Aerodynamic Optimization Method for Propeller Airfoil Based on DBO-BP and NSWOA
Abstract
:1. Introduction
2. Airfoil Model Establishment and Example Verification
2.1. CST Airfoil Parametric Model
2.2. Comparison of Precision Under Different Polynomial Orders
2.3. Simulation Calculation and Verification
3. Airfoil Optimization Method Based on DBO-BP Surrogate Model
3.1. DBO-BP Model
3.1.1. BP Neural Network
3.1.2. Dung Beetle Optimization (DBO) Algorithm
- Ball-Rolling Behavior
- 2.
- Reproductive Behavior
- 3.
- Foraging Behavior
- 4.
- Thieving Behavior
3.1.3. Surrogate Model of DBO-BP Neural Network
- Data preprocessing. Normalize the data to accelerate the network’s convergence speed.
- Algorithm initialization. Initialize the parameters of the DBO algorithm and the BP neural network.
- Update the positions of the dung beetles according to the improved dung beetle optimization algorithm and update the initial weights and thresholds of the BP neural network.
- Calculate the fitness value based on the fitness function.
- Determine whether the set precision of the network is reached; if not satisfied, return to step 3; if the set precision is achieved, output the optimal weights and thresholds to the BP neural network.
3.2. Non-Dominated Sorting Whale Optimization Algorithm
- Encircling Prey.
- 2.
- Spiral Approaching Prey.
- 3.
- Random Search for Prey.
4. Airfoil Optimization and Results Comparison
4.1. Airfoil Optimization Process
4.2. Optimization Results Analysis
5. Conclusions
- Under this optimization framework, the NACA4412 airfoil was subjected to aerodynamic optimization at attack angles of 2°, 5° and 10°, and the lift coefficients of the airfoil increased by 0.04342, 0.01156 and 0.03603. The drag coefficients decreased by 0.00018, 0.00038 and 0.00027. The lift-to-drag ratios improved by 2.95892, 2.96548 and 2.55199.
- A Dung Beetle Optimization (DBO) algorithm is proposed to optimize the BP neural network for airfoil optimization. By employing the DBO algorithm to optimize the initial weights and thresholds of the BP neural network, issues such as slow convergence speed and susceptibility to local optima are addressed. At attack angles of 2°, 5° and 10°, the lift coefficient test accuracy is improved by 45.35%, 13.4% and 49.3%, and the drag coefficient test accuracy is enhanced by 12.5%, 39.1% and 13.7%, effectively improving the prediction accuracy of the BP neural network, ensuring the reliability of the surrogate model’s predictions for airfoil aerodynamic parameters.
- The optimization framework that combines the Design of Experiments (DOEs) based on Latin hypercube sampling, the DBO-BP neural network surrogate model, and the multi-objective Whale Optimization Algorithm (NSWOA) for airfoil optimization has broad applicability and high convenience, which is of great assistance in the engineering design of airfoils.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ekaterinaris, J.A.; Platzer, M.F. Computational prediction of airfoil dynamic stall. Prog. Aerosp. Sci. 1998, 33, 759–846. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H. Multi-objective optimization of propeller airfoils for general aviation aircraft. J. Aerosp. Power 2024, 39, 20220636-1. [Google Scholar]
- He, Y.; Qu, Q.; Agarwal, R.K. Shape optimization of an airfoil in ground effect for application to WIG craft. J. Aerodyn. 2014, 2014, 931232. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, B.; Jia, X. Parameterized modeling and optimization of NACA63418 airfoil for wind energy applications. Therm. Power Gener. 2024, 53, 86–92. [Google Scholar]
- Luo, F. Aerodynamic optimization design based on the NACA airfoil parameterization method. Equip. Manuf. Technol. 2024, 1, 115–119. [Google Scholar]
- Kaya, H.; Tuncer, I.H. Discrete adjoint-based aerodynamic shape optimization framework for natural laminar flows. AIAA J. 2022, 60, 197–212. [Google Scholar] [CrossRef]
- Wang, S.; Yang, A. Aerodynamic optimization design of airfoils for steady and unsteady flows based on discrete adjoint method. Fudan J. 2024, 63, 209–215. [Google Scholar]
- Sun, Y.; Wang, L.; Wang, T. Optimization method for tail rotor airfoil based on SST full turbulence adjoint. J. Beijing Univ. Aeronaut. Astronaut. 2023, 49, 3355–3364. [Google Scholar]
- Wang, C.; Sun, J.; Sun, Z. Optimization of lift and drag characteristics of high-speed ground effect airfoil based on Kriging model. J. Aerosp. Power 2024, 1–10. [Google Scholar] [CrossRef]
- Ju, Y.; Zhang, C. Optimization design method for wind turbine airfoil based on artificial neural network and genetic algorithm. Proc. CSEE 2009, 29, 106–111. [Google Scholar]
- Kim, H.J.; Sasaki, D.; Obayashi, S.; Nakahashi, K. Aerodynamic optimization of supersonic transport wing using unstructured adjoint method. AIAA J. 2001, 39, 1011–1020. [Google Scholar] [CrossRef]
- Wu, P.; Wang, P.; Gao, H. Dynamic mode decomposition analysis of the common research model with adjoint-based gradient optimization. Phys. Fluids 2021, 33, 035123. [Google Scholar] [CrossRef]
- Srinath, D.N.; Mittal, S. An adjoint method for shape optimization in unsteady viscous flows. J. Comput. Phys. 2010, 229, 1994–2008. [Google Scholar] [CrossRef]
- Papadimitriou, D.I.; Papadimitriou, C. Aerodynamic shape optimization for minimum robust drag and lift reliability constraint. Aerosp. Sci. Technol. 2016, 55, 24–33. [Google Scholar] [CrossRef]
- Tang, Z.L.; Periaux, J. Uncertainty based robust optimization method for drag minimization problems in aerodynamics. Comput. Methods Appl. Mech. Eng. 2012, 217, 12–24. [Google Scholar] [CrossRef]
- Nemec, M.; Aftosmis, M. Parallel Adjoint Framework for Aerodynamic Shape Optimization of Component-Based Geometry. In Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Zymaris, A.S.; Papadimitriou, D.I.; Giannakoglou, K.C.; Othmer, C. Adjoint wall functions: A new concept for use in aerodynamic shape optimization. J. Comput. Phys. 2010, 229, 5228–5245. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems. Inf. Sci. 2012, 183, 1–15. [Google Scholar] [CrossRef]
- Qu, X.; Zhang, R.; Liu, B.; Li, H. An improved TLBO based memetic algorithm for aerodynamic shape optimization. Eng. Appl. Artif. Intel. 2017, 57, 1–15. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, W.; Zhang, P.; Ji, H. Optimizing Airfoil Aerodynamic Characteristics by Using Proposed CSA-KJ Method. Appl. Sci. 2023, 13, 924. [Google Scholar] [CrossRef]
- Qiang, Z.; Weipao, M.; Qingsong, L.; Zifei, X.; Chun, L.; Linsen, C.; Minnan, Y. Optimized design of wind turbine airfoil aerodynamic performance and structural strength based on surrogate model. Ocean. Eng. 2023, 289, 116279. [Google Scholar]
- Shen, C.; Zhang, J.; Ding, C.; Wang, S. Simulation Analysis and Experimental Study on Airfoil Optimization of Low-Velocity Turbine. J. Mar. Sci. Eng. 2024, 12, 303. [Google Scholar] [CrossRef]
- Glaz, B.; Goel, T.; Liu, L.; Friedmann, P.P.; Haftka, R.T. Multiple-Surrogate Approach to Helicopter Rotor Blade Vibration Reduction. AIAA J. 2009, 47, 271–282. [Google Scholar] [CrossRef]
- Chen, S.K.; Xiong, Y.; Chen, W. Multiresponse and Multistage Metamodeling Approach for Design Optimization. AIAA J. 2009, 47, 206–218. [Google Scholar] [CrossRef]
- Wu, X.; Zuo, Z.; Ma, L. Aerodynamic Data-Driven Surrogate-Assisted Teaching-Learning-Based Optimization (TLBO) Framework for Constrained Transonic Airfoil and Wing Shape Designs. Aerospace 2022, 9, 610. [Google Scholar] [CrossRef]
- Phiboon, T.; Khankwa, K.; Petcharat, N.; Phoksombat, N.; Kanazaki, M.; Kishi, Y.; Bureerat, S.; Ariyarit, A. Experiment and computation multi-fidelity multi-objective airfoil design optimization of fixed-wing UAV. J. Mech. Sci. Technol. 2021, 35, 4065–4072. [Google Scholar] [CrossRef]
- Wang, X.; Hirsch, C.; Liu, Z. Uncertainty-based Robust Aerodynamic Optimization of Rotor blades. Int. J. Numer. Methods Eng. 2013, 94, 111–127. [Google Scholar] [CrossRef]
- Wang, L.; Yu, J.; Wang, X.; Chen, J.; Wu, X. Research on airfoil optimization design method based on surrogate model and genetic algorithm. Wind. Turbine Technol. 2021, 63, 69–75. [Google Scholar] [CrossRef]
- Tian, K.; Kang, Z.; Kang, Z. A Productivity Prediction Method of Fracture-Vuggy Reservoirs Based on the PSO-BP Neural Network. Energies 2024, 17, 3482. [Google Scholar] [CrossRef]
- Fuentes, G.P.; Holanda, J.; Guerra, Y.; Silva, D.B.O.; Farias, B.V.M.; Padrón-Hernández, E. Micromagnetic simulation and the angular dependence of coercivity and remanence for array of polycrystalline nickel nanowires. J. Magn. Magn. Mater. 2017, 423, 262–266. [Google Scholar] [CrossRef]
- Echavarria, C.; Hoyos, J.D.; Jimenez, J.H.; Suarez, G.; Saldarriaga, A. Optimal airfoil design through particle swarm optimization fed by CFD and XFOIL. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 561. [Google Scholar] [CrossRef]
- Kotinis, M.; Kulkarni, A. Multi-objective shape optimization of transonic airfoil sections using swarm intelligence and surrogate models. Struct. Multidiscip. Optim. 2011, 45, 747–758. [Google Scholar] [CrossRef]
- Islam, Q.N.U.; Ahmed, A.; Abdullah, S.M. Optimized controller design for islanded microgrid using non-dominated sorting whale optimization algorithm (NSWOA). Ain Shams Eng. J. 2021, 12, 3677–3689. [Google Scholar] [CrossRef]
- Kulfan, B.; Bussoletti, J. Fundamental parameteric geometry representations for aircraft component shapes. In Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, USA, 6–8 September 2006. [Google Scholar]
- Guan, X.; Li, Z.; Song, B. Research on CST Aerodynamic Shape Parameterization Method. Acta Aero-Naut. Astronaut. Sin. 2012, 33, 625–633. [Google Scholar]
- Kuifan, B. Universal parametric geometry representation method. J. Aircr. 2008, 45, 142–158. [Google Scholar]
- Ceze, M.; Hayashi, M.; Volpe, E. A study of the CST parameterization characteristics. In Proceedings of the 27th AIAA Applied Aerody-Namics, San Antonio, TX, USA, 22–25 June 2009. [Google Scholar]
- Fu, Y.; Yao, W.; Xue, S. Optimization design of airfoil for loitering missile based on CST parameterization method. J. Ordnance Equip. Eng. 2023, 44, 133–139. [Google Scholar]
- Coles, D.; Wadcock, A. Flying-hot-wire study of two-dimensional mean flow past an NACA4412 airfoil at maximum lift. AIAA 1978, 78, 1196. [Google Scholar]
- Yan, W. A comparative study on steady/unsteady computations of low-speed flow around NACA4412 airfoil. Sci. Technol. Eng. 2017, 17, 283–287+292. [Google Scholar]
Case | CL | CD |
---|---|---|
Experiment | 1.66 | / |
Related Literature [40] | 1.64 | 0.036 |
Coarse grid (417 × 131) | 1.69 | 0.037 |
Moderate grid (447 × 151) | 1.72 | 0.035 |
Refined grid (491 × 171) | 1.71 | 0.035 |
Lower Bound | Upper Bound |
---|---|
−0.18011 | −0.09698 |
−0.03774 | −0.02032 |
0 |
AOA (°) | Model | Cl | RMSE | MAE | R2 |
---|---|---|---|---|---|
2 | BP | Training Set | 0.00609 | 0.00385 | 0.98328 |
Test Set | 0.00688 | 0.00594 | 0.96517 | ||
DBO-BP | Training Set | 0.00290 | 0.00217 | 0.99159 | |
Test Set | 0.00376 | 0.00300 | 0.98202 | ||
5 | BP | Training Set | 0.00482 | 0.00376 | 0.97758 |
Test Set | 0.00627 | 0.00793 | 0.93618 | ||
DBO-BP | Training Set | 0.00369 | 0.00290 | 0.98276 | |
Test Set | 0.00543 | 0.00452 | 0.95573 | ||
10 | BP | Training Set | 0.00746 | 0.00497 | 0.90088 |
Test Set | 0.00945 | 0.00672 | 0.83904 | ||
DBO-BP | Training Set | 0.00243 | 0.00163 | 0.98938 | |
Test Set | 0.00479 | 0.00353 | 0.94474 |
AOA (°) | Model | Cd | RMSE | MAE | R2 |
---|---|---|---|---|---|
2 | BP | Training Set | 0.00014 | 0.00488 | 0.96113 |
Test Set | 0.00016 | 0.00524 | 0.95829 | ||
DBO-BP | Training Set | 0.00012 | 0.00007 | 0.93999 | |
Test Set | 0.00014 | 0.00011 | 0.77678 | ||
5 | BP | Training Set | 0.00013 | 0.00009 | 0.87789 |
Test Set | 0.00023 | 0.00018 | 0.50737 | ||
DBO-BP | Training Set | 0.00011 | 0.00008 | 0.94350 | |
Test Set | 0.00014 | 0.00011 | 0.91343 | ||
10 | BP | Training Set | 0.00027 | 0.00020 | 0.92339 |
Test Set | 0.00029 | 0.00022 | 0.90937 | ||
DBO-BP | Training Set | 0.00016 | 0.00008 | 0.96765 | |
Test Set | 0.00025 | 0.00019 | 0.92337 |
AOA (°) | Parameter | Forecast Value (DBO-BP) | True Value (CFD Result) | Error |
---|---|---|---|---|
2 | Cl | 0.65410 | 0.66403 | 1.52% |
Cd | 0.01115 | 0.01127 | 1.08% | |
Cl/Cd | 58.664 | 58. 920 | 0.44% | |
5 | Cl | 0.93025 | 0.94054 | 1.11% |
Cd | 0.01235 | 0.01260 | 2.02% | |
Cl/Cd | 75.324 | 74.646 | 0.90% | |
10 | Cl | 1.42927 | 1.43818 | 0.62% |
Cd | 0.02132 | 0.02107 | 1.17% | |
Cl/Cd | 67.039 | 68.257 | 1.82% |
AOA (°) | Parameter | Original Airfoil | Optimized Airfoil | Variation |
---|---|---|---|---|
2 | Cl | 0.62061 | 0.66403 | 0.04342 |
Cd | 0.01109 | 0.01127 | 0.00018 | |
Cl/Cd | 55.96123 | 58.92014 | 2.95892 | |
Cm | 0.24185 | 0.25577 | 0.01392 | |
5 | Cl | 0.92898 | 0.94054 | 0.01156 |
Cd | 0.01296 | 0.01260 | 0.00038 | |
Cl/Cd | 71.68056 | 74.64603 | 2.96548 | |
Cm | 0.31458 | 0.31475 | 0.00017 | |
10 | Cl | 1.40215 | 1.43818 | 0.03603 |
Cd | 0.02134 | 0.02107 | 0.00027 | |
Cl/Cd | 65.70525 | 68.25724 | 2.55199 | |
Cm | 0.42558 | 0.41194 | 0.01364 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Xu, Z.; Yang, X.; Li, H. Aerodynamic Optimization Method for Propeller Airfoil Based on DBO-BP and NSWOA. Aerospace 2024, 11, 931. https://doi.org/10.3390/aerospace11110931
Guo C, Xu Z, Yang X, Li H. Aerodynamic Optimization Method for Propeller Airfoil Based on DBO-BP and NSWOA. Aerospace. 2024; 11(11):931. https://doi.org/10.3390/aerospace11110931
Chicago/Turabian StyleGuo, Changjing, Zhiling Xu, Xiaoyan Yang, and Hao Li. 2024. "Aerodynamic Optimization Method for Propeller Airfoil Based on DBO-BP and NSWOA" Aerospace 11, no. 11: 931. https://doi.org/10.3390/aerospace11110931
APA StyleGuo, C., Xu, Z., Yang, X., & Li, H. (2024). Aerodynamic Optimization Method for Propeller Airfoil Based on DBO-BP and NSWOA. Aerospace, 11(11), 931. https://doi.org/10.3390/aerospace11110931