A Substructure Synthesis Method with Nonlinear ROM Including Geometric Nonlinearities
Abstract
:1. Introduction
2. Theory and Methods
2.1. Nonlinear ROM Method
2.1.1. Structure Equations
2.1.2. Regression Analysis of Nonlinear Stiffness Coefficients
2.1.3. Strategy for Generating Test Load Cases
2.2. Nonlinear Substructure Method with ROM
2.2.1. Nonlinear Substructure Component
2.2.2. Linear Substructure Component
2.2.3. Substructure Synthesis Techniques
3. Numerical Examples
3.1. FEM Model
3.2. ROM Model of Wing Components
3.3. Response Analysis Results of Aircraft
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patil, M.J.; Hodges, D.H. On the importance of aerodynamics and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings. In Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit (AIAA), Reston, VI, USA, 3–8 April 2000. [Google Scholar]
- Eaton, A.J.; Howcroft, C.; Coetzee, E.B.; Neild, S.A.; Lowenberg, M.H.; Cooper, J.E. Numerical Continuation of Limit Cycle Oscillations and Bifurcations in High-Aspect-Ratio Wings. Aerospace 2018, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.M.; Dowell, E.H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings. AIAA J. 2001, 39, 1430–1441. [Google Scholar] [CrossRef]
- Ovesy, H.R.; Nikou, A.; Shahverdi, H. Flutter analysis of high-aspect-ratio wings based on a third-order nonlinear beam model. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2012, 227, 1090–1100. [Google Scholar] [CrossRef]
- Nicolaidou, E.; Hill, T.L.; Neild, S.A. Indirect reduced-order modeling: Using nonlinear manifolds to conserve kinetic energy. Proc. R. Soc. A 2021, 476, 20200589. [Google Scholar] [CrossRef] [PubMed]
- Muravyov, A.A.; Rizzi, S.A. Determination of nonlinear stiffness with application to random vibration of geometrically non-linear structures. Comput. Struct. 2003, 81, 1513–1523. [Google Scholar] [CrossRef]
- Rizzi, S.A.; Przekop, A. System identification-guided basis selection for reduced-order nonlinear response analysis. J. Sound Vib. 2008, 315, 467–485. [Google Scholar] [CrossRef]
- Wang, X.; Mignolet, M.; Eason, T.; Spottswood, S. Nonlinear reduced order modeling of curved beams: A comparison of methods. In Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, USA, 4–7 May 2009. [Google Scholar]
- Jain, S.; Tiso, P.; Rutzmoser, J.B.; Rixen, D.J. A quadratic manifold for model order reduction of nonlinear structural dynamics. Comput. Struct. 2017, 188, 80–94. [Google Scholar] [CrossRef] [Green Version]
- Hollkamp, J.J.; Gordon, R.W. Reduced-order models for nonlinear response prediction: Implicit condensation and expansion. J. Sound Vib. 2008, 318, 1139–1153. [Google Scholar] [CrossRef]
- Kuether, R.J.; Deaner, B.J.; Hollkamp, J.J.; Allen, M.S. Evaluation of geometrically nonlinear reduced-order models with nonlinear normal modes. AIAA J. 2015, 53, 3273–3285. [Google Scholar] [CrossRef]
- McEwan, M.I.; Wright, J.R.; Cooper, J.E.; Leung, A.Y.T. A combined modal/finite element analysis technique for the dynamic response of a nonlinear beam to harmonic excitation. J. Sound Vib. 2001, 243, 601–624. [Google Scholar] [CrossRef]
- McEwan, M.I.; Wright, J.R.; Cooper, J.E.; Leung, A.Y.T. A finite element/modal technique for nonlinear plate and stiffened panel response prediction. In Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Reston, VA, USA, 11–14 June 2001. [Google Scholar]
- Kim, K.; Khanna, V.; Wang, X.Q.; Mignolet, M.P. Nonlinear reduced order modeling of flat cantilevered structure. In Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Structures, Structural Dynamics, and Materials and Collocated Conferences, Reston, VA, USA, 4–7 May 2009. [Google Scholar]
- Feeny, B.F.; Kappagantu, R. On the physical interpretation of proper orthogonal modes in vibrations. J. Sound Vib. 1998, 211, 607–616. [Google Scholar] [CrossRef]
- Harmin, M.Y.; Cooper, J.E. Aeroelasic behavior of a wing including geometric nonlinearities. Aeronaut. J. 2011, 115, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Cestino, E.; Frulla, G.; Marzocca, P. A reduced order model for the aeroelastic analysis of flexible wings. SAE Int. J. Aerosp. 2013, 6, 447–458. [Google Scholar] [CrossRef]
- An, C.; Yang, C.; Xie, C.C.; Yang, L. Flutter and gust response analysis of a wing model including geometric nonlinearities based on a modified structural ROM. Chin. J. Aeronaut. 2020, 33, 48–63. [Google Scholar] [CrossRef]
- Xie, C.C.; An, C.; Liu, Y.; Yang, C. Static aeroelastic analysis including geometric nonlinearities based on reduced order model. Chin. J. Aeronaut. 2017, 30, 638–650. [Google Scholar] [CrossRef]
- Mignolet, M.P.; Przekop, A.; Rizzi, S.A.; Spottswood, S.M. A review of indirect/nonintrusive reduced order modeling of nonlinear geometric structures. J. Sound Vib. 2013, 332, 62437–62460. [Google Scholar] [CrossRef]
- De Klerk, D.; Rixen, D.J.; Voormeeren, S.N. General framework for dynamic substructuring: History, review and classification of techniques. AIAA J. 2008, 46, 1169–1181. [Google Scholar] [CrossRef]
- Hurty, W.C. Dynamic analysis of structural systems using component modes. AIAA J. 1965, 3, 678–685. [Google Scholar] [CrossRef]
- Craig, R.R.; Bampton, M. Coupling of structures for dynamic analyses. AIAA J. 1968, 6, 1313–1319. [Google Scholar] [CrossRef] [Green Version]
- Rubin, S. Improved Component-Mode Representation for Structural Dynamic Analysis. AIAA J. 1975, 13, 995–1006. [Google Scholar] [CrossRef]
- Craig, R.R.; Chang, C.J. Free-interface methods of substructure coupling for dynamic analysis. AIAA J. 1976, 14, 1633–1635. [Google Scholar] [CrossRef]
- Craig, R.R.; Chang, C.J. On the use of attachment modes in substructure coupling for dynamic analysis. In Proceedings of the 18th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Structures, Structural Dynamics, and Materials and Collocated Conferences, Reston, VA, USA, 21–23 March 1977. [Google Scholar]
- Kim, D.K.; Bae, J.S.; Lee, I.; Han, J.H. Dynamic characteristics and model establishment of deployable missile control fin with nonlinear hinge. J. Spacecr. Rocket. 2005, 1, 66–77. [Google Scholar] [CrossRef]
- Clough, R.W.; Wilson, E.L. Dynamic analysis of large structural systems with local nonlinearity. Comput. Method Appl. Mech. Eng. 1979, 17, 107–129. [Google Scholar] [CrossRef]
- Fey, R.H.B.; Van Campen, D.H.; Kraker, D. Long term structural dynamics of mechanical systems with local nonlinearities. J. Vib. Acoust. 1996, 118, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Salles, L. An adaptive component mode synthesis method for dynamic analysis of jointed structure with contact friction interfaces. Comput. Struct. 2020, 229, 106177. [Google Scholar] [CrossRef]
- Apiwattanalunggarn, P.; Shaw, S.W.; Pierre, C. Component mode synthesis using nonlinear normal modes. Nonlinear Dyn. 2005, 41, 17–46. [Google Scholar] [CrossRef]
- Bernhammer, L.O.; Breuker, R.D.; Karpel, M. Geometrically Nonlinear Structural Modal Analysis using Fictitious Masses. AIAA J. 2017, 55, 3584–3593. [Google Scholar] [CrossRef] [Green Version]
- Kantor, E.; Raveh, D.E.; Cavallaro, R. Nonlinear Structural, Nonlinear Aerodynamic Model for Static Aeroelastic Problem. AIAA J. 2019, 1, 1–13. [Google Scholar] [CrossRef]
- Joannin, C.; Chouvin, B.; Thouverez, F.; Ousty, J.P.; Mbaye, M. A nonlinear component mode synthesis method for the compu-tation of steady-state vibrations in non-conservative systems. Mech. Syst. Signal Process. 2017, 83, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Laxalde, D.; Thouverez, F. Complex non-linear modal analysis for mechanical systems: Application to turbomachinery bladings with friction interfaces. J. Sound Vib. 2009, 322, 1009–1025. [Google Scholar] [CrossRef] [Green Version]
- Kuether, R.J.; Allen, M.S. Nonlinear Modal substructuring of systems with geometric nonlineariteis. In Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamis and Materials Conference, Reston, VA, USA, 8–11 April 2013. [Google Scholar]
- Kuether, R.J.; Allen, M.S. Hollkamp, J.J. Modal substructuring of geometrically nonlinear finite-element models. AIAA J. 2016, 54, 691–702. [Google Scholar] [CrossRef] [Green Version]
- Kuether, R.J.; Allen, M.S.; Hollkamp, J.J. Modal substructuring of geometrically nonlinear finite element models with interface reduction. AIAA J. 2017, 55, 1695–1706. [Google Scholar] [CrossRef]
- Wu, L.; Tiso, P.; van Keulen, F. Interface reduction with multilevel Craig-Bampton substructuring for component mode synthesis. AIAA J. 2018, 56, 2030–2044. [Google Scholar] [CrossRef]
- Yang, C.; Liang, K.; Rong, Y.F.; Sun, B. A hybrid reduced-order modeling technique for nonlinear structural dynamic simulation. Aerosp. Sci. Technol. 2019, 84, 724–733. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Wingspan/mm | 4800.0 |
Length of fuselage/mm | 1033.0 |
Aspect ratio | 17.1 |
Root chord length of wing/mm | 240.0 |
Distance between c.g. and node/mm | 326.0 |
Width of fuselage/mm | 1200.0 |
Weight/kg | 20.0 |
Order | Mode | Frequency/Hz |
---|---|---|
1 | 1st symmetric vertical bending | 3.67 |
2 | 2nd asymmetric vertical bending | 7.08 |
3 | 2nd symmetric vertical bending | 20.31 |
4 | 3rd asymmetric vertical bending | 25.31 |
5 | 1st symmetric horizontal bending | 31.31 |
6 | 1st asymmetric torsion | 33.64 |
7 | 1st symmetric torsion | 34.37 |
8 | 3rd symmetric vertical bending | 39.61 |
Order | Mode | Frequency/Hz |
---|---|---|
1 | 1st vertical bending | 3.58 |
2 | 2nd vertical bending | 22.31 |
3 | 1st horizontal bending | 31.97 |
4 | 1st torsion | 34.95 |
Order | Mode | Frequency/Hz |
---|---|---|
1 | 1st order mode, symmetric | 49.39 |
2 | 2nd order mode, symmetric | 92.26 |
3 | 3rd order mode, asymmetric | 94.04 |
4 | 4th order mode, asymmetric | 111.05 |
Computational Term | Nonlinear FEM/min | Nonlinear Substructure Method/min |
---|---|---|
F0 = 20 N and f = 2 Hz | 40 | 2.5 |
F0 = 20 N and f = 1 Hz | 34 | 2.3 |
F0 = 20 N and f = 3 Hz | 65 | 4.5 |
F0 = 20 N and f = 7 Hz | 35 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, C.; Meng, Y.; Xie, C.; Yang, C. A Substructure Synthesis Method with Nonlinear ROM Including Geometric Nonlinearities. Aerospace 2021, 8, 344. https://doi.org/10.3390/aerospace8110344
An C, Meng Y, Xie C, Yang C. A Substructure Synthesis Method with Nonlinear ROM Including Geometric Nonlinearities. Aerospace. 2021; 8(11):344. https://doi.org/10.3390/aerospace8110344
Chicago/Turabian StyleAn, Chao, Yang Meng, Changchuan Xie, and Chao Yang. 2021. "A Substructure Synthesis Method with Nonlinear ROM Including Geometric Nonlinearities" Aerospace 8, no. 11: 344. https://doi.org/10.3390/aerospace8110344
APA StyleAn, C., Meng, Y., Xie, C., & Yang, C. (2021). A Substructure Synthesis Method with Nonlinear ROM Including Geometric Nonlinearities. Aerospace, 8(11), 344. https://doi.org/10.3390/aerospace8110344