Study on Failure Criteria and the Numerical Simulation Method of a Coal-Based Carbon Foam under Multiaxial Loading
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Failure Criteria for CCF
2.3. Experiment for Failure Criteria
3. Results and Discussion
4. Validation for the Failure Criteria
4.1. 3-Points Bending Tests and Finite Element Model Simulation
4.2. Validation Results
5. Conclusions
- The failure criteria can be obtained by the following steps: (a) Obtain the basic mechanical properties of CCF in all directions through uniaxial loading tests, including strength, modulus, and Poisson’s ratio, and then we obtain and independent of shear stress; (b) Get the equation of failure surface in space by fitting the results of multiaxial loading tests without shear load; (c) Calculate the according to the equation of failure surface, and then we obtain the complete equations of and ;
- A large number of material-level tests were carried out to measure the basic mechanical properties of CCF, and the equation of the failure surface and its upper and lower bounds of error bands were obtained;
- CCF constitutive model with failure criteria was established through the VUMAT subroutine. It was used to predict the maximum failure load and failure mode of the CCF sandwich structure under a three-point bending load. The analysis results are in good agreement with experimental results and have higher accuracy than previous methods.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Kennel, E.B.; Stiller, A.H.; Stansberry, P.G.; Zondlo, J.W. Carbon foam derived from various precursors. Carbon 2006, 44, 1535–1543. [Google Scholar] [CrossRef]
- Inagaki, M.; Qiu, J.; Guo, Q. Carbon foam: Preparation and application. Carbon 2015, 87, 128–152. [Google Scholar] [CrossRef]
- Su, R.; Wang, X.; Wang, D.; Li, L.; Liang, G.; Zheng, Z.; Li, K. Preparation of carbon foam-reinforced carbon aerogels and their copyrolysis mechanism. Microporous Mesoporous Mater. 2021, 319, 111059. [Google Scholar] [CrossRef]
- Eck, J.; Balat-Pichelin, M. Study of carbon erosion under ion bombardment at high temperature: Application to the thermal protection system of Solar Probe+. Vacuum 2010, 85, 380–389. [Google Scholar] [CrossRef]
- Heisler, E.; Abel, E.; Congdon, E.; Eby, D. Full scale thermal simulator development for the solar probe plus thermal protection system. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017. [Google Scholar]
- Grujicic, M.; Zhao, C.; Biggers, S.; Kennedy, J.; Morgan, D. Suitability of a Coal-Derived Carbon-Based Foam for use in Thermal Protection Systems of Common Aero Vehicles. Multidiscip. Model. Mater. Struct. 2007, 3, 1–26. [Google Scholar] [CrossRef]
- Fawcett, R.; Hornick, J.; Backlund, D.; Pichon, T.; Foucault, A.; Ellis, R. Advanced 3rd Stage (A3S) Carbon-Carbon Exit Cone. In Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, USA, 21–23 July 2008. [Google Scholar]
- Suzuki, T.; Aoki, T.; Ogasawara, T.; Fujita, K. Nonablative lightweight thermal protection system for Mars Aeroflyby Sample collection mission. Acta Astronaut. 2017, 136, 407–420. [Google Scholar] [CrossRef]
- Ogasawara, T.; Ayabe, S.; Ishida, Y.; Aoki, T.; Kubota, Y. Heat-resistant sandwich structure with carbon fiber-polyimide composite faces and a carbon foam core. Compos. Part A Appl. Sci. Manuf. 2018, 114, 352–359. [Google Scholar] [CrossRef]
- Kubota, Y.; Miyamoto, O.; Aoki, T.; Ishida, Y.; Ogasawara, T.; Umezu, S. New thermal protection system using high-temperature carbon fibre-reinforced plastic sandwich panel. Acta Astronaut. 2019, 160, 519–526. [Google Scholar] [CrossRef]
- Alifanov, O.M.; Budnik, S.A.; Nenarokomov, A.V.; Salosina, M.O. Design of thermal protection based on open cell carbon foam structure optimization. Appl. Therm. Eng. 2020, 173, 115252. [Google Scholar] [CrossRef]
- Liu, X.S.; Fu, Q.G.; Zhang, J.P.; Tong, M.D.; Ma, W.H. Design of a novel all-carbon multi-layer structure with excellent thermal protection performance based on carbon/carbon composites and carbon foam. Ceram. Int. 2020, 46, 28887–28893. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, Y.; Yu, L.; Ji, K.; Li, D. A review on the tooling technologies for composites manufacturing of aerospace structures: Materials, structures and processes. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106762. [Google Scholar] [CrossRef]
- Pahuja, R.; Ramulu, M. Study of surface topography in Abrasive Water Jet machining of carbon foam and morphological characterization using Discrete Wavelet Transform. J. Mater. Process. Technol. 2019, 273, 116249. [Google Scholar] [CrossRef]
- Sihn, S.; Rice, B.P. Sandwich construction with carbon foam core materials. J. Compos. Mater. 2003, 37, 1319–1336. [Google Scholar] [CrossRef]
- Li, K.; Gao, X.L.; Roy, A.K. Micromechanical modeling of three-dimensional open-cell foams using the matrix method for spatial frames. Compos. Part B Eng. 2005, 36, 249–262. [Google Scholar] [CrossRef]
- Sihn, S.; Roy, A.K. Modeling and prediction of bulk properties of open-cell carbon foam. J. Mech. Phys. Solids 2004, 52, 167–191. [Google Scholar] [CrossRef]
- Maruyama, B.; Spowart, J.E.; Hooper, D.J.; Mullens, H.M.; Druma, A.M.; Druma, C.; Alam, M.K. A new technique for obtaining three-dimensional structures in pitch-based carbon foams. Scr. Mater. 2006, 54, 1709–1713. [Google Scholar] [CrossRef]
- Sarzynski, M.D. Carbon Foam Characterization: Sandwich Flexure, Tensile and Shear Response. Doctoral Dissertation, Texas A&M University, College Station, TX, USA, 2004. [Google Scholar]
- Arand, F.; Hesser, J. Quantitative morphological analysis and digital modeling of polydisperse anisotropic carbon foam. Carbon 2018, 136, 11–20. [Google Scholar] [CrossRef]
- Druma, C.; Alam, M.K.; Druma, A.M. Finite element model of thermal transport in carbon foams. J. Sandw. Struct. Mater. 2004, 6, 527–540. [Google Scholar] [CrossRef]
- Yu, Q.; Thompson, B.E.; Straatman, A.G. A unit cube-based model for heat transfer and fluid flow in porous carbon foam. J. Heat Transfer. 2006, 128, 352–360. [Google Scholar] [CrossRef]
- Anghelescu, M.; Alam, K. Finite element modeling of forced convection heat transfer in carbon foams. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Chicago, IL, USA, 5–10 November 2006. [Google Scholar]
- Triantafillou, T.C.; Gibson, L.J. Multiaxial failure criteria for brittle foams. Int. J. Mech. Sci. 1990, 32, 479–496. [Google Scholar] [CrossRef]
- Alkhader, M.; Vural, M. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 2009, 57, 871–890. [Google Scholar] [CrossRef]
- Alkhader, M.; Vural, M. A plasticity model for pressure-dependent anisotropic cellular solids. Int. J. Plast. 2010, 26, 1591–1605. [Google Scholar] [CrossRef]
- Ayyagari, R.S.; Vural, M. Multiaxial yield surface of transversely isotropic foams: Part I—Modeling. J. Mech. Phys. Solids 2015, 74, 49–67. [Google Scholar] [CrossRef]
- Shafiq, M.; Ayyagari, R.S.; Ehaab, M.; Vural, M. Multiaxial yield surface of transversely isotropic foams: Part II—Experimental. J. Mech. Phys. Solids 2015, 76, 224–236. [Google Scholar] [CrossRef]
- Gioux, G.; McCormack, T.M.; Gibson, L.J. Failure of aluminum foams under multiaxial loads. Int. J. Mech. Sci. 2000, 42, 1097–1117. [Google Scholar] [CrossRef]
- Doyoyo, M.; Wierzbicki, T. Experimental studies on the yield behavior of ductile and brittle aluminum foams. Int. J. Plast. 2003, 19, 1195–1214. [Google Scholar] [CrossRef]
- Tita, V.; Caliri Júnior, M.F. Numerical simulation of anisotropic polymeric foams. Lat. Am. J. Solids Struct. 2012, 9, 1–21. [Google Scholar] [CrossRef]
- Mosleh, Y.; Bosche, K.V.; Depreitere, B.; Sloten, J.V.; Verpoest, I.; Ivens, J. Effect of polymer foam anisotropy on energy absorption during combined shear-compression loading. J. Cell. Plast. 2018, 54, 597–613. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Fleck, N.A. Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 2000, 48, 1253–1283. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Fleck, N.A. Multi-axial yield behaviour of polymer foams. Acta Mater. 2001, 49, 1859–1866. [Google Scholar] [CrossRef]
- Wang, D.; Zhuang, Q.; Li, K.; Wang, Y. Study on Correlation of Mechanical and Thermal Properties of Coal-Based Carbon Foam with the Weight Loss Rate after Oxidation. Materials 2022, 15, 4887. [Google Scholar] [CrossRef] [PubMed]
- ASTM C297/C297M—16; Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM-C365/C365M—16; Standard Test Method for Flatwise Compressive Properties of Sandwich Cores. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM-E132/E132M—17; Standard Test Method for Poisson’s Ratio at Room Temperature. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C273/C273M—11; Standard Test Method for Shear Properties of Sandwich Core Materials. ASTM International: West Conshohocken, PA, USA, 2011.
- Kolluri, M.; Karthikeyan, S.; Ramamurty, U. Effect of lateral constraint on the mechanical properties of a closed-cell Al foam: I. Experiments. Metall. Mater. Trans. A 2007, 38, 2006–2013. [Google Scholar] [CrossRef]
- ASTM C393/C393M—11; Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure. ASTM International: West Conshohocken, PA, USA, 2012.
Literature | Density (g/cm3) | Mechanical Properties |
---|---|---|
Sihn et al. [15] | 0.45 | Anisotropic; Young’s modulus in x, y, z directions (GPa): 1.09, 1.03, 0.33; Compressive strength in x, y, z directions (MPa): 9.8, 9.2, 3.9 |
K. Li et al. [16] | 0.28 | Anisotropic; Young’s modulus (GPa): 0.63; Shear modulus (GPa): 0.24 |
Sihn et al. [17] | 0.25 | Isotropic; Young’s modulus (GPa): 0.95; Compressive strength (MPa): 1.9; Tensile strength (MPa): 0.5 |
0.34 | Isotropic; Young’s modulus (GPa): 1.10; Compressive strength (MPa):2.3; Tensile strength (MPa): 0.7 | |
Maruyama B et al. [18] | 0.62 | Young’s modulus (GPa): 2.84; Compressive strength (MPa): 24.1 |
M.D. Sarzynski [19] | 0.27 | Isotropic; Young’s modulus (GPa): 0.37; Tensile strength (MPa): 1.2; Shear modulus (GPa): 0.16; Shear strength (MPa): 1.1 |
Arand F et al. [20] | 0.31 | Anisotropic; Young’s modulus in x, y, z directions (GPa): 0.47, 0.32, 0.24 |
Tests | Reference Standard | Size of Foam (mm3) | Loading Direction of CCF | Number of Specimens | Aim of Tests |
---|---|---|---|---|---|
Uniaxial tension | ASTM C297 [36] | 30 × 30 × 20 | x | FT-x1~3 | , |
y | FT-y1~3 | ||||
z | FT-z1~3 | ||||
Uniaxial compression | ASTM C365 [37] ASTM E132 [38] | 30 × 30 × 20 | x | FCP-x1~5 | , , |
y | FCP-y1~5 | ||||
z | FCP-z1~5 | ||||
Compressive shear | ASTM C273 [39] | 150 × 50 × 15 | xy | CS-xy1~3 | , |
xz | CS-xz1~3 | ||||
Passive confining pressure | ASTM C365 [37] | 30 × 30 × 20 | x | SCP-x1~4 | Failure stress |
y | SCP-y1~4 | ||||
z | SCP-z1~4 |
Uniaxial Tension (MPa) | 751 | 943 | 1283 | Uniaxial compression (MPa) | 950 | 746 | 1232 | Compressive shear (MPa) | 953 | 1120 |
798 | 856 | 1170 | 792 | 913 | 1287 | 899 | 1201 | |||
912 | 742 | 1256 | 855 | 887 | 1245 | 925 | 1098 | |||
977 | 831 | 1260 | ||||||||
934 | 910 | 1264 | ||||||||
Average value | 820 | 847 | 1236 | 902 | 857 | 1258 | 926 | 1140 | ||
Standard deviation | 68 | 82 | 48 | 68 | 63 | 19 | 22 | 44 |
Uniaxial tension (MPa) | 3.51 | 3.48 | 4.01 | Uniaxial compression (MPa) | 9.72 | 8.55 | 16.7 | Compressive shear (MPa) | 2.03 | 2.89 |
3.03 | 3.42 | 4.17 | 8.11 | 10.1 | 14.0 | 2.20 | 2.64 | |||
3.07 | 3.46 | 4.52 | 10.34 | 8.31 | 12.8 | 2.21 | 2.29 | |||
9.22 | 8.22 | 13.1 | ||||||||
9.74 | 10.9 | 16.8 | ||||||||
Average value | 3.20 | 3.45 | 4.23 | 9.43 | 9.22 | 14.7 | 2.15 | 2.61 | ||
Standard deviation | 0.22 | 0.02 | 0.21 | 0.75 | 1.08 | 1.74 | 0.08 | 0.25 |
x-axis loading (MPa) | −10.2 | −5.82 | −6.18 | y-axis loading (MPa) | −5.41 | −9.53 | −5.75 | z-axis loading (MPa) | −5.67 | −5.67 | −16.5 |
−9.05 | −5.14 | −5.46 | −5.91 | −10.4 | −6.28 | −5.29 | −5.29 | −15.4 | |||
−9.98 | −5.67 | −6.03 | −5.90 | −10.4 | −6.27 | −5.95 | −5.95 | −17.3 | |||
−10.6 | −5.99 | −6.37 | −6.58 | −11.6 | −7.00 | −5.02 | −5.02 | −14.6 |
Uniaxial tension | −0.35 | 1.05 | Uniaxial compression | 0.35 | 1.04 | Passive confining pressure | 0.71 | 0.60 | Compressive shear | 0 | 1.02 |
−0.30 | 0.91 | 0.29 | 0.87 | 0.63 | 0.53 | 0 | 1.11 | ||||
−0.31 | 0.92 | 0.37 | 1.11 | 0.70 | 0.59 | 0 | 1.11 | ||||
−0.35 | 1.05 | 0.33 | 0.99 | 0.74 | 0.62 | 0 | 1.2 | ||||
−0.34 | 1.03 | 0.35 | 1.04 | 0.67 | 0.56 | 0 | 1.09 | ||||
−0.35 | 1.04 | 0.31 | 0.92 | 0.73 | 0.61 | 0 | 0.95 | ||||
−0.32 | 0.95 | 0.36 | 1.08 | 0.72 | 0.61 | ||||||
−0.33 | 0.99 | 0.30 | 0.89 | 0.81 | 0.68 | ||||||
−0.36 | 1.07 | 0.29 | 0.88 | 0.78 | 0.52 | ||||||
0.39 | 1.17 | 0.73 | 0.48 | ||||||||
0.38 | 1.14 | 0.82 | 0.54 | ||||||||
0.32 | 0.95 | 0.69 | 0.46 | ||||||||
0.29 | 0.87 | ||||||||||
0.30 | 0.89 | ||||||||||
0.38 | 1.14 |
Properties | Direction | Value |
---|---|---|
Young modulus (GPa) | 0° | 167 |
90° | 9.13 | |
Tension strength (MPa) | 0° | 2761 |
90° | 38.4 | |
Compressive strength (MPa) | 0° | 1420 |
90° | 179 | |
Shear modulus (GPa) | in-plane | 4.93 |
Shear strength (MPa) | in-plane | 75 |
FEM | Damage Rule | Stress Space |
---|---|---|
FEM-1 | The failure surface (Equation (14)) | (Equations (5) and (8)) |
FEM-2 | The upper bound of the error band of failure surface (Equation (15)) | (Equations (5) and (8)) |
FEM-3 | The lower bound of the error band of failure surface (Equation (16)) | (Equations (5) and (8)) |
FEM-4 | The failure surface (Equation (14)) | (Equations (5) and (8)) |
Stress (MPa) | 1.840 | 0.128 | −1.136 | 0.005 | −2.168 | 0.150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, Q.; Cheng, X.; Yue, P.; Guo, X.; Li, K. Study on Failure Criteria and the Numerical Simulation Method of a Coal-Based Carbon Foam under Multiaxial Loading. Aerospace 2023, 10, 721. https://doi.org/10.3390/aerospace10080721
Zhuang Q, Cheng X, Yue P, Guo X, Li K. Study on Failure Criteria and the Numerical Simulation Method of a Coal-Based Carbon Foam under Multiaxial Loading. Aerospace. 2023; 10(8):721. https://doi.org/10.3390/aerospace10080721
Chicago/Turabian StyleZhuang, Qikai, Xiaoquan Cheng, Peijie Yue, Xin Guo, and Kai Li. 2023. "Study on Failure Criteria and the Numerical Simulation Method of a Coal-Based Carbon Foam under Multiaxial Loading" Aerospace 10, no. 8: 721. https://doi.org/10.3390/aerospace10080721
APA StyleZhuang, Q., Cheng, X., Yue, P., Guo, X., & Li, K. (2023). Study on Failure Criteria and the Numerical Simulation Method of a Coal-Based Carbon Foam under Multiaxial Loading. Aerospace, 10(8), 721. https://doi.org/10.3390/aerospace10080721