Design Exploration for Sustainable Regional Hybrid-Electric Aircraft: A Study Based on Technology Forecasts
Abstract
:1. Introduction
2. Methodology
2.1. HEAD: Hybrid-Electric Aircraft Designer Tool
- The pre-design module, which initializes the aircraft starting from the TLAR on a purely statistical basis [18].
- The sizing module, where the required powers and energies are initially estimated, allowing the aircraft to be sized [22].
- Finally, the analysis module, where the aircraft is refined based on the iterated simulation-based analysis of the reference mission [23].
- Starting from flight conditions at the beginning of the flight segment, the aerodynamic characteristics are computed.
- At the prescribed airspeed and altitude, the power distribution along the propulsive system is determined.
- Having calculated aerodynamic and propulsive forces, the new flight conditions can be determined.
2.2. Design Workflow
- Shaft power ratio at take-off, representing the shaft power delivered by the secondary propulsive line with respect to the total shaft power (primary plus secondary line).
- Supplied power ratio at take-off, representing the fraction of power supplied by the battery system, with respect to the total source power (fuel/hydrogen plus battery), in nominal take-off conditions.
- Supplied power ratio at climb, representing the fraction of power supplied by the battery system, with respect to the total source power (fuel/hydrogen plus battery), in nominal climb conditions.
- Supplied power ratio at cruise, representing the fraction of power supplied by the battery system, with respect to the total source power (fuel/hydrogen plus battery), in nominal cruise conditions.
- Wing planform surface, which impacts the wing wetted area, and thus the lift force and the take-off and landing performance of the airplane, as well as drag characteristics.
- Wing aspect ratio, which represents the ratio between the square of the wing total span and the wing planform surface, and affects the drag of the airplane.
3. Definition of Scenarios
3.1. Top-Level Aircraft Requirements
3.2. Technology Roadmap
3.3. Technology Assumptions
4. Results
4.1. Reference Aircraft
4.2. Design of Experiments
4.3. Comparison of Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Al | Aluminum |
APU | Auxiliary Power Unit |
BFH | Bern University of Applied Sciences |
CO2 | Carbon Dioxide |
DEP | Distributed Electric Propulsion |
DOE | Design Of Experiments |
DTU | Danmarks Tekniske Universitet |
EIS | Entry Into Service |
FAU-LEE | Friedrich-Alexander-Universität Erlangen-Nürnberg - Chair for Power Electronics |
FC | Fuel Cell |
FL | Flight Level |
GaN | Gallium Nitride |
GENESIS | Gauging the ENvironmEntal Sustainability of electrIc and hybrid aircraft Systems |
H2 | Molecular Hydrogen |
H2O | Water vapor |
HEAD | Hybrid-Electric Aircraft Designer |
HEFA-SPK | Hydroprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene |
HPT | High-Pressure Turbine |
ICE | Internal Combustion Engine(s) |
ISA | International Standard Atmosphere |
KTAS | True Air Speed in Knots |
LCA | Life-Cycle Analysis |
Lithium-Ion | |
Lithium-Air | |
Lithium-Sulphur | |
LPT | Low-Pressure Turbine |
MLM | Maximum Landing Mass |
MTOM | Maximum Take-Off Mass |
NOx | Nitrogen Oxide |
OPR | Overall Pressure Ratio |
PAX | Passenger(s) |
PEMFC | Polymer Electrolyte Membrane Fuel Cell(s) |
PMFC | Proton Motor Fuel Cell GmbH |
PMSM | Permanent Magnet Synchronous Machine |
SAF | Sustainable Aviation Fuel |
SFC | Specific Fuel Consumption |
SiC | Silicon Carbide |
SL | Sea Level |
SMARTUP | SmartUp Engineering s.r.l. |
SOFC | Solid-Oxide Fuel Cell(s) |
SSB | Solid-State Battery |
TLARs | Top-Level Aircraft Requirement(s) |
TMS | Thermal Management System |
TP | Turboprop |
TRL | Technology Readiness Level |
TUD | Technical University of Delft |
UNINA | University of Naples Federico II |
References
- ATAG Air Transport Action Group. Available online: https://www.atag.org/facts-figures.html (accessed on 19 October 2022).
- Friederich, C.; Robertson, P.A. Hybrid-Electric Propulsion for Aircraft. J. Aircr. 2015, 52, 76–89. [Google Scholar] [CrossRef]
- Schäfer, A.W.; Barrett, S.R.H.; Doyme, K.; Dray, L.M.; Gnadt, A.R.; Self, R.; O’Sullivan, A.; Synodinos, A.P.; Torija, A.J. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 2019, 4, 160–166. [Google Scholar] [CrossRef]
- Tom, L.; Khowja, M.; Vakil, G.; Gerada, C. Commercial Aircraft Electrification—Current State and Future Scope. Energies 2021, 14, 8381. [Google Scholar] [CrossRef]
- Adu-Gyamfi, B.A.; Good, C. Electric aviation: A review of concepts and enabling technologies. Transp. Eng. 2022, 9, 100–134. [Google Scholar] [CrossRef]
- Voskuijl, M.; van Bogaert, J.; Rao, A.G. Analysis and design of hybrid electric regional turboprop aircraft. CEAS Aeronaut. J 2018, 9, 15–25. [Google Scholar] [CrossRef]
- De Vries, R.; Brown, M.; Vos, R. Preliminary sizing method for hybrid-electric aircraft including aero-propulsive interaction effects. In Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar]
- Zamboni, J.; Vos, R.; Emeneth, M.; Schneegans, A. A Method for the Conceptual Design of Hybrid Electric Aircraft. In Proceedings of the AIAA SCITECH 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Riboldi, C.E.D. An optimal approach to the preliminary design of small hybrid-electric aircraft. Aerosp. Sci. Technol. 2018, 81, 14–31. [Google Scholar] [CrossRef]
- Riboldi, C.E.D.; Trainelli, L.; Mariani, L.; Rolando, A.; Salucci, F. Predicting the effect of electric and hybrid-electric aviation on acoustic pollution. Noise Mapp. 2020, 7, 35–56. [Google Scholar] [CrossRef]
- Brelje, B.J.; Martins, J.R.R.A. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Prog. Aerosp. Sci. 2019, 104, 1–19. [Google Scholar] [CrossRef]
- Silva, H.L.; Resende, G.J.; Neto, R.M.C.; Carvalho, A.R.D.; Gil, A.A.; Cruz, M.A.A.; Guimarães, T.A.M. A multidisciplinary design optimization for conceptual design of hybrid-electric aircraft. Struct. Multidisc. Optim. 2021, 64, 3505–3526. [Google Scholar] [CrossRef]
- Kim, H.D.; Perry, A.T.; Ansell, P.J. A Review of Distributed Electric Propulsion Concepts for Air Vehicle Technology. In Proceedings of the 2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Cincinnati, OH, USA, 9–11 July 2018. [Google Scholar]
- Patterson, M.D.; German, B.J. Simplified aerodynamics models to predict the effects of upstream propellers on wing lift. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- Patterson, M.D.; Borer, N.K. Approach considerations in aircraft with high-lift propeller systems. In Proceedings of the 17th AIAA Aviation Technology, Integration, and Operations Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar]
- Della Vecchia, P.; Malgieri, D.; Nicolosi, F.; De Marco, A. Numerical analysis of propeller effects on wing aerodynamic: Tip mounted and distributed propulsion. Transp. Res. Proc. 2018, 29, 106–115. [Google Scholar]
- Ciliberti, D.; Orefice, F.; Della Vecchia, P.; Nicolosi, F.; Corcione, S. An approach to preliminary sizing of turbo-electric aircraft with distributed propulsion. In Proceedings of the AIDAA XXV International Congress, Rome, Italy, 9–12 September 2019. [Google Scholar]
- Orefice, F.; Della Vecchia, P.; Ciliberti, D.; Nicolosi, F. Aircraft conceptual design including powertrain system architecture and distributed propulsion. In Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, USA, 19–22 August 2019. [Google Scholar]
- Orefice, F.; Nicolosi, F.; Della Vecchia, P.; Ciliberti, D. Conceptual Design of Commuter Aircraft including Distributed Electric Propulsion. In Proceedings of the AIAA AVIATION 2020 FORUM, Virtual Event, 15–19 June 2020. [Google Scholar]
- Orefice, F.; Nicolosi, F.; Ciliberti, D.; De Rosa, G. Performance Calculation for Hybrid-Electric Aircraft integrating Aero-Propulsive Interactions. In Proceedings of the AIAA Conference, Virtual, 2–6 August 2021. [Google Scholar]
- Courtin, C.; Hansman, R.J. Safety considerations in emerging electric aircraft architectures. In Proceedings of the 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar]
- Marciello, V.; Orefice, F.; Nicolosi, F.; Ciliberti, D.; Della Vecchia, P. Design of hybrid-electric aircraft with fault-tolerance considerations. Chin. J. Aeronaut. 2023, 36, 160–178. [Google Scholar] [CrossRef]
- Orefice, F.; Nicolosi, F.; Corcione, S.; Della Vecchia, P. Hybridization and Mission Analysis of a regional turboprop. In Proceedings of the AIAA AVIATION 2021 FORUM, Virtual Event, 2–6 August 2021. [Google Scholar]
- Orefice, F.; Marciello, V.; Cusati, V.; Nicolosi, F. Powertrain Model Improvement for Hybrid-Electric Regional Aircraft. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar]
- Felder, J. NASA Electric Propulsion System Studies. In Proceedings of the EnergyTech 2015 Conference, Cleveland, OH, USA, 30 November–2 December 2015. [Google Scholar]
- Torenbeek, E. Synthesis of Subsonic Airplane Design: An Introduction to the Preliminary Design, of Subsonic General Aviation and Transport Aircraft, with Emphasis on Layout, Aerodynamic Design, Propulsion, and Performance; Delft University Press: Delft, The Netherlands, 1982. [Google Scholar]
- Nicolosi, F.; Marciello, V.; Orefice, F.; Di Stasio, M.; Corcione, S.; Ruocco, M.; Cusati, V. GENESIS D1.1—Overall Requirements for (hybrid) electric 50 pax regional class A/C. July 2021. Available online: https://www.genesis-cleansky.eu/wp-content/uploads/2021/10/GENESIS_D1.1_Overall-Requirements-for-hybrid-electric-50-pax-regional-class-AC.pdf (accessed on 7 February 2023).
- Lemoine, B.; Wannemacher, T.; Baumann, N.; Guiguemdé, A.; Wang, Z.; Di Stasio, M.; Ruocco, M.; Bentheimer, C. GENESIS D2.1—Short-Term Technology Analysis Covering All Main Technologies in T2.1–T2.6. November 2021. Available online: https://www.genesis-cleansky.eu/wp-content/uploads/2022/11/GENESIS_D2.1_Short-term_Technology_Analysis_v1.0.pdf (accessed on 7 February 2023).
- Meindl, M.; Lemoine, B.; Caliandro, P.; Akay, E.; Turteltaub, S.; Wannemacher, T.; Baumann, N.; Guiguemdé, A.; Wang, Z.; Di Stasio, M.; et al. GENESIS D2.2—Medium-Term Technology Analysis Covering All Main Technologies in T2.1–T2.6. May 2022. Available online: https://www.genesis-cleansky.eu/wp-content/uploads/2022/11/GENESIS_D2.2_Medium-term_Technology_Analysis.pdf (accessed on 7 February 2023).
- Lemoine, B.; Caliandro, P.; Akay, E.; Turteltaub, S.; Wang, Z. GENESIS D2.3—Battery Technology Analysis. January 2023; submitted. [Google Scholar]
- Lemoine, B.; Caliandro, P.; Baumann, N.; Wannemacher, T.; Sala, B. GENESIS D2.4—Fuel Cell Technology Analysis. January 2023; submitted. [Google Scholar]
- Di Stasio, M.; Ruocco, M.; Marciello, V.; Nicolosi, F.; Trifari, V.; Della Vecchia, P.; De Marco, A. GENESIS D2.5—Turbine/ICE Generator Set Technology Analysis. January 2023; submitted. [Google Scholar]
- Meindl, M.; Bentheimer, C. GENESIS D2.6—Full Power Electronics Technology Analysis. January 2023; submitted. [Google Scholar]
- Meindl, M.; Bentheimer, C. GENESIS D2.7—Full Electric Drives Technology Analysis. January 2023; submitted. [Google Scholar]
- Wolters, F.; Becker, R.-G.; Schaefer, M. Impact of alternative fuels on engine performance and CO2-emissions. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences, Brisbane, Australia, 23–28 September 2012. [Google Scholar]
- Narciso, M.; Melo de Sousa, J.M. Influence of Sustainable Aviation Fuels on the Formation of Contrails and Their Properties. Energies 2021, 14, 5557. [Google Scholar] [CrossRef]
- Airport Cooperative Research Program (ACRP). Alternative Jet Fuels Emissions: Quantification Methods Creation and Validation Report. Available online: https://nap.nationalacademies.org/read/25548/chapter/1 (accessed on 30 January 2023).
- Di Stasio, M. Efficient Gas Turbine Modeling for Low Emissions Aircraft Preliminary Design Workflows. Ph.D. Thesis, Department of Industrial Engineering, University of Naples Federico II, Naples, Italy, 2022. [Google Scholar]
- Wang, D.; Liu Xu, V.; De Breuker, R. Preliminary aeroelastic design of composite wings with distributed electric propulsion. In Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD 2022), Madrid, Spain, 13–17 June 2022. [Google Scholar]
- Buyck, C. ATR Upgrades Turboprops with New Pratt Engines; AIN Media Group: Newark, NJ, USA, 2021. [Google Scholar]
- ATR Family. Available online: http://www.atraircraft.com/products_app/media/pdf/FAMILY_septembre2014.pdf (accessed on 26 October 2022).
- The ATR 42-600, Certified by EASA. Available online: https://www.atr-aircraft.com/presspost/the-atr-42-600-certified-by-easa/ (accessed on 26 October 2022).
- ATR 42-600—The Ideal Local Commuter. Available online: https://www.atr-aircraft.com/wp-content/uploads/2022/06/ATR_Fiche42-600-3.pdf (accessed on 26 October 2022).
- Saavedra-Rubio, K.; Thonemann, N.; Crenna, E.; Lemoine, B.; Caliandro, P.; Laurent, A. Stepwise guidance for data collection in the life cycle inventory (LCI) phase: Building technology-related LCI blocks. J. Clean. Prod. 2022, 366, 132903. [Google Scholar] [CrossRef]
Description | Value | Unit | Notes |
---|---|---|---|
Design Range | 600 | nmi | |
Typical Range | 200 | nmi | |
Time to Climb (Design Mission) | 13 | min | 1500 m—FL200 at MTOM |
Cruise Speed | 295 | KTAS | FL 200 |
Take-Off Field Length | <1200 | m | At SL, ISA and MTOM |
Landing Field Length | <1200 | m | At SL, ISA and MLM |
Design Payload | 4750 | kg | 50 PAX—95 kg per PAX |
MTOM | <24,000 | kg | <27,000 kg for medium- and long-term hydrogen-based configurations. |
Scenario | Short-Term (2025–2035) | Medium-Term (2035–2045) | Long-Term (2045–2050+) | |||||
---|---|---|---|---|---|---|---|---|
Technology | ICE | ICE
+ Battery | ICE | ICE
+ Battery | PEMFC
+ Battery | ICE | SOFC
+ Battery | PEMFC
+ Battery |
Wing Material | Al Alloy | Carbon/ Epoxy | Al Alloy | Carbon/ Epoxy | Carbon/ Epoxy | Al Alloy | Biodegradable Bio Fibres | Biodegradable Bio Fibres |
ICE | 3-spool TP OPR 18 Cooled HPT | 3-spool TP OPR 18 Cooled HPT | 3-spool TP OPR 19 Cooled H/LPT | 3-spool TP OPR 19 Cooled H/LPT | - | 3-spool TP OPR 19 Cooled H/LPT | - | - |
Batteries | - | - | /SSB | /SSB | - | /SSB | /SSB | |
Fuel Cells | - | - | - | - | PEMFC | - | SOFC | PEMFC |
Primary Electric Machines | - | Liquid Cooled PMSM | - | Halbach Array PMSM | Halbach Array PMSM | - | Halbach Array PMSM | Halbach Array PMSM |
Secondary Electric Machines | - | Liquid Cooled PMSM | - | Liquid Cooled PMSM | Halbach Array PMSM | - | Halbach Array PMSM | Halbach Array PMSM |
Fuel | Kerosene (Jet A-1) | SAF (HEFA-SPK) | Kerosene (Jet A-1) | SAF (HEFA-SPK) | Hydrogen | Kerosene (Jet A-1) | Hydrogen | Hydrogen |
Hydrogen Tanks | - | - | - | - | Pressurized Tanks | - | Cryogenic Tanks | Cryogenic Tanks |
Power Electronics | - | SiC Converters | - | SiC Converters | SiC Converters | - | GaN Converters | GaN Converters |
Short-Term (2025–2035) | Medium-Term (2035–2045) | Long-Term (2045–2050+) | ||
---|---|---|---|---|
Technology | Liquid Cooled PMSM with
Hairpin Windings | Halbach Array PMSM with
Direct Cooled Stator Windings | ||
Parameter | Unit | Value | ||
Specific Power | kW/kg | 5–6 | 9–11 |
Short-Term | Medium-Term | Long-Term | ||
---|---|---|---|---|
(2025–2035) | (2035–2045) | (2045–2050+) | ||
Converter | Silicon Carbide (SiC) | Gallium Nitride (GaN) | ||
Efficiency | Power Density | Efficiency | Power Density | |
Motor Drive Inverter | 99.0% | 63 kW/kg | 99.0% | 94.2 kW/kg |
Generator Drive Inverter | 99.0% | 63 kW/kg | 99.0% | 94.2 kW/kg |
Battery Converter | 98.0% | 50 kW/kg | 98.5% | 100 kW/kg |
Fuel Cells Converter | 98.0% | 50 kW/kg | 98.0% | 120 kW/kg |
Short-Term | Medium-Term | Long-Term | |||
---|---|---|---|---|---|
(2025–2035) | (2035–2045) | (2045–2050+) | |||
Technology | SSB | ||||
Parameter | Unit | Battery Pack Value | |||
System Specific Energy | Wh/kg | 280.0 | 675.0 | 585.0 | 945.0 |
Nominal C-rate | 1/h | 2.0 | 1.5 | 4.0 | 2.0 |
System Energy Density | Wh/L | 420.0 | 735.0 | 1000.0 | 945.0 |
Short-Term | Medium-Term | Long-Term | |||||
---|---|---|---|---|---|---|---|
(2025–2035) | (2035–2045) | (2045–2050+) | |||||
Technology | PEMFC | SOFC | PEMFC | SOFC | PEMFC | SOFC | |
Parameter | Unit | Fuel Cell Plant Value | |||||
Gravimetric Power Density | kW/kg | 0.5 | 0.2 | 1.2 | 1.125 | 2.19 | 1.875 |
Volumetric Power Density | kW/L | 0.3 | 0.5 | 0.8 | 1.0 | 1.5 | 1.5 |
ATR 42-like Aircraft | Conventional 2030 | Conventional 2040 | Conventional 2050 | |||||
---|---|---|---|---|---|---|---|---|
600 nmi Mission | 200 nmi Mission | 600 nmi Mission | 200 nmi Mission | 600 nmi Mission | 200 nmi Mission | 600 nmi Mission | 200 nmi Mission | |
Block Fuel (kg) | 1481.5 | 610.7 | 1097.3 (−25.9%) | 473.1 (−22.4%) | 1003.9 (−32.2%) | 431.5 (−29.3%) | 981.3 (−33.7%) | 421.0 (−31.0%) |
Scenario | Short-Term | Medium-Term | Long-Term | ||
---|---|---|---|---|---|
(2025–2035) | (2035–2045) | (2045–2050+) | |||
ICE | ICE | PEMFC | SOFC | ||
+ | + | + | + | ||
Battery | Battery | Battery | Battery | ||
Component | Unit | Value | |||
Wing Surface | m2 | 54.5 | 59.1 | 70.8 | 58.6 |
Wing Aspect Ratio | - | 11.1 | 12.3 | 12.9 | 12.2 |
Shaft Power Ratio at Take-Off | - | 0.420 | 0.429 | 1.000 | 1.000 |
Supplied Power Ratio at Take-Off | - | 0.172 | 0.341 | 0.390 | 0.379 |
Supplied Power Ratio at Climb | - | 0.168 | 0.284 | 0.326 | 0.263 |
Supplied Power Ratio at Cruise | - | 0.066 | 0.178 | 0.179 | 0.187 |
Scenario | Short-Term | Medium-Term | Long-Term | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(2025–2035) | (2035–2045) | (2045–2050+) | ||||||||
ICE | ICE | PEMFC | SOFC | PEMFC | ||||||
+ | + | + | + | + | ||||||
Battery | Battery | Battery | Battery | Battery | ||||||
Component | Rated | Rated | Rated | Rated | Rated | |||||
Q.ty | Power | Q.ty | Power | Q.ty | Power | Q.ty | Power | Q.ty | Power | |
(kW) | (kW) | (kW) | (kW) | (kW) | ||||||
Thermal Engine | 2 | 1492 (×2) | 2 | 1009 (×2) | - | - | - | - | - | - |
Primary Electric Machine | 2 | 1108 (×2) | 2 | 1700 (×2) | - | - | - | - | - | - |
Secondary Electric Machine | 8 | 290 (×8) | 8 | 290 (×8) | 10 | 600 (×10) | 10 | 600 (×10) | 10 | 600 (×10) |
Fuel Cell System | - | - | - | - | 2 | 1180 (×2) | 2 | 1236 (×2) | 2 | 1273 (×2) |
Battery | 1 | 2108 (×1) | 1 | 3340 (×1) | 1 | 3656 (×1) | 1 | 4510 (×1) | 1 | 4466 (×1) |
Scenario | Short-Term | Medium-Term | Long-Term | ||||||
---|---|---|---|---|---|---|---|---|---|
(2025–2035) | (2035–2045) | (2045–2050+) | |||||||
ICE | ICE | PEMFC | SOFC | PEMFC | |||||
ICE | + | ICE | + | + | ICE | + | + | ||
Battery | Battery | Battery | Battery | Battery | |||||
Component | Unit | Mass | |||||||
Wing | kg | 1504.4 | 1450.8 | 1484.1 | 1580.2 | 1790.8 | 1481.3 | 3821.3 | 3818.3 |
Horizontal Tail | kg | 201.0 | 201.0 | 201.0 | 210.9 | 241.3 | 201.0 | 187.8 | 182.8 |
Vertical Tail | kg | 257.4 | 257.4 | 257.4 | 309.3 | 370.7 | 257.4 | 268.9 | 260.8 |
Fuselage | kg | 2374.3 | 2374.3 | 2374.3 | 2397.5 | 3183.6 | 2374.3 | 2969.6 | 3129.6 |
Control Surfaces | kg | 334.8 | 408.3 | 329.9 | 396.6 | 462.2 | 329.3 | 427.6 | 430.4 |
Main Undercarriage | kg | 659.3 | 872.5 | 645.9 | 837.0 | 1042.2 | 644.1 | 932.0 | 940.7 |
Nose Undercarriage | kg | 153.8 | 192.2 | 151.3 | 185.9 | 221.5 | 151.0 | 202.6 | 204.1 |
Primary Nacelles | kg | 384.9 | 398.5 | 377.1 | 403.6 | 0.0 | 372.7 | 0.0 | 0.0 |
Secondary Nacelles | kg | 0.0 | 176.1 | 0.0 | 174.0 | 444.3 | 0.0 | 450.7 | 450.7 |
Structure | kg | 5870.0 | 6331.2 | 5821.2 | 6495.1 | 7756.5 | 5811.0 | 9260.5 | 9417.5 |
Fuel System (Thermal) | kg | 114.7 | 114.7 | 114.7 | 120.6 | 0.0 | 114.7 | 0.0 | 0.0 |
ICE (incl. Primary Gearboxes) | kg | 699.5 | 641.8 | 505.6 | 330.1 | 0.0 | 499.3 | 0.0 | 0.0 |
Hydrogen Tanks | kg | 0.0 | 0.0 | 0.0 | 0.0 | 2685.6 | 0.0 | 410.2 | 529.3 |
Fuel Cell Systems | kg | 0.0 | 0.0 | 0.0 | 0.0 | 1963.1 | 0.0 | 1318.0 | 1162.2 |
Secondary Gearboxes | kg | 0.0 | 145.1 | 0.0 | 184.4 | 349.5 | 0.0 | 311.2 | 311.2 |
Primary Electric Machines | kg | 0.0 | 346.0 | 0.0 | 309.7 | 0.0 | 0.0 | 0.0 | 0.0 |
Secondary Electric Machines | kg | 0.0 | 428.0 | 0.0 | 428.0 | 679.8 | 0.0 | 679.8 | 679.8 |
Primary Propellers | kg | 667.7 | 576.6 | 657.2 | 582.4 | 0.0 | 0.0 | 0.0 | 0.0 |
Secondary Propellers | kg | 0.0 | 437.3 | 0.0 | 475.8 | 1126.4 | 651.2 | 1035.1 | 1035.1 |
Battery | kg | 0.0 | 3765.3 | 0.0 | 3341.2 | 3611.4 | 0.0 | 2386.0 | 2362.5 |
Cabling | kg | 0.0 | 68.1 | 0.0 | 72.8 | 83.2 | 0.0 | 75.7 | 76.6 |
Power Electronics (incl. TMS) | kg | 0.0 | 295.6 | 0.0 | 239.4 | 336.7 | 0.0 | 262.1 | 263.0 |
Powerplant | kg | 1482.1 | 6818.6 | 1277.9 | 6084.4 | 10,835.7 | 1265.2 | 6478.1 | 6419.5 |
Air Conditioning | kg | 591.4 | 691.7 | 591.4 | 691.7 | 765.9 | 591.4 | 750.8 | 765.4 |
Electrical Systems | kg | 741.6 | 881.9 | 741.6 | 881.9 | 1024.2 | 741.6 | 995.6 | 1023.4 |
Pneumatic/ Hydraulic Systems | kg | 416.1 | 508.9 | 412.2 | 499.6 | 595.9 | 411.9 | 550.4 | 552.5 |
Instruments | kg | 326.9 | 430.8 | 321.9 | 421.3 | 512.5 | 321.4 | 471.2 | 473.2 |
Auxiliary Power Unit | kg | 181.6 | 181.6 | 181.6 | 181.6 | 181.6 | 181.6 | 181.6 | 181.6 |
Systems | kg | 2257.7 | 2694.9 | 2248.8 | 2676.1 | 3080.1 | 2248.0 | 2949.6 | 2996.1 |
Furnishing | kg | 1158.8 | 1158.8 | 1158.8 | 1158.8 | 1290.8 | 1158.8 | 1262.5 | 1289.9 |
Crew | kg | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 |
Operational Items | kg | 430.9 | 430.9 | 430.9 | 430.9 | 430.9 | 430.9 | 430.9 | 430.9 |
Operative Equipment | kg | 810.9 | 810.9 | 810.9 | 810.9 | 810.9 | 810.9 | 810.9 | 810.9 |
Operating Empty Mass | kg | 11,579.5 | 17,814.4 | 11,317.6 | 17,225.3 | 23,774.0 | 11,293.9 | 20,761 | 20,933.9 |
Design Payload | kg | 4750.0 | 4750.0 | 4750.0 | 4750.0 | 4750.0 | 4750.0 | 4750.0 | 4750.0 |
Design Fuel 1 | kg | 1482.1 | 1462.8 | 1353.7 | 1045.7 | 0.0 | 1322.0 | 0.0 | 0.0 |
Design H2 2 | kg | 0.0 | 0.0 | 0.0 | 0.0 | 390.7 | 0.0 | 281.8 | 361.4 |
Maximum Take-Off Mass | kg | 17,811.6 | 24,027.2 | 17,421.3 | 23,021.0 | 28,914.7 | 17,365.8 | 25,793.3 | 26,045.3 |
Short-Term (2025–2035) | Medium-Term (2035–2045) | Long-Term (2045–2050+) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ICE
+ Battery | ICE
+ Battery | PEMFC
+ Battery | SOFC
+ Battery | PEMFC
+ Battery | |||||||
Parameter | Unit | Value | Diff. | Value | Diff. | Value | Diff. | Value | Diff. | Value | Diff. |
Entry Into Service | year | 2030 | 2040 | 2040 | 2050 | 2050 | |||||
Primary Fuel | - | HEFA-SPK | HEFA-SPK | Pressurized H2 | Liquid H2 | Liquid H2 | |||||
Primary Power Source | - | ICE | ICE | PEMFC | SOFC | PEMFC | |||||
Secondary Power Source | - | Li-Ion Battery | Li-Ion Battery | Li-S Battery | Li-O2 Battery | Li-O2 Battery | |||||
Design Range | nmi | 600 | 0.0% | 600 | 0.0% | 600 | 0.0% | 600 | 0.0% | 600 | 0.0% |
Cruise Altitude | ft | 20,000 | 0.0% | 20,000 | 0.0% | 20,000 | 0.0% | 20,000 | 0.0% | 20,000 | 0.0% |
Maximum Take-Off Mass | kg | 24,027 | 34.9% | 23,021 | 32.1% | 28,915 | 66.0% | 25,793 | 48.5% | 26,045 | 50.0% |
600 nmi Design Mission | |||||||||||
Fuel | kg | 1051.0 | −4.2% | 730.0 | −27.3% | 229.6 | −77.1% | 162.2 | −83.5% | 209.1 | −78.7% |
Fuel Energy | MWh | 12.86 | −2.5% | 8.93 | −26.0% | 7.65 | −36.6% | 5.41 | −54.1% | 6.97 | −40.9% |
Battery Energy | MWh | 0.84 | 100.0% | 1.80 | 100.0% | 1.95 | 100.0% | 1.80 | 100.0% | 1.79 | 100.0% |
CO2 | kg | 3258.0 | −5.7% | 2263.0 | −28.4% | 0.0 | −100.0% | 0.0 | −100.0% | 0.0 | −100.0% |
NOx | kg | 13.01 | 3.4% | 10.05 | −16.8% | 0.00 | −100.0% | 0.00 | −100.0% | 0.00 | −100.0% |
H2O | kg | 1422.0 | 5.4% | 987.7 | -20.0% | 2051.8 | 66.2% | 1450.1 | 20.1% | 1868.9 | 54.8% |
200 nmi Typical Mission | |||||||||||
Fuel | kg | 361.6 | −23.6% | 237.1 | −45.1% | 61.8 | −85.7% | 46.1 | −89.0% | 60.4 | −85.7% |
Fuel Energy | MWh | 4.42 | −22.2% | 2.90 | −44.1% | 2.06 | −60.2% | 1.54 | −69.6% | 2.01 | −60.2% |
Battery Energy | MWh | 0.84 | 100.0% | 0.90 | 100.0% | 0.97 | 100.0% | 0.90 | 100.0% | 0.89 | 100.0% |
CO2 | kg | 1120.9 | −24.8% | 735.0 | −45.9% | 0.0 | −100.0% | 0.0 | −100.0% | 0.0 | −100.0% |
NOx | kg | 2.50 | −49.0% | 1.65 | −64.7% | 0.00 | −100.0% | 0.00 | −100.0% | 0.00 | −100.0% |
H2O | kg | 489.2 | −15.9% | 320.8 | −39.6% | 552.8 | 4.1% | 412.3 | −20.4% | 539.7 | 4.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marciello, V.; Di Stasio, M.; Ruocco, M.; Trifari, V.; Nicolosi, F.; Meindl, M.; Lemoine, B.; Caliandro, P. Design Exploration for Sustainable Regional Hybrid-Electric Aircraft: A Study Based on Technology Forecasts. Aerospace 2023, 10, 165. https://doi.org/10.3390/aerospace10020165
Marciello V, Di Stasio M, Ruocco M, Trifari V, Nicolosi F, Meindl M, Lemoine B, Caliandro P. Design Exploration for Sustainable Regional Hybrid-Electric Aircraft: A Study Based on Technology Forecasts. Aerospace. 2023; 10(2):165. https://doi.org/10.3390/aerospace10020165
Chicago/Turabian StyleMarciello, Valerio, Mario Di Stasio, Manuela Ruocco, Vittorio Trifari, Fabrizio Nicolosi, Markus Meindl, Bruno Lemoine, and Priscilla Caliandro. 2023. "Design Exploration for Sustainable Regional Hybrid-Electric Aircraft: A Study Based on Technology Forecasts" Aerospace 10, no. 2: 165. https://doi.org/10.3390/aerospace10020165
APA StyleMarciello, V., Di Stasio, M., Ruocco, M., Trifari, V., Nicolosi, F., Meindl, M., Lemoine, B., & Caliandro, P. (2023). Design Exploration for Sustainable Regional Hybrid-Electric Aircraft: A Study Based on Technology Forecasts. Aerospace, 10(2), 165. https://doi.org/10.3390/aerospace10020165