Towards Accurate Vortex Separation Simulations with RANS Using Improved k-kL Turbulence Model
Abstract
:1. Introduction
- The effect of the vortices on the aircraft body is often insignificant on aircraft aerodynamics, due to the location and sizing. Most turbulence models are not calibrated for such configurations. However, these contributions are important for missiles with multiple lifting surfaces on high-incidence angle conditions. What is the prominent turbulence model to be employed for these problems?
- The underlying problem for the inaccuracies of classical turbulence models at vortical flows is the excessive turbulence production, as shown in Ref. [14]. Is this problem the source of inaccuracies in the roll moment of the simulations in the NATO STO AVT-316 group?
- What is the state-of-the-art turbulence model for accurate vortex predictions? Can we provide a remedy to excessive turbulence production on this model and further improve these predictions?
2. LK6E2 Test Case and the Problem Description
3. Flow Solver
4. An Improved Vortex Separation Capable - Turbulence Model
4.1. Verification of the Implementation
4.2. Overview of Improvements on the k- Model
- A shear layer is formed between the vortex and the freestream flow, and the interaction effects with shock waves and surfaces should be considered carefully [32].
5. Computational Setup
6. Results and Discussion
6.1. Overall Aerodynamic Coefficients
6.2. Wing Surface Flow Field
6.3. Improvements via Alternative Turbulent Production Formulations
6.4. Influence of Rotation Corrections on the SST and k- Computations
6.5. Influence of Compressibility and Free Shear Corrections
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cummings, R.M.; Forsythe, J.R.; Morton, S.A.; Squires, K.D. Computational challenges in high angle of attack flow prediction. Prog. Aerosp. Sci. 2003, 39, 369–384. [Google Scholar] [CrossRef]
- Luckring, J.M.; Boelens, O.J.; Schmidt, S.; Eloot, K.; van Hoydonck, W.; Simonsen, C.D.; Bordier, L.; Deck, S.; Visonneau, M.; Abdel-Maksoud, M.; et al. Reliable Prediction of Separated Flow Onset and Progression for Air and Sea Vehicles; Technical Report TR-AVT-183; NATO Science and Technology Organization: Neuilly-sur-Seine, France, 2017. [Google Scholar]
- Rizzi, A.; Luckring, J.M. Historical development and use of CFD for separated flow simulations relevant to military aircraft. Aerosp. Sci. Technol. 2021, 117, 106940. [Google Scholar] [CrossRef]
- Taylor, N. Separated Flow: Some Challenges and Research Priorities for Missile Aerodynamics. In Separated Flow: Prediction, Measurement and Assessment for Air and Sea Vehicles; NATO Science and Technology Organization: Neuilly-sur-Seine, France, 2019; number MP-AVT-307-23. [Google Scholar]
- Taylor, N.; McGowan, G.; Anderson, M.; Schnepf, C.; Richter, K.; Tormalm, M.; Loupy, G.; Michel, V.; Jeune, C.; Shaw, S.; et al. The Prediction of Vortex Interactions on a Generic Missile Configuration Using CFD: Current Status of Activity in NATO AVT-316. In Separated Flow: Prediction, Measurement and Assessment for Air and Sea Vehicles; NATO Science and Technology Organization: Neuilly-sur-Seine, France, 2019; number MP-AVT-307-24. [Google Scholar]
- Schnepf, C.; Anderson, M.; DeSpirito, J.; Dikbaş, E.; Cesur, İ.S.; Tormalm, M. Comparisons of Predicted and Measured Aerodynamic Characteristics of the DLR LK6E2 Missile Airframe. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- De Spirito, J.; Tormalm, M.H.; Schnepf, C.; Loupy, G.J.; Dikbaş, E.; Cesur, İ.S. Comparisons of Predicted and Measured Aerodynamic Characteristics of the DLR LK6E2 Missile Airframe (Scale Resolving). In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Luckring, J.M. Vortex Interaction Effects Relevant to Military Air Vehicle Performance; Technical Report TR-AVT-316; NATO Science and Technology Organization: Neuilly-sur-Seine, France, 2022; to be published. [Google Scholar]
- Menter, F.R.; Egorov, Y. Revisiting the turbulent scale equation. In IUTAM Symposium on One Hundred Years of Boundary Layer Research; Springer: Berlin/Heidelberg, Germany, 2006; pp. 279–290. [Google Scholar] [CrossRef]
- Menter, F.R.; Egorov, Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. part 1: Theory and model description. Flow Turbul. Combust. 2010, 85, 113–138. [Google Scholar] [CrossRef]
- Abdol-Hamid, K.S. Assessments of-turbulence model based on Menter’s modification to Rotta’s two-equation model. Int. J. Aerosp. Eng. 2015, 2015, 987682. [Google Scholar] [CrossRef]
- Abdol-Hamid, K.S.; Carlson, J.R.; Rumsey, C.L. Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes. In Proceedings of the 46th AIAA Fluid Dynamics Conference, Washington, DC, USA, 13–17 June 2016. [Google Scholar] [CrossRef]
- Dikbaş, E.; Baran, Ö.U. Implementation and verification of k-kL turbulence model. In Proceedings of the 11th Ankara International Aerospace Conference, Ankara, Türkiye, 8–10 September 2021. number AIAC-2021-129. [Google Scholar]
- Dikbaş, E.; Baran, Ö.U. Implementation, verification and assessment of vortex capturing capabilities of k-kL turbulence model. J. Therm. Sci. Technol. 2022, 42, 113–122. [Google Scholar] [CrossRef]
- Beresh, S.J.; Henfling, J.F.; Spillers, R.W. Planar Velocimetry of a Fin Trailing Vortex in Subsonic Compressible Flow. AIAA J. 2009, 47, 1730–1740. [Google Scholar] [CrossRef]
- Beresh, S.J.; Henfling, J.F.; Spillers, R.W. Meander of a fin trailing vortex and the origin of its turbulence. Exp. Fluids 2010, 49, 599–611. [Google Scholar] [CrossRef]
- Beresh, S.J.; Henfling, J.F.; Spillers, R.W. Turbulence of a fin trailing vortex in subsonic compressible flow. AIAA J. 2012, 50, 2609–2622. [Google Scholar] [CrossRef]
- Luke, E.A.; Tong, X.; Chamberlein, R. FlowPsi Source Code, Version 1-0-p4. Available online: https://github.com/libm3l/FlowPsi/tree/flowPsi-1-0-p4 (accessed on 15 January 2023).
- Luke, E.A.; Tong, X.; Chamberlain, R. FlowPsi: An Ideal Gas Flow Solver-The User Guide. Available online: https://github.com/libm3l/FlowPsi/tree/flowPsi-1-0-p4/guide (accessed on 15 January 2023).
- Toro, E.F.; Spruce, M.; Speares, W. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 1994, 4, 25–34. [Google Scholar] [CrossRef]
- Venkatakrishnan, V. On the Accuracy of Limiters and Convergence to Steady State Solutions. In Proceedings of the 31st Aerospace Sciences Meeting, Reno, NV, USA, 11–14 January 1993. [Google Scholar] [CrossRef]
- Venkatakrishnan, V. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 1995, 118, 120–130. [Google Scholar] [CrossRef]
- Barth, T.; Jespersen, D. The Design and Application of Upwind Schemes on Unstructured Meshes. In Proceedings of the 27th Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1989. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. In Turbulence, Heat and Mass Transfer 4; Begell House: New York, NY, USA, 2003; pp. 625–632. [Google Scholar]
- Rotta, J. Statistische Theorie nichthomogener Turbulenz. Z. Phys. 1951, 129, 547–572. [Google Scholar] [CrossRef]
- Menter, F.R.; Schütze, J.; Kurbatskii, K.A.; Gritskevich, M.; Garbaruk, A. Scale-Resolving Simulation Techniques in Industrial CFD. In Proceedings of the 6th AIAA Theoretical Fluid Mechanics Conference, Honolulu, HI, USA, 27–30 June 2011. [Google Scholar] [CrossRef]
- Abdol-Hamid, K.S. Development of kL-Based Linear, Nonlinear, and Full Reynolds Stress Turbulence Models. In Proceedings of the AIAA SciTech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar] [CrossRef]
- Rumsey, C.L. Turbulence Modeling Resource. 2022. Available online: https://turbmodels.larc.nasa.gov (accessed on 7 September 2022).
- Dikbaş, E.; Schnepf, C.; Tormalm, M.; Anderson, M.; Shaw, S.; DeSpirito, J.; Loupy, G.; Barakos, G.; Boychev, K.; Toomer, C.; et al. The Influence of the Computational Mesh on the Prediction of Vortex Interactions about a Generic Missile Airframe. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Anderson, M.; Cooley, K.; DeSpirito, J.; Schnepf, C. The Influence of the Numerical Scheme in Predictions of Vortex Interaction about a Generic Missile Airframe. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Shaw, S.; Anderson, M.; Barakos, G.; Boychev, K.; Dikbaş, E.; DeSpirito, J.; Loupy, G.; Schnepf, C.; Tormalm, M. The Influence of Modelling in Predictions of Vortex Interactions About a Generic Missile Airframe: RANS. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Loupy, G.J. A Focused Study into the Prediction of Vortex Formation about Generic Missile and Combat Aircraft Airframes. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Kato, M.; Launder, B.E. The modelling of turbulent flow around stationary and vibrating square cylinders. In Proceedings of the Ninth Symposium on “Turbulent Shear Flows”, Kyoto, Japan, 16–18 August 1993. [Google Scholar]
- Dacles-Mariani, J.; Zilliac, G.G.; Chow, J.S.; Bradshaw, P. Numerical/experimental study of a wingtip vortex in the near field. AIAA J. 1995, 33, 1561–1568. [Google Scholar] [CrossRef]
- Shur, M.L.; Strelets, M.K.; Travin, A.K.; Spalart, P.R. Turbulence modeling in rotating and curved channels: Assessing the Spalart-Shur correction. AIAA J. 2000, 38, 784–792. [Google Scholar] [CrossRef]
- Smirnov, P.E.; Menter, F.R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term. J. Turbomach. 2009, 131, 041010. [Google Scholar] [CrossRef]
- Bush, R.H.; Chyczewski, T.S.; Duraisamy, K.; Eisfeld, B.; Rumsey, C.L.; Smith, B.R. Recommendations for Future Efforts in RANS Modeling and Simulation. In Proceedings of the AIAA SciTech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar] [CrossRef]
- Wilcox, D.C. Dilatation-dissipation corrections for advanced turbulence models. AIAA J. 1992, 30, 2639–2646. [Google Scholar] [CrossRef]
- Sarkar, S.; Erlebacher, G.; Hussaini, M.Y.; Kreiss, H.O. The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 1991, 227, 473–493. [Google Scholar] [CrossRef]
- Menter, F.R. Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows; Technical Report NASA-TM-103975; NASA Ames Research Center: Moffett Field, CA, USA, 1992.
- Cheng, Y.; Lien, F.S.; Yee, E.; Sinclair, R. A comparison of large eddy simulations with a standard k-ϵ Reynolds averaged Navier-Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes. J. Wind. Eng. Ind. Aerodyn. 2003, 91, 1301–1328. [Google Scholar] [CrossRef]
- Menter, F.R.; Smirnov, P.E.; Liu, T.; Avancha, R. A one-equation local correlation-based transition model. Flow Turbul. Combust. 2015, 95, 583–619. [Google Scholar] [CrossRef]
- DeSpirito, J.; Schnepf, C.; Dikbaş, E.; Anderson, M.; Loupy, G.; Tormalm, M. Predictions of Vortex Interactions for LK6E2—Part I. In Vortex Interaction Effects Relevant to Military Air Vehicle Performance; Number TR-AVT-316; NATO Science and Technology Organization: Neuilly-sur-Seine, France, 2023; Chapter 8; to be published. [Google Scholar]
- Schnepf, C.; DeSpirito, J.; Anderson, M.; Dikbaş, E.; Loupy, G.; Baran, Ö.U. Predictions of Vortex Interactions for LK6E2—Part II. In Vortex Interaction Effects Relevant to Military Air Vehicle Performance; Number TR-AVT-316; NATO Science and Technology Organization: Neuilly-sur-Seine, France, 2023; Chapter 9; to be published. [Google Scholar]
- Spalart, P.R.; Garbaruk, A.V. The predictions of common turbulence models in a mature vortex. Flow Turbul. Combust. 2019, 102, 667–677. [Google Scholar] [CrossRef]
- Asnaghi, A.; Svennberg, U.; Bensow, R.E. Large eddy simulations of cavitating tip vortex flows. Ocean. Eng. 2020, 195, 106703. [Google Scholar] [CrossRef]
- Landa, T.; Klug, L.; Radespiel, R.; Probst, S.; Knopp, T. Experimental and Numerical Analysis of a Streamwise Vortex Downstream of a Delta Wing. AIAA J. 2020, 58, 2857–2868. [Google Scholar] [CrossRef]
- Werner, M.; Schütte, A.; Weiss, S. Turbulence Model Effects on the Prediction of Transonic Vortex Interaction on a Multi-Swept Delta Wing. In Proceedings of the AIAA SciTech 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Asnaghi, A.; Svennberg, U.; Bensow, R.E. Evaluation of curvature correction methods for tip vortex prediction in SST k-ω turbulence model framework. Int. J. Heat Fluid Flow 2019, 75, 135–152. [Google Scholar] [CrossRef]
Flow Similitude Quantities | Physical Quantities | ||||
---|---|---|---|---|---|
Mach number | static pressure | 47075 Pa | |||
Reynolds number | static temperature | K | |||
incidence angle | – | velocity | m/s | ||
roll angle |
FlowPsi Production Formulation | Recommended NASA Designation | Major Component of Production Term | Reference Work |
---|---|---|---|
total | k--MEAH2015 | [12] | |
vorticity | k--MEAH2015-V | - | |
SOmega | k--MEAH2015-KL | [33] | |
rotation curvature | k--MEAH2015-KL-RC | [35,36] |
Compressibility Correction | Free Shear Corr. | |||
---|---|---|---|---|
Wilcox | On | |||
modified Wilcox [12] | 1.5 | 0.17 | 2.5 | On |
Sarkar | On | |||
modified Sarkar | On | |||
only free shear | On | |||
custom | adjustable | adjustable | adjustable | On |
none | 0.0 | Off |
Level | Number of Nodes | Number of Cells |
---|---|---|
coarse | ||
medium | ||
fine |
k--SST2003 | k--SST2003-RC | k--MEAH2015-KL | k--MEAH2015-KL-RC | Experiment [6] | |
---|---|---|---|---|---|
rolling moment coefficient () | |||||
difference btw. experimental | - |
Modified Wilcox + Free Shear | Wilcox + Free Shear | Sarkar + Free Shear | Only Free Shear | No Correction | Experiment [6] | |
---|---|---|---|---|---|---|
rolling moment coefficient () | ||||||
difference btw. experimental | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikbaş, E.; Baran, Ö.U. Towards Accurate Vortex Separation Simulations with RANS Using Improved k-kL Turbulence Model. Aerospace 2023, 10, 377. https://doi.org/10.3390/aerospace10040377
Dikbaş E, Baran ÖU. Towards Accurate Vortex Separation Simulations with RANS Using Improved k-kL Turbulence Model. Aerospace. 2023; 10(4):377. https://doi.org/10.3390/aerospace10040377
Chicago/Turabian StyleDikbaş, Erdem, and Özgür Uğraş Baran. 2023. "Towards Accurate Vortex Separation Simulations with RANS Using Improved k-kL Turbulence Model" Aerospace 10, no. 4: 377. https://doi.org/10.3390/aerospace10040377
APA StyleDikbaş, E., & Baran, Ö. U. (2023). Towards Accurate Vortex Separation Simulations with RANS Using Improved k-kL Turbulence Model. Aerospace, 10(4), 377. https://doi.org/10.3390/aerospace10040377