Machine-Learning Methods Estimating Flights’ Hidden Parameters for the Prediction of KPIs
Abstract
:1. Introduction
- First, it contributes a specific methodology for the data-driven estimation of hidden parameters, using mechanistic models for the provision of training examples.
- Second, AI/ML and deep-learning methods are devised, tuned and evaluated for the estimation of hidden parameters. Specifically, a novel deep-learning method based on graph convolution networks is proposed and evaluated for the estimation of hidden parameters, also in comparison to the best ML method studied in [21].
- Third, data-driven AI/ML models are evaluated in the context of the overall methodology where specific flights’ KPIs are predicted, providing a set of comprehensive, comparative results: This shows how the hidden parameters’ estimations of advanced AI/ML methods affect the accurate prediction of specific KPIs.
2. Materials and Methods
2.1. Methodology
- Weather data: Gridded binary (GRIB) meteorological file with wind, pressure and temperature at different geographical locations and altitudes;
- Cost Index (CI);
- Payload mass (PL);
- Aircraft type;
- Origin–destination (OD) pair;
- Airspace structure (free route areas, entry/exit points, airways in non-free route areas, etc.);
- Route charges (if flying in Europe).
2.2. Datasets
- Weather conditions data;
- Flight plans;
- Simulated flight data (DYNAMO_FP).
2.3. Problem Formulation
2.4. AI/ML Methods
2.4.1. Graph Convolutional Network (GCN)
2.4.2. Gradient-Boosting Method (GBM)
3. Results
3.1. Experimental Setting
3.2. Experimental Results
- MAE value (mean),
- MAE standard deviation (std),
- Interquartile MAE range IQR = Q3 − Q1,
- MAE range (max–min).
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- ICAO. Manual on Air Traffic Management System Requirements, 1st ed.; ICAO: Montreal, QC, Canada, 2008. [Google Scholar]
- ICAO. Manual on Global Performance of the Air Navigation System, 1st ed.; ICAO: Montreal, QC, Canada, 2009. [Google Scholar]
- CANSO. Recommended Key Performance Indicators for Measuring ANSP Operational Performance; Technical Report; CANSO: Utrecht, The Netherland, 2015. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) No 390/2013 of 3 May 2013; European Union: Brussels, Belgium, 2015. [Google Scholar]
- APACHE Consortium. Review of Current KPIs and Proposal for New Ones. APACHE Project, Technical Report D3.1 v02.00.00. July 2018. Available online: http://hdl.handle.net/2117/114127 (accessed on 12 September 2024).
- RTCA. Measuring NextGen Performance: Recommendations for Operational Metrics and Next Steps; Technical Report BCPMWG; AIRBUS S.A.S: Blagnac, France, 2011. [Google Scholar]
- FAA. NextGen Performance Snapshots Reference Guide. 2017. Available online: https://www.faa.gov/sites/faa.gov/files/2021-11/FAA_Report_to_Congress_on_NextGen_Performance_Metrics.pdf (accessed on 12 September 2024).
- Zhang, H.; Xu, Y.; Yang, L.; Liu, H. Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area; Forward Series; Wiley Online: New Jersey, NJ, USA, 2014. [Google Scholar]
- Grether, D.; Furbas, S.; Nagel, N. Agent-based Modelling and Simulation of Air Transport Technology. Procedia Comp. Sci. 2013, 19, 821–828. [Google Scholar] [CrossRef]
- Delgado, L.; Gurtner, G.; Mazzarisi, P.; Zaoli, S.; Valput, D.; Cook, A.; Lillo, F. Network-wide assessment of ATM mechanisms using an agent-based model. J. Transp. Manag. 2021, 95, 102108. [Google Scholar] [CrossRef]
- Airbus. Getting to Grips with the Cost Index-Issue II; Technical Report, Flight Operations Support & Line Assistance; Radio Technical Commission for Aeronautics: Washington, DC, USA, 1998. [Google Scholar]
- Prats, X.; Dalmau, R.; Barrado, C. Identifying the sources of flight inefficiency from historical aircraft trajectories. A set of distance- and fuel-based performance indicators for post-operational analysis. In Proceedings of the 13th USA/Europe Air Traffic Management Research and Development Seminar, Vienna, Austria, 17–21 June 2019; Eurocontrol and FAA: Vienna, Austria, 2019. [Google Scholar]
- Feng, T.; Timmermans, H.J. Comparison of advanced imputation algorithms for detection of transportation mode and activity episode using GPS data. Transp. Plan. Tech. 2016, 39, 180–194. [Google Scholar] [CrossRef]
- Hernández, Y.; Djukic, T.; Casas, J. Local traffic patterns extraction with network-wide consistency in large urban networks. Transp. Res. Procedia 2018, 34, 259–266. [Google Scholar] [CrossRef]
- Antunes, F.; Amorim, M.; Pereira, F.C.; Ribeiro, B. Active learning metamodeling for policy analysis: Application to an emergency medical service simulator. Simul. Model. Pract. Theory 2019, 97, 101947. [Google Scholar] [CrossRef]
- COPTRA Consortium. COPTRA Deliverable D2.1. Techniques to Determine Trajectory Uncertainty and Modelling. Technical Report, Edition 01.00.00. 2017. Available online: https://www.researchgate.net/publication/317091485_COPTRA_D21_Techniques_to_determine_trajectory_uncertainty_and_modelling (accessed on 12 September 2024).
- SIMBAD. Combining Simulation Models and Big Data Analytics for ATM Performance Analysis. Available online: https://www.sesarju.eu/projects/SIMBAD (accessed on 12 September 2024).
- Alligier, R.; Gianazza, D. Learning aircraft operational factors to improve aircraft climb prediction: A large scale multi-airport study. Transp. Res. Part C Emerg. Technol. 2018, 96, 72–95. [Google Scholar] [CrossRef]
- Alligier, R.; Gianazza, D.; Durand, N. Machine Learning and Mass Estimation Methods for Ground-Based Aircraft Climb Prediction. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3138–3149. [Google Scholar] [CrossRef]
- Gheorghe, A.I. Prediction of Aircraft Take-Off Weight using Machine Learning. MSc Thesis, TU Delft, Delft, The Netherlands, 2024. Available online: https://resolver.tudelft.nl/uuid:3a2b3d2e-e4f3-4042-9172-f03ccc67cda1 (accessed on 12 September 2024).
- Tranos, T.; Vouros, G.A.; Blekas, K.; Santipantakis, G.; Melgosa, M.; Prats, X. Data driven estimation of flights’ hidden parameters. In Proceedings of the 12th SESAR Innovation Days (SIDs), Budapest, Hungary, 5–8 December 2022. [Google Scholar]
- He, X.; He, F.; Zhu, X.; Li, L. Data-driven Method for Estimating Aircraft Mass from Quick Access Recorder using Aircraft Dynamics and Multilayer Perceptron Neural Network. arXiv 2020, arXiv:2012.05907. Available online: https://api.semanticscholar.org/CorpusID:228376122 (accessed on 12 September 2024).
- Chati, Y.S.; Balakrishnan, H. Statistical modeling of aircraft take-off weight. In Proceedings of the 12th USA/Europe Air Traffic Management Research and Development Seminar, Berkeley, CA, USA, 27–30 June 2017. [Google Scholar]
- Sun, J.; Ellerbroek, J.; Hoekstra, J. Modeling and Inferring Aircraft Takeoff Mass from Runway ADS-B Data. June 2016. Available online: https://www.researchgate.net/publication/305403975_Modeling_and_Inferring_Aircraft_Takeoff_Mass_from_Runway_ADS-B_Data (accessed on 12 September 2024).
- Sun, J.; Blom, H.A.; Ellerbroek, J.; Hoekstra, J.M. Particle filter for aircraft mass estimation and uncertainty modeling. Transp. Res. Part C Emerg. Technol. 2019, 105, 145–162. Available online: https://api.semanticscholar.org/CorpusID:197454207 (accessed on 12 September 2024). [CrossRef]
- Sun, J.; Ellerbroek, J.; Hoekstra, J. Bayesian Inference of Aircraft Initial Mass. June 2017. Available online: https://www.researchgate.net/publication/317600026_Bayesian_Inference_of_Aircraft_Initial_Mass (accessed on 12 September 2024).
- Sun, J.; Ellerbroek, J.; Hoekstra, J.M. Aircraft initial mass estimation using Bayesian inference method. Transp. Res. Part C Emerg. Technol. 2018, 90, 59–73. [Google Scholar] [CrossRef]
- Dalmau, R.; Melgosa, M.; Vilardaga, S.; Prats, X. A Fast and Flexible Aircraft Trajectory Predictor and Optimiser for ATM Research Applications. In Proceedings of the ICRAT 2018—8th International Conference for Research in Air Transportation, Castelldefels, Espanya, 26–29 June 2018; pp. 1–8. Available online: http://hdl.handle.net/2117/122638 (accessed on 12 September 2024).
- Jiang, J.; Dun, C.; Huang, T.; Lu, Z. Graph Convolutional Reinforcement Learning. arXiv 2018, arXiv:1810.09202. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Mouillet, V.; Nuić, A.; Casado, E.; López Leonés, J. Evaluation of the Applicability of a Modern Aircraft Performance Model to Trajectory Optimization. In Proceedings of the 2018, IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), London, UK, 23–27 September 2018; pp. 1–10. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
H [ft] | geometric altitude |
Temp [°C] | air temperature |
Press [hPa] | air pressure |
Wn [kt] | North wind component |
We [kt] | East wind component |
Ws [kt] | Along path wind component |
Wx [kt] | Cross-wind component |
Lat [°] | Latitude |
Lon [°] | Longitude |
vdot | Derivative of True Airspeed |
hdot | Derivative of geometric altitude |
Variable | Description |
---|---|
H [ft] | geometric altitude |
Temp [°C] | air temperature |
v-Wn [kt] | v wind component |
u-We [kt] | u wind component |
Lat [°] | Latitude |
Lon [°] | Longitude |
vdot | Derivative of speed |
hdot | Derivative of geometric altitude |
Method | Settings |
---|---|
GCN | agents = 3 local observation length = 51/69 1 epoch = 50 batch_size = 128 learning rate = 0.001 optimizer = Adam [30] MLP layers = 3 MLP activation function = ReLU CNN layers = 2 CNN activation function = ReLU Regressor layers = 3 Regressor activation function = ReLU |
GBM | n_estimators = 1000 min_samples_leaf = 10 min_samples_split = 15 max_depth = 8 learning_rate = 0.1 |
Method | CI MAE | PL MAE | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Std | IQR | Range (Max–Min) | Mean | Std | IQR | Range (Max–Min) | |
GBM | 2.91 | 3.59 | 4 | 28 | 0.009 | 0.032 | 0 | 0.3 |
GCN | 3.69 | 3.99 | 4 | 33 | 0.017 | 0.048 | 0 | 0.4 |
Method | CI MAE | PL MAE | ||||||
---|---|---|---|---|---|---|---|---|
Mean | Std | IQR | Range (Max–Min) | Mean | Std | IQR | Range (Max–Min) | |
GBM | 3.65 | 4.2 | 4 | 37 | 0.022 | 0.046 | 0 | 0.3 |
GCN | 4.46 | 4.97 | 5 | 43 | 0.019 | 0.049 | 0 | 0.4 |
Abs Diff Predicted vs. True | PL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | |||||||
GCN | GBM | GCN | GBM | GCN | GBM | GCN | GBM | GCN | GBM | ||
CI | 0–9 | 0.00 76.02% | 0.00 73.81% | 1.94 11.91% | 1.97 16.12% | 3.47 0.19% | 3.66 1.10% | 5.11 0.23% | 5.91 0.05% | 6.90 0.01% | No cases |
10–19 | 0.00 6.87% | 0.00 4.52% | 1.72 2.05% | 1.93 2.91% | 3.17 0.27% | 3.80 0.44% | 4.86 0.22% | 7.39 0.01% | No cases | ||
20–29 | 0.00 0.73% | 0.00 0.47% | 1.69 0.43% | 1.59 0.41% | 3.30 0.18% | 4.01 0.10% | 4.88 0.41% | 7.39 0.01% | 6.30 0.01% | ||
30–39 | 0.00 0.01% | 0.00 0.02% | 1.72 0.08% | 1.35 0.02% | 3.58 0.10% | 3.56 0.01% | 4.75 0.22% | No cases | 6.28 0.04% | ||
40–49 | 4.75 0.02% | 6.22 0.01% | |||||||||
50–98 |
Weighted Average | GCN | GBM |
---|---|---|
PREDICTED VS. TRUE CI | 0.23 | 0.33 |
PREDICTED VS. TRUE PL | 0.041 | 0.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vouros, G.; Ioannidis, I.; Santipantakis, G.; Tranos, T.; Blekas, K.; Melgosa, M.; Prats, X. Machine-Learning Methods Estimating Flights’ Hidden Parameters for the Prediction of KPIs. Aerospace 2024, 11, 937. https://doi.org/10.3390/aerospace11110937
Vouros G, Ioannidis I, Santipantakis G, Tranos T, Blekas K, Melgosa M, Prats X. Machine-Learning Methods Estimating Flights’ Hidden Parameters for the Prediction of KPIs. Aerospace. 2024; 11(11):937. https://doi.org/10.3390/aerospace11110937
Chicago/Turabian StyleVouros, George, Ioannis Ioannidis, Georgios Santipantakis, Theodore Tranos, Konstantinos Blekas, Marc Melgosa, and Xavier Prats. 2024. "Machine-Learning Methods Estimating Flights’ Hidden Parameters for the Prediction of KPIs" Aerospace 11, no. 11: 937. https://doi.org/10.3390/aerospace11110937
APA StyleVouros, G., Ioannidis, I., Santipantakis, G., Tranos, T., Blekas, K., Melgosa, M., & Prats, X. (2024). Machine-Learning Methods Estimating Flights’ Hidden Parameters for the Prediction of KPIs. Aerospace, 11(11), 937. https://doi.org/10.3390/aerospace11110937