Risk Factors for Rivaroxaban-Related Bleeding Events—Possible Role of Pharmacogenetics: Case Series
Abstract
:1. Introduction
2. Case Series Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Study Design and Methodology
References
- Facts & Factors Research. Facts & Factors Research Report. In Anticoagulants Market Size, Share, Growth Analysis Report By Drug Class (NOACs, Heparin & LMWH, Vitamin K Antagonist, Others), By Route of Administration (Oral Anticoagulant, Injectable Anticoagulant), By Application (Atrial Fibrillation & Heart Attack, Stroke, Deep Vein Embolism (PE), Others), and By Region—Global Industry Insights, Comparative Analysis, Trends, Statistical Research, Market Intelligence, and Forecast 2022–2028; Facts & Factors Research: Shangai, China, 2022. [Google Scholar]
- Chen, A.; Stecker, E.; Warden, B.A. Direct Oral Anticoagulant Use: A Practical Guide to Common Clinical Challenges. J. Am. Heart Assoc. 2020, 9, e017559. [Google Scholar] [CrossRef]
- Diep, R.; Garcia, D. Should We Monitor the Direct Oral Anticoagulants? J. Thromb. Thrombolysis 2020, 50, 30–32. [Google Scholar] [CrossRef]
- Geller, A.I.; Shehab, N.; Lovegrove, M.C.; Rose, K.O.; Weidle, N.J.; Goring, S.K.; Budnitz, D.S. Emergency Visits for Oral Anticoagulant Bleeding. J. Gen. Intern. Med. 2020, 35, 371–373. [Google Scholar] [CrossRef]
- Lähteenmäki, J.; Vuorinen, A.L.; Pajula, J.; Harno, K.; Lehto, M.; Niemi, M.; van Gils, M. Pharmacogenetics of Bleeding and Thromboembolic Events in Direct Oral Anticoagulant Users. Clin. Pharmacol. Ther. 2021, 110, 768–776. [Google Scholar] [CrossRef]
- Ajmal, M.; Friedman, J.; Sipra, Q.U.A.R.; Lassar, T. Rivaroxaban: Expanded Role in Cardiovascular Disease Management—A Literature Review. Cardiovasc. Ther. 2021, 2021, e8886210. [Google Scholar] [CrossRef]
- Mueck, W.; Stampfuss, J.; Kubitza, D.; Becka, M. Clinical Pharmacokinetic and Pharmacodynamic Profile of Rivaroxaban. Clin. Pharmacokinet. 2014, 53, 1–16. [Google Scholar] [CrossRef]
- Raymond, J.; Imbert, L.; Cousin, T.; Duflot, T.; Varin, R.; Wils, J.; Lamoureux, F. Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J. Pers. Med. 2021, 11, 37. [Google Scholar] [CrossRef]
- Ferri, N.; Colombo, E.; Tenconi, M.; Baldessin, L.; Corsini, A. Drug-Drug Interactions of Direct Oral Anticoagulants (DOACs): From Pharmacological to Clinical Practice. Pharmaceutics 2022, 14, 1120. [Google Scholar] [CrossRef]
- Lexicomp® Drug Interactions—UpToDate. Available online: https://www.uptodate.com/drug-interactions/#di-druglist (accessed on 1 December 2022).
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, pp. D1074–D1082. Available online: https://go.drugbank.com/drug-interaction-checker (accessed on 1 December 2022).
- Vazquez, S.; Beavers, C.; Fleming, R. Direct Oral Anticoagulant (DOAC) Drug-Drug Interaction Guidance. Last Updated September. Anticoagulation Forum. 2022. Available online: https://acforum-excellence.org/Resource-Center/resource_files/-2022-09-23-143118.pdf (accessed on 1 December 2022).
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Eknoyan, G.; Lameire, N.; Eckardt, K.; Kasiske, B.; Wheeler, D.; Levin, A.; Stevens, P.E.; Bilous, R.W.; Lamb, E.J.; Coresh, J. Chapter 1: Definition and Classification of CKD. In KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 19–62. [Google Scholar]
- Núñez-Torres, R.; González-Neira, A. Chapter 10—Pharmacogenetics and Personalized Medicine. In Clinical DNA Variant Interpretation; Lázaro, C., Lerner-Ellis, J., Spurdle, A., Eds.; Translational and Applied Genomics; Academic Press: London, UK, 2021; pp. 193–219. ISBN 978-0-12-820519-8. [Google Scholar]
- Zhao, T.; Chen, Y.; Wang, D.; Wang, L.; Dong, P.; Zhao, S.; Wang, C.; Meng, Q.; Sun, H.; Liu, K.; et al. Identifying the Dominant Contribution of Human Cytochrome P450 2J2 to the Metabolism of Rivaroxaban, an Oral Anticoagulant. Cardiovasc. Drugs Ther. 2022, 36, 121–129. [Google Scholar] [CrossRef]
- Berlin, D.S.; Sangkuhl, K.; Klein, T.E.; Altman, R.B. PharmGKB Summary: Cytochrome P450, Family 2, Subfamily J, Polypeptide 2: CYP2J2. Pharmacogenet. Genomics 2011, 21, 308–311. [Google Scholar] [CrossRef]
- Das, A.; Weigle, A.T.; Arnold, W.R.; Kim, J.S.; Carnevale, L.N.; Huff, H.C. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol. Ther. 2020, 215, 107601. [Google Scholar] [CrossRef]
- Yamazaki, H.; Okayama, A.; Imai, N.; Guengerich, F.P.; Shimizu, M. Inter-Individual Variation of Cytochrome P4502J2 Expression and Catalytic Activities in Liver Microsomes from Japanese and Caucasian Populations. Xenobiotica 2006, 36, 1201–1209. [Google Scholar] [CrossRef]
- Nakagawa, J.; Kinjo, T.; Iizuka, M.; Ueno, K.; Tomita, H.; Niioka, T. Impact of Gene Polymorphisms in Drug-Metabolizing Enzymes and Transporters on Trough Concentrations of Rivaroxaban in Patients with Atrial Fibrillation. Basic Clin. Pharmacol. Toxicol. 2021, 128, 297–304. [Google Scholar] [CrossRef]
- Polonikov, A.V.; Ponomarenko, I.V.; Bykanova, M.A.; Sirotina, S.S.; Bocharova, A.V.; Vagaytseva, K.V.; Stepanov, V.A.; Azarova, I.E.; Churnosov, M.I.; Solodilova, M.A. A Comprehensive Study Revealed SNP-SNP Interactions and a Sex-Dependent Relationship between Polymorphisms of the CYP2J2 Gene and Hypertension Risk. Hypertens. Res. 2019, 42, 257–272. [Google Scholar] [CrossRef]
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V.M. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-Analysis of Population-Scale Sequencing Projects. Clin. Pharmacol. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef]
- Elens, L.; Bouamar, R.; Hesselink, D.A.; Haufroid, V.; van der Heiden, I.P.; van Gelder, T.; van Schaik, R.H. A New Functional CYP3A4 Intron 6 Polymorphism Significantly Affects Tacrolimus Pharmacokinetics in Kidney Transplant Recipients. Clin. Chem. 2011, 57, 1574–1583. [Google Scholar] [CrossRef]
- Elens, L.; Nieuweboer, A.; Clarke, S.J.; Charles, K.A.; de Graan, A.J.; Haufroid, V.; Mathijssen, R.H.; van Schaik, R.H. CYP3A4 Intron 6 C>T SNP (CYP3A4*22) Encodes Lower CYP3A4 Activity in Cancer Patients, as Measured with Probes Midazolam and Erythromycin. Pharmacogenomics 2013, 14, 137–1492. [Google Scholar] [CrossRef]
- Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic Polymorphism in CYP3A4 Affects Hepatic Expression and Response to Statin Drugs. Pharmacogenomics J 2011, 11, 274–286. [Google Scholar] [CrossRef]
- Sychev, D.A.; Vardanyan, A.; Rozhkov, A.; Hachatryan, E.; Badanyan, A.; Smirnov, V.; Ananichuk, A.; Denisenko, N. CYP3A Activity and Rivaroxaban Serum Concentrations in Russian Patients with Deep Vein Thrombosis. Genet. Test. Mol. Biomarkers 2018, 22, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.L.; Tang, H.L.; Zhai, S.D. Effects of the CYP3A4*1B Genetic Polymorphism on the Pharmacokinetics of Tacrolimus in Adult Renal Transplant Recipients: A Meta-Analysis. PLoS ONE 2015, 10, e0127995. [Google Scholar] [CrossRef] [PubMed]
- Werk, A.N.; Cascorbi, I. Functional Gene Variants of CYP3A4. Clin. Pharmacol. Ther. 2014, 96, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Sychev, D.; Minnigulov, R.; Bochkov, P.; Ryzhikova, K.; Yudina, I.; Lychagin, A.; Morozova, T. Effect of CYP3A4, CYP3A5, ABCB1 Gene Polymorphisms on Rivaroxaban Pharmacokinetics in Patients Undergoing Total Hip and Knee Replacement Surgery. High Blood Press. Cardiovasc. Prev. 2019, 26, 413–420. [Google Scholar] [CrossRef]
- Bruckmueller, H.; Cascorbi, I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 Drug Transporter Polymorphisms and Their Impact on Drug Bioavailability: What Is Our Current Understanding? Expert Opin. Drug Metab. Toxicol. 2021, 17, 369–396. [Google Scholar] [CrossRef] [PubMed]
- Fromm, M.F. Importance of P-Glycoprotein at Blood-Tissue Barriers. Trends Pharmacol. Sci. 2004, 25, 423–429. [Google Scholar] [CrossRef]
- Leschziner, G.D.; Andrew, T.; Pirmohamed, M.; Johnson, M.R. ABCB1 Genotype and PGP Expression, Function and Therapeutic Drug Response: A Critical Review and Recommendations for Future Research. Pharmacogenomics J. 2007, 7, 154–179. [Google Scholar] [CrossRef]
- Sennesael, A.L.; Larock, A.S.; Douxfils, J.; Elens, L.; Stillemans, G.; Wiesen, M.; Taubert, M.; Dogné, J.M.; Spinewine, A.; Mullier, F. Rivaroxaban Plasma Levels in Patients Admitted for Bleeding Events: Insights from a Prospective Study. Thromb. J. 2018, 16, 28. [Google Scholar] [CrossRef]
- Ing Lorenzini, K.; Daali, Y.; Fontana, P.; Desmeules, J.; Samer, C. Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect. Front. Pharmacol. 2016, 7, 494. [Google Scholar] [CrossRef]
- Gouin-Thibault, I.; Delavenne, X.; Blanchard, A.; Siguret, V.; Salem, J.E.; Narjoz, C.; Gaussem, P.; Beaune, P.; Funck-Brentano, C.; Azizi, M.; et al. Interindividual Variability in Dabigatran and Rivaroxaban Exposure: Contribution of ABCB1 Genetic Polymorphisms and Interaction with Clarithromycin. J. Thromb Haemost. 2017, 15, 273–283. [Google Scholar] [CrossRef]
- Xie, Q.; Xiang, Q.; Mu, G.; Ma, L.; Chen, S.; Zhou, S.; Hu, K.; Zhang, Z.; Cui, Y.; Jiang, J. Effect of ABCB1 Genotypes on the Pharmacokinetics and Clinical Outcomes of New Oral Anticoagulants: A Systematic Review and Meta-Analysis. Curr. Pharm. Des. 2018, 24, 3558–3565. [Google Scholar] [CrossRef]
- US Food and Drug Administration, Center for Drug Evaluation and Research. Clinical Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions. Guidance for Industry, January 2020. Clinical Pharmacology. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions (accessed on 30 January 2023).
- European Medicines Agency; Committee for Medicinal Products for Human Use. ICH Guideline M12 on Drug Interaction Studies. Step 2b. 21 July 2022. EMA/CHMP/ICH/652460/2022. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-ich-guideline-m12-drug-interaction-studies-step-2b_en.pdf (accessed on 30 January 2023).
- Furukawa, T.; Wakabayashi, K.; Tamura, A.; Nakagawa, H.; Morishima, Y.; Osawa, Y.; Ishikawa, T. Major SNP (Q141K) Variant of Human ABC Transporter ABCG2 Undergoes Lysosomal and Proteasomal Degradations. Pharm. Res. 2009, 26, 469–479. [Google Scholar] [CrossRef]
- Kondo, C.; Suzuki, H.; Itoda, M.; Ozawa, S.; Sawada, J.; Kobayashi, D.; Ieiri, I.; Mine, K.; Ohtsubo, K.; Sugiyama, Y. Functional Analysis of SNPs Variants of BCRP/ABCG2. Pharm. Res. 2004, 21, 1895–1903. [Google Scholar] [CrossRef]
- Safar, Z.; Kis, E.; Erdo, F.; Zolnerciks, J.K.; Krajcsi, P. ABCG2/BCRP: Variants, Transporter Interaction Profile of Substrates and Inhibitors. Expert Opin. Drug Metab. Toxicol. 2019, 15, 313–328. [Google Scholar] [CrossRef]
- Campos-Staffico, A.M.; Dorsch, M.P.; Barnes, G.D.; Zhu, H.J.; Limdi, N.A.; Luzum, J.A. Eight pharmacokinetic genetic variants are not associated with the risk of bleeding from direct oral anticoagulants in non-valvular atrial fibrillation patients. Front. Pharmacol. 2022, 13, 1007113. [Google Scholar] [CrossRef]
N | Age | Sex | Dg | CYP3A4 | CYP3A5 | CYP2J2 | MDR1/ABCB1 | ABCG2/ BCRP | RIVA Adverse Event (Bleeding) | RIVA DD (mg) | eGFR (mL/min /1.73 m2) | DDI RR/DDI | DDI Bleeding Risk/RIVA Conc. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
*1B | *22 | *3 | *7 | rs 11572325 | c.1236C>T rs 1128503 | c.2677G>T rs 2032582 | c.3435C>T rs 1045642 | rs 4148738 | c.421C>A | |||||||||
1 | 68 | M | AF | *1/*1 | *1/*1 | *3/*3 | *1/*1 | A/A | C/C | G/G | C/C | G/G | C/C | GI | 20 | 88 | - | - |
2 | 80 | F | AF | *1/*1 | *1/*1 | *3/*3 | *1/*1 | A/A | T/T | T/T | T/T | A/A | C/A | GI | 15 | 38 | C./RIVA-duloxetine D./RIVA-clopidogrel | Bleeding risk may be increased |
3 | 64 | M | AF | *1/*1 | *1/*1 | *3/*3 | *1/*1 | A/A | C/C | G/G | C/C | G/G | C/C | GI | 20 | 100 | - | - |
4 | 75 | M | AF | *1/*1 | *1/*1 | *3/*3 | *1/*1 | A/A | C/T | G/T | C/T | G/A | C/C | GI | 20 | 43 | D./RIVA-indomethacin | Bleeding risk may be increased |
5 | 66 | M | AF | *1/*1 | *1/*1 | *1/*3 | *1/*1 | A/A | C/T | G/T | C/T | G/A | C/C | Haematuria | 15 | 89 | B./RIVA-propafenone | P-gp/ABCB1 inhibitors may increase the serum RIVA conc. |
6 | 66 | F | AF | *1/*1 | *1/*1 | *3/*3 | *1/*1 | A/A | C/C | G/G | C/C | G/G | C/C | Epistaxis | 20 | 105 | - | - |
7 | 75 | F | AF | *1/*1 | *1/*1 | *1/*3 | *1/*7 | A/T | C/T | G/T | C/T | G/A | C/C | Epistaxis | 15 | 35 | D./RIVA-ASA D./RIVA-ketoprofen | Bleeding risk may be increased |
8 | 72 | F | AF | *1/*1 | *1/*1 | *1/*3 | *1/*7 | A/T | C/C | G/G | C/C | G/G | C/A | Epistaxis | 20 | 88 | - | - |
9 | 75 | M | AF | *1/*1 | *1/*1 | *3/*3 | *1/*1 | A/T | C/T | G/T | C/T | G/A | C/C | GI | 15 | 54 | B./RIVA-amiodarone | P-gp/ABCB1 inhibitors may increase the serum RIVA conc. |
10 | 76 | F | DVT | *1/*1 | *1/*1 | *3/*3 | *1/*1 | A/A | C/C | G/G | C/C | G/G | C/A | GI | 15 | 34 | - | - |
11 | 61 | F | DVT | *1/*1 | *22/*22 | *3/*3 | *1/*7 | A/T | C/T | G/T | C/T | G/A | C/C | Gynaecological | 10 | 85 | D./RIVA-ASA | Bleeding risk may be increased |
12 | 75 | F | AF | *1/*1 | *1/*1 | *3/*3 | *1/*1 | A/T | C/T | G/T | C/T | G/A | C/C | GI | 15 | 61 | B./RIVA-amiodarone D./RIVA-clopidogrel | P-gp/ABCB1 inhibitors may increase the serum RIVA conc. Bleeding risk may be increased |
13 | 78 | M | PAD | *1/*1 | *1/*1 | *3/*3 | *1/*7 | A/T | T/T | T/T | T/T | A/A | C/C | Epistaxis | 5 | 70 | D./RIVA-ASA | Bleeding risk may be increased |
14 | 74 | F | PAD | *1/*1 | *1/*1 | *3/*3 | *1/*1 | A/A | C/T | G/G | C/T | G/G | C/C | GI | 20 | 48 | B./RIVA-amiodarone | P-gp/ABCB1 inhibitors may increase the serum RIVA conc. |
15 | 69 | F | AF | *1/*1 | *1/*1 | *3/*3 | *1/*1 | A/A | C/T | G/T | C/T | G/A | C/C | Epistaxis | 20 | 82 | - | - |
16 | 66 | M | AF | *1/*1 | *1/*22 | *3/*3 | *1/*1 | A/A | C/C | G/G | C/C | G/A | A/A | GI | 20 | 63 | - | - |
DRUG | CYP3A4 | CYP3A5 | CYP2J2 | MDR1/ABCB1 | ABCG2/BCRP | POSSIBLE MECHANISM OF DDI | RIVA CONC. | SEVERITY OF DDI | SOURCE |
---|---|---|---|---|---|---|---|---|---|
Amiodarone | Substrate, Inhibitor | Inhibitor | Inhibitor | Decreased metabolism | Increased | MAJOR | 1, 2 | ||
Acetylsalicylic acid | Substrate, Inducer | Increased anticoagulant activity | - | MODERATE | 1 | ||||
Bisoprolol | Substrate | Substrate, Inhibitor | -- | Increased | |||||
Clopidogrel | Substrate | Substrate | Increased anticoagulant activity | - | |||||
Digoxin | Substrate, Inhibitor, Inducer | Decreased renal excretion rate | Increased | 1, 2 | |||||
Duloxetine | Inhibitor | Inhibitor | Increased anticoagulant effect | - | 1 | ||||
Eplerenone | Substrate | Substrate | Increased renal excretion rate (induces diuresis) | Decreased | 1, 2 | ||||
Fexofenadine | Substrate | Competition for the P-glycoprotein | Increased | ||||||
Furosemide | Substrate | Increased renal excretion rate (induces diuresis) | Decreased | 1 | |||||
Hydrochloro-thiazide | |||||||||
Indapamide | Substrate | ||||||||
Indomethacin | Substrate, inhibitor | Increased anticoagulant effect | - | ||||||
Ketoprofen | - | ||||||||
Pantoprazole | Substrate | Substrate, Inhibitor | Substrate, Inhibitor | - | Increased | ||||
Propafenone | Inhibitor | - | |||||||
Spironolactone | Inducer | Increased renal excretion rate (induces diuresis) | Decreased | ||||||
Acetaminophen | Substrate, Inducer | Substrate, Inducer | Decreased renal excretion rate | Increased | MINOR | 1 | |||
Allopurinol | Substrate | ||||||||
Alprazolam | Substrate | Substrate | 1, 2 | ||||||
Atorvastatin | Substrate, Inhibitor | Substrate | Competition for metabolism | ||||||
Chloroquine | Decreased renal excretion rate | 1 | |||||||
Diazepam | Substrate, Inhibitor | Substrate | |||||||
Febuxostat | Inhibitor | Inhibition of BCRP-mediated efflux | |||||||
Finasteride | Substrate | Substrate | Competition for metabolism | ||||||
Folic acid | Substrate | Decreased renal excretion rate | |||||||
Isosorbide mononitrate | |||||||||
Lercanidipine | Substrate, Inhibitor | Substrate | Competition for metabolism | ||||||
Lorazepam | Substrate | Decreased renal excretion rate | |||||||
Metformin | |||||||||
Metoprolol | Substrate | ||||||||
Perindopril | |||||||||
Prednisone | Substrate, Inducer | Inducer | Substrate, Inducer | ||||||
Rosuvastatin | Substrate | - | 1, 2 | ||||||
Tamsulosin | Substrate | Decreased renal excretion rate | 1 | ||||||
Tramadol |
N | Sex | Age | Diagnosis | Therapy (DD) | Adverse Event |
---|---|---|---|---|---|
1 | M | 68 |
|
| Gastrointestinal bleeding 6 months following the introduction of RIVA |
2 | M | 64 |
|
| Bleeding 1 year (melena) following the introduction of RIVA |
3 | F | 66 |
|
| Epistaxis 9 months following the introduction of RIVA |
N | Sex | Age | Diagnosis | Therapy (DD) | Adverse Event | Pharmacogenetic Results/Phenotype |
---|---|---|---|---|---|---|
1 | F | 72 |
|
| Epistaxis 4 months following the introduction of RIVA | CYP2J2 *1/*7 decreased enzyme activity CYP3A5 *1/*3 expresser ABCB1 (MDR1) 1236-2677-3435-rs4148738 CC-GG-CC-GG risk allele ABCG2 421CA decreased function |
2 | F | 69 |
|
| Epistaxis 5 months following the introduction of RIVA | ABCB1 (MDR1) 1236-2677-3435-rs4148738 CT-GT-CT-GA intermediate function |
3 | M | 66 |
|
| Gastrointestinal bleeding and anaemia 4 months following the introduction of RIVA | CYP3A4 *1/*22 decreased enzyme activity ABCB1 (MDR1) 1236-2677-3435-rs4148738 CC-GG-CC-GA risk allele ABCG2 421AA poor function |
N | Sex | Age | Diagnosis | Therapy (DD) | Bleeding | Pharmacogenetic Results/ Phenotype | DDI (Lexicomp) |
---|---|---|---|---|---|---|---|
1 | M | 66 |
|
| Macroscopic haematuria relapse | CYP3A5 *1/*3 expresser ABCB1 (MDR1) 1236-2677-3435-rs4148738 CT-GT-CT-GA intermediate function | RIVA—propafenone |
2 | F | 61 |
|
| Extreme gynaecological bleeding 1 month following the introduction of RIVA | CYP2J2 *1/*7 decreased enzyme activity CYP3A4 *22/*22 poor enzyme activity ABCB1 (MDR1) 1236-2677-3435-rs4148738 CT-GT-CT-GA intermediate function | RIVA—ASA |
3 | F | 75 |
|
| Melena | ABCB1 (MDR1) 1236-2677-3435-rs4148738 CT-GT-CT-GA intermediate function | RIVA—amiodarone RIVA—clopidogrel |
4 | M | 78 |
|
| Epistaxis 6 months following the introduction of RIVA | CYP2J2 *1/*7 decreased enzyme activity ABCB1 (MDR1) 1236-2677-3435-rs4148738 TT-TT-TT-AA poor function | RIVA—ASA |
N | Sex | Age | Diagnosis | Therapy (DD) | Adverse Event | Kidney Function | Pharmacogenetic Results/Phenotype |
---|---|---|---|---|---|---|---|
1 | F | 76 |
|
| Anaemia, melena 4 months following the introduction of RIVA | eGFR = 34 mL/min/1.73 m2 (decreased kidney function) | ABCB1 (MDR1) 1236-2677-3435-rs4148738 CC-GG-CC-GG risk allele ABCG2 421CA decreased function |
N | Sex | Age | Diagnosis | Therapy (DD) | Adverse Event | Pharmacogenetic Results/ Phenotype | Kidney Function | DDI (Lexicomp) | |
---|---|---|---|---|---|---|---|---|---|
1 | F | 80 |
|
| GI bleeding (melena) 3 months following the introduction of RIVA | ABCB1 (MDR1) 1236-2677-3435-rs4148738 TT-TT-TT-AA poor function ABCG2 421CA decreased function | eGFR = 38 mL/min/1.73 m2 (decreased kidney function) | RIVA-clopidogrel RIVA-duloxetine | |
2 | M | 75 |
|
| GI bleeding and anaemia 1 year following the introduction of RIVA | ABCB1 (MDR1) 1236-2677-3435-rs4148738 CT-GT-CT-GA intermediate function | eGFR = 43 mL/min/1.73 m2 (decreased kidney function) | RIVA- indomethacin | |
3 | F | 75 |
|
| Epistaxis 3 months following the introduction of RIVA | CYP2J2 *1/*7 decreased enzyme activity CYP3A5 *1/*3 expresser ABCB1 (MDR1) 1236-2677-3435-rs4148738 CT-GT-CT-GA intermediate function | eGFR = 35 mL/min/1.73 m2 (decreased kidney function) | RIVA-ASA RIVA-ketoprofen | |
4 | M | 75 |
|
| GI bleeding (melena) | ABCB1 (MDR1) 1236-2677-3435-rs4148738 CT-GT-CT-GA intermediate function | eGFR = 54 mL/min/1.73 m2 (decreased kidney function) | RIVA-amiodarone | |
5 | F | 74 |
|
| GI bleeding and anaemia | ABCB1 (MDR1) 1236-2677-3435-rs4148738 CT-GG-CT-GG risk alleles | eGFR = 48 mL/min/1.73 m2 (decreased kidney function) | RIVA-amiodarone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimičević, L.; Slišković, A.M.; Kirhmajer, M.V.; Ganoci, L.; Holik, H.; Palić, J.; Samardžić, J.; Božina, T. Risk Factors for Rivaroxaban-Related Bleeding Events—Possible Role of Pharmacogenetics: Case Series. Pharmacy 2023, 11, 29. https://doi.org/10.3390/pharmacy11010029
Šimičević L, Slišković AM, Kirhmajer MV, Ganoci L, Holik H, Palić J, Samardžić J, Božina T. Risk Factors for Rivaroxaban-Related Bleeding Events—Possible Role of Pharmacogenetics: Case Series. Pharmacy. 2023; 11(1):29. https://doi.org/10.3390/pharmacy11010029
Chicago/Turabian StyleŠimičević, Livija, Ana Marija Slišković, Majda Vrkić Kirhmajer, Lana Ganoci, Hrvoje Holik, Jozefina Palić, Jure Samardžić, and Tamara Božina. 2023. "Risk Factors for Rivaroxaban-Related Bleeding Events—Possible Role of Pharmacogenetics: Case Series" Pharmacy 11, no. 1: 29. https://doi.org/10.3390/pharmacy11010029
APA StyleŠimičević, L., Slišković, A. M., Kirhmajer, M. V., Ganoci, L., Holik, H., Palić, J., Samardžić, J., & Božina, T. (2023). Risk Factors for Rivaroxaban-Related Bleeding Events—Possible Role of Pharmacogenetics: Case Series. Pharmacy, 11(1), 29. https://doi.org/10.3390/pharmacy11010029