | 5 (10.0%) | 2 (6.5%) | 7 (8.6%) | |
Polycystic kidney disease | 8 (16.0%) | 0 (0.0%) | 8 (9.9%) | |
Glomerular disease | 16 (32.0%) | 10 (32.3%) | 26 (32.1%) | |
Everything else | 15 (30.0%) | 3 (9.7%) | 18 (22.2%) | |
Dialysis, n (%) | 0.078 1 | |||
Yes | 35 (70.0%) | 27 (87.1%) | 62 (76.5%) | |
DM, n (%) | <0.001 1 | |||
Yes | 9 (18.4%) | 18 (58.1%) | 27 (33.8%) | |
Hypertension, n (%) | 0.598 1 | |||
Yes | 44 (88.0%) | 26 (83.9%) | 70 (86.4%) | |
Hyperlipidemia, n (%) | 0.221 1 | |||
Yes | 23 (46.0%) | 10 (32.3%) | 33 (40.7%) | |
Coronary artery disease, n (%) | 0.575 1 | |||
Yes | 3 (6.0%) | 1 (3.2%) | 4 (4.9%) | |
Heart failure, n (%) | 0.730 1 | |||
Yes | 1 (2.0%) | 1 (3.2%) | 2 (2.5%) | |
Stroke, n (%) | 0.165 1 | |||
Yes | 3 (6.0%) | 0 (0.0%) | 3 (3.7%) | |
Peripheral arterial disease, n (%) | 0.730 1 | |||
Yes | 1 (2.0%) | 1 (3.2%) | 2 (2.5%) |
Caucasian (N = 50) | Native American (N = 31) | Total (N = 81) | p-Value | |
---|---|---|---|---|
CYP2C9 PHENOTYPE, n (%) | 0.094 1 | |||
Normal | 31 (62.0%) | 28 (90.3%) | 59 (72.8%) | |
Intermediate to normal | 11 (22.0%) | 2 (6.5%) | 13 (16.0%) | |
Intermediate | 6 (12.0%) | 1 (3.2%) | 7 (8.6%) | |
Poor to intermediate | 1 (2.0%) | 0 (0.0%) | 1 (1.2%) | |
Poor | 1 (2.0%) | 0 (0.0%) | 1 (1.2%) | |
CYP2C19 PHENOTYPE, n (%) | 0.012 1 | |||
Normal | 19 (38.0%) | 22 (71.0%) | 41 (50.6%) | |
Intermediate to normal | 4 (8.0%) | 0 (0.0%) | 4 (4.9%) | |
Intermediate | 8 (16.0%) | 7 (22.6%) | 15 (18.5%) | |
Poor | 2 (4.0%) | 0 (0.0%) | 2 (2.5%) | |
Rapid | 15 (30.0%) | 2 (6.5%) | 17 (21.0%) | |
Ultrarapid | 2 (4.0%) | 0 (0.0%) | 2 (2.5%) | |
CYP2D6 PHENOTYPE, n (%) | 0.012 1 | |||
Normal | 22 (44.0%) | 22 (71.0%) | 44 (54.3%) | |
Intermediate to normal | 9 (18.0%) | 0 (0.0%) | 9 (11.1%) | |
Intermediate | 9 (18.0%) | 8 (25.8%) | 17 (21.0%) | |
Poor to intermediate | 3 (6.0%) | 0 (0.0%) | 3 (3.7%) | |
Poor | 7 (14.0%) | 1 (3.2%) | 8 (9.9%) | |
CYP3A4 PHENOTYPE, n (%) | 0.581 1 | |||
Normal | 45 (90.0%) | 29 (93.5%) | 74 (91.4%) | |
Intermediate to normal | 5 (10.0%) | 2 (6.5%) | 7 (8.6%) | |
CYP3A5 PHENOTYPE, n (%) | 0.207 1 | |||
Intermediate | 6 (12.0%) | 7 (22.6%) | 13 (16.0%) | |
Poor | 44 (88.0%) | 24 (77.4%) | 68 (84.0%) | |
CYP4F2 PHENOTYPE, n (%) | 0.004 1 | |||
Normal | 26 (52.0%) | 26 (83.9%) | 52 (64.2%) | |
Reduced | 24 (48.0%) | 5 (16.1%) | 29 (35.8%) | |
COMT PHENOTYPE, n (%) | 0.019 1 | |||
Low activity | 17 (34.0%) | 6 (19.4%) | 23 (28.4%) | |
High activity | 12 (24.0%) | 17 (54.8%) | 29 (35.8%) | |
Intermediate | 21 (42.0%) | 8 (25.8%) | 29 (35.8%) | |
NUDT15 PHENOTYPE, n (%) | 0.302 1 | |||
Normal | 49 (98.0%) | 29 (93.5%) | 78 (96.3%) | |
Increased risk | 1 (2.0%) | 2 (6.5%) | 3 (3.7%) | |
SLC6A4 PHENOTYPE, n (%) | 0.017 1 | |||
Reduced | 10 (20.0%) | 14 (45.2%) | 24 (29.6%) | |
Typical to reduced | 27 (54.0%) | 15 (48.4%) | 42 (51.9%) | |
Typical To increased | 13 (26.0%) | 2 (6.5%) | 15 (18.5%) | |
SLCO1B1 PHENOTYPE, n (%) | 0.434 1 | |||
Normal | 36 (72.0%) | 21 (67.7%) | 57 (70.4%) | |
Decreased activity | 14 (28.0%) | 9 (29.0%) | 23 (28.4%) | |
Increased activity | 0 (0.0%) | 1 (3.2%) | 1 (1.2%) | |
TPMT PHENOTYPE, n (%) | 0.157 1 | |||
Normal | 43 (86.0%) | 24 (77.4%) | 67 (82.7%) | |
Intermediate Metabolizer | 2 (4.0%) | 5 (16.1%) | 7 (8.6%) | |
Increased | 5 (10.0%) | 2 (6.5%) | 7 (8.6%) | |
VKORC1 PHENOTYPE, n (%) | 0.041 1 | |||
Normal | 9 (18.0%) | 4 (13.3%) | 13 (16.3%) | |
Low activity | 10 (20.0%) | 14 (46.7%) | 24 (30.0%) | |
Intermediate | 31 (62.0%) | 12 (40.0%) | 43 (53.8%) | |
Missing | 0 | 1 | 1 |
Patient | Gene | Drug | Clinical Recommendation Based on Current Medications |
---|---|---|---|
1-W | CYP2D6 a poor metabolizer | Oxycodone | -Avoid tramadol or codeine, be alert to symptoms of insufficient pain relief |
2-W | CYP3A5*1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
3-IA | CYP3A5*1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
4-IA | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
5-IA | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
6-IA | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
7-IA | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
8-W | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
9-W | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
10-W | CYP2C19 c increased metabolism | Omeprazole Citalopram | -Consider dose increase by 100–200% -Consider an alternative drug |
11-W | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
12-W | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
13-IA | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
14-IA | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
15-W | CYP3A5 *1/*3 b increased metabolism | Tacrolimus | -Increase starting dose 1.5 to 2 times recommended starting dose |
16-W | -CYP2D6 poor to intermediate metabolizer -CYP3A4 intermediate metabolizer | Oxycodone | -Avoid tramadol or codeine |
17-IA | CYP2D6 poor metabolizer | Oxycodone | -Avoid tramadol or codeine, be alert to symptoms of insufficient pain relief |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brady, A.; Misra, S.; Abdelmalek, M.; Kekic, A.; Kunze, K.; Lim, E.; Jakob, N.; Mour, G.; Keddis, M.T. The Value of Pharmacogenomics for White and Indigenous Americans after Kidney Transplantation. Pharmacy 2023, 11, 125. https://doi.org/10.3390/pharmacy11040125
Brady A, Misra S, Abdelmalek M, Kekic A, Kunze K, Lim E, Jakob N, Mour G, Keddis MT. The Value of Pharmacogenomics for White and Indigenous Americans after Kidney Transplantation. Pharmacy. 2023; 11(4):125. https://doi.org/10.3390/pharmacy11040125
Chicago/Turabian StyleBrady, Alexandra, Suman Misra, Mina Abdelmalek, Adrijana Kekic, Katie Kunze, Elisabeth Lim, Nicholas Jakob, Girish Mour, and Mira T. Keddis. 2023. "The Value of Pharmacogenomics for White and Indigenous Americans after Kidney Transplantation" Pharmacy 11, no. 4: 125. https://doi.org/10.3390/pharmacy11040125
APA StyleBrady, A., Misra, S., Abdelmalek, M., Kekic, A., Kunze, K., Lim, E., Jakob, N., Mour, G., & Keddis, M. T. (2023). The Value of Pharmacogenomics for White and Indigenous Americans after Kidney Transplantation. Pharmacy, 11(4), 125. https://doi.org/10.3390/pharmacy11040125