Perception of Wind in Open Spaces
Abstract
:1. Introduction
- (1)
- Determine people’s wind perception in different seasons;
- (2)
- Examining the impact of spatial configuration on people’s wind perceptions;
- (3)
- Determining the wind sensitivity thresholds for two seasons (cool and warm);
- (4)
- Comparing the impact of meteorological parameters on people’s perceptions in different seasons.
2. Methodology
2.1. Study Sites
2.2. Field Survey
2.3. Data Processing and Analysis
3. Results
3.1. Micrometeorological Measurements
3.2. Wind Perceptions in Different Seasons
3.3. Wind Perceptions in Different Sites
3.4. Association between Wind Perceptions and Va
3.5. Comparative Analysis of Thermal Perception and Environmental Parameters in Different Seasons
4. Discussion
4.1. Meteorological Conditions and Wind Comfort Perception
Geometry and Wind Perceptions
4.2. Wind Comfort Sensitivity Thresholds
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- BOM. Victoria Weather and Warnings. Available online: http://www.bom.gov.au/vic/?ref=hdr (accessed on 2 May 2019).
- Gaitani, N.; Mihalakakou, G.; Santamouris, M. On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Build. Environ. 2007, 42, 317–324. [Google Scholar] [CrossRef]
- ASHRAE 55. Thermal Environmental Conditions for Human Occupancy. In Standard 55-2010; American Society of Heating, Refrigerating and Air-conditioning Engineers: Atlanta, GA, USA, 2017; p. 7. [Google Scholar]
- Fanger, O.P. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970; p. 244. [Google Scholar]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor human thermal perception in various climates: A comprehensive review of approaches, methods and quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef] [PubMed]
- Blocken, B.; Carmeliet, J. Pedestrian wind environment around buildings: Literature review and practical examples. J. Therm. Envel. Build. Sci. 2004, 28, 107–159. [Google Scholar] [CrossRef]
- Zhen, M.; Zhou, D.; Bian, G.; Yang, Y.; Liu, Y. Wind environment of urban residential blocks: A research review. Archit. Sci. Rev. 2018, 62, 66–73. [Google Scholar] [CrossRef]
- Walton, D.; Dravitzki, V.; Donn, M. The relative influence of wind, sunlight and temperature on user comfort in urban outdoor spaces. Build. Environ. 2007, 42, 3166–3175. [Google Scholar] [CrossRef]
- Cheng, V.; Ng, E.; Chan, C.; Givoni, B. Outdoor thermal comfort study in a sub-tropical climate: A longitudinal study based in Hong Kong. Int. J. Biometeorol. 2012, 56, 43–56. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, T.; Li, J.; Liu, J.; Niu, J.; Mak, C.M.; Lin, Z. Evaluation of a multi-nodal thermal regulation model for assessment of outdoor thermal comfort: Sensitivity to wind speed and solar radiation. Build. Environ. 2018, 132, 45–56. [Google Scholar] [CrossRef]
- Al-Sallal, K.A.; Al-Rais, L. Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai. Renew. Energy 2012, 38, 40–49. [Google Scholar] [CrossRef]
- Du, Y.; Mak, C.M.; Liu, J.; Xia, Q.; Niu, J.; Kwok, K.C. Effects of lift-up design on pedestrian level wind comfort in different building configurations under three wind directions. Build. Environ. 2017, 117, 84–99. [Google Scholar] [CrossRef]
- Soligo, M.J.; Irwin, P.A.; Williams, C.J.; Schuyler, G.D. A comprehensive assessment of pedestrian comfort including thermal effects. J. Wind Eng. Ind. Aerodyn. 1998, 77, 753–766. [Google Scholar] [CrossRef]
- Rajagopalan, P.; Lim, K.C.; Jamei, E. Urban heat island and wind flow characteristics of a tropical city. Sol. Energy 2014, 107, 159–170. [Google Scholar] [CrossRef]
- Oliveira, S.; Andrade, H. An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. Int. J. Biometeorol. 2007, 52, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.S.; Nichol, J.E.; To, P.H.; Wang, J. A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Build. Environ. 2010, 45, 1880–1889. [Google Scholar] [CrossRef]
- Ghali, K.; Ghaddar, N.; Bizri, M. The influence of wind on outdoor thermal comfort in the city of Beirut: A theoretical and field study. HvacR Res. 2011, 17, 813–828. [Google Scholar]
- Kato, S.; Hiyama, K. Ventilating Cities: Air-Flow Criteria for Healthy and Comfortable Urban Living; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Hsieh, C.-M.; Huang, H.-C. Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Comput. Environ. Urban Syst. 2016, 57, 130–143. [Google Scholar] [CrossRef]
- Du, Y.; Mak, C.M.; Kwok, K.; Tse, K.-T.; Lee, T.-c.; Ai, Z.; Liu, J.; Niu, J. New criteria for assessing low wind environment at pedestrian level in Hong Kong. Build. Environ. 2017, 123, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Shooshtarian, S.; Rajagopalan, P.; Sagoo, A. A comprehensive review of thermal adaptive strategies in outdoor spaces. Sustain. Cities Soc. 2018, 41, 647–665. [Google Scholar] [CrossRef]
- Shahidan, M.F.; Jones, P. 179: Plant Canopy Design in Modifying Urban Thermal Environment: Theory and Guidelines. In Proceedings of the 25th Conference on Passive and Low Energy Architecture-(PLEA), Dublin, Irland, 22–24 October 2008. [Google Scholar]
- Tse, K.-T.; Zhang, X.; Weerasuriya, A.U.; Li, S.; Kwok, K.C.; Mak, C.M.; Niu, J. Adopting ‘lift-up’building design to improve the surrounding pedestrian-level wind environment. Build. Environ. 2017, 117, 154–165. [Google Scholar] [CrossRef]
- Kubota, T.; Miura, M.; Tominaga, Y.; Mochida, A. Wind tunnel tests on the relationship between building density and pedestrian-level wind velocity: Development of guidelines for realizing acceptable wind environment in residential neighborhoods. Build. Environ. 2008, 43, 1699–1708. [Google Scholar] [CrossRef]
- Abd Razak, A.; Hagishima, A.; Sa, A.; Abidin, Z.; Zaki, S.A. Progress in wind environment and outdoor air ventilation at pedestrian level in urban area. In Applied Mechanics and Materials; Trans Tech Publications: Zurich, Switzerland, 2016; pp. 236–240. [Google Scholar]
- Coffee, N.T.; Lange, J.; Baker, E. Visualising 30 years of population density change in Australia’s major capital cities. Aust. Geogr. 2016, 47, 511–525. [Google Scholar] [CrossRef]
- Holdsworth, S.; Kenny, D.; Cooke, J.; Matfin, S. Are We Living with Our Heads in the Clouds? Perceptions of Liveability in the Melbourne High-Rise Apartment Market. In Energy Performance in the Australian Built Environment; Springer: Berlin, Germany, 2019; pp. 181–198. [Google Scholar]
- Chapman, S.; Watson, J.; McAlpine, C. Large seasonal and diurnal anthropogenic heat flux across four Australian cities. J. South. Hemisph. Earth Syst. Sci. 2016, 66, 342–360. [Google Scholar]
- Jacobs, S.J.; Pezza, A.B.; Barras, V.; Bye, J. A new ‘bio-comfort’perspective for Melbourne based on heat stress, air pollution and pollen. Int. J. Biometeorol. 2014, 58, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, M.; de Dear, R.; Wood, G.; Samali, B. Development of a bioclimatic wind rose tool for assessment of comfort wind resources in Sydney, Australia for 2013 and 2030. Int. J. Biometeorol. 2018, 62, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- GWTS. Central City Built Form Review Wind Assessments; GWTS: Melbourne, Australia, 2016; p. 107. [Google Scholar]
- Melbourne, W. Criteria for environmental wind conditions. J. Wind Eng. Ind. Aerodyn. 1978, 3, 241–249. [Google Scholar] [CrossRef]
- Lam, C.K.C.; Loughnan, M.; Tapper, N. Visitors’ perception of thermal comfort during extreme heat events at the Royal Botanic Garden Melbourne. Int. J. Biometeorol. 2018, 62, 97–112. [Google Scholar] [CrossRef]
- Sharifi, E.; Sivam, A.; Boland, J. Resilience to heat in public space: A case study of Adelaide, South Australia. J. Environ. Plan. Manag. 2016, 59, 1833–1854. [Google Scholar] [CrossRef]
- Spagnolo, J.; de Dear, R. A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ. 2003, 38, 721–738. [Google Scholar] [CrossRef] [Green Version]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol. 2015, 124, 55–68. [Google Scholar] [CrossRef]
- Department of Sustainability and Environment (Ed.) Guidelines for Higher Density Residential Development Environment; Department of Sustainability and Environment: Victoria, Australia, 2004. [Google Scholar]
- Department of Infrastructure and Planning (Ed.) Multiple Dwelling Code. Planning; Department of Infrastructure and Planning: Brisbane, Australia, 2015. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- BoM. Climate Statistics for Australian Locations; BoM.: Melbourne, Australia, 1981–2010, 2019. [Google Scholar]
- Shooshtarian, S.; Rajagopalan, P. Daytime thermal performance of different urban surfaces: A case study in educational institution precinct of Melbourne. Archit. Sci. Rev. 2018, 61, 29–47. [Google Scholar] [CrossRef]
- Grimmond, C.; Potter, S.; Zutter, H.; Souch, C. Rapid methods to estimate sky-view factors applied to urban areas. Int. J. Climatol. 2001, 21, 903–913. [Google Scholar] [CrossRef]
- Watson, I.; Johnson, G. Graphical estimation of sky view-factors in urban environments. J. Climatol. 1987, 7, 193–197. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—application of the RayMan model. International Journal of Biometeorology 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- ISO 7730. Moderate Thermal Environments—Determination of the PMV and PPD Indices and Specifications of the Conditions for Thermal Comfort; International Organization for Standardization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- ISO 10551. Ergonomics of the Thermal Environment—Assessment of the Influence of the thermal Environment Using Subjective Judgement Scales; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- Ballantyne, E.; Hill, R.; Spencer, J. Probit analysis of thermal sensation assessments. Int. J. Biometeorol. 1977, 21, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.J. Data Analysis Using SPSS for Windows Versions 8–10: A Beginner’s Guide; Sage Publication: London, UK, 2001; p. 252. [Google Scholar]
- Brager, G.; Fountain, M.; Benton, C.; Arens, E.A.; Bauman, F. A Comparison of Methods for Assessing Thermal Sensation and Acceptability in the Field. In Thermal Comfort: Past, Present and Future; Building Research Establishment: Watford, UK, 1993; pp. 16–39. [Google Scholar]
- Zhang, Y.; Zhao, R. Relationship between thermal sensation and comfort in non-uniform and dynamic environments. Build. Environ. 2009, 44, 1386–1391. [Google Scholar] [CrossRef]
- Lai, D.; Guo, D.; Hou, Y.; Lin, C.; Chen, Q. Studies of outdoor thermal comfort in northern China. Build. Environ. 2014, 77, 110–118. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, X.P.; Niu, J.L.; Kwok, K.C.S. Effects of building lift-up design on the wind environment for pedestrians. Indoor Built Environ. 2017, 26, 1214–1231. [Google Scholar] [CrossRef]
- Liu, J.; Niu, J.; Mak, C.M.; Xia, Q. Detached eddy simulation of pedestrian-level wind and gust around an elevated building. Build. Environ. 2017, 125, 168–179. [Google Scholar] [CrossRef]
- Willemsen, E.; Wisse, J.A. Design for wind comfort in The Netherlands: Procedures, criteria and open research issues. J. Wind Eng. Ind. Aerodyn. 2007, 95, 1541–1550. [Google Scholar] [CrossRef]
- City of Montreal (Ed.) Ville de Montréal—Master Plan—Part III—Complementary Document—1/6. Montreal; City of Montreal: Montreal, QC, Canada, 2003. [Google Scholar]
- Szűcs, Á. Wind comfort in a public urban space—Case study within Dublin Docklands. Front. Archit. Res. 2013, 2, 50–66. [Google Scholar] [CrossRef]
- Shi, X.; Zhu, Y.; Duan, J.; Shao, R.; Wang, J. Assessment of pedestrian wind environment in urban planning design. Landsc. Urban Plan. 2015, 140, 17–28. [Google Scholar] [CrossRef]
Measured Parameter | Logger | Specifications | Measuring Range | Accuracy and Resolution | Unit |
---|---|---|---|---|---|
Air temperature (Ta) | TESTO IAQ probe 0632 1543 | IAQ probe for analysing indoor air quality, CO2, humidity, temperature and absolute pressure measurement | 0 to 50 | ±0.5 (at 22); 0.1 | °C |
Relative humidity (RH) | TESTO IAQ probe 0632 1543 | IAQ probe | 0 to +100 (non-condensing) | ±(1.8 +0.7 of meas. val.) and ±0.03 RH/K (based on 25 °C); 0.1 | % |
Globe temperature (Tg) | TESTO Globe thermometer 0602 0743 | Black painted Globe probe Ø 150mm, TC Type K, made of copper | 0 to +120 | Class 1 (−40 to +1000); 0.1 | °C |
Air velocity (Va) | TESTO COMFORT probe 0628 0143 | Omni-directional Comfort probe for the degree of turbulence measurement according to EN 13779 | 0 to 5 | 0.5 ±(0.03 + 4% of meas. val.); 0.01 | m/s |
Site 1 | Site 2 | Site 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter Unit of Measurement | Ta (°C) | Tg (°C) | Sr (W/m2) | Va (m/s) | Ta (°C) | Tg (°C) | Sr (W/m2) | Va (m/s) | Ta (°C) | Tg (°C) | Sr (W/m2) | Va (m/s) |
Spring | 22.8 | 26.4 | 644 | 1.4 | 23.8 | 28.7 | 443 | 1.7 | 19.3 | 23.6 | 486 | 1.6 |
Summer | 22.2 | 27.3 | 502 | 1.9 | 29.1 | 34.6 | 517 | 1.5 | 24.3 | 27.2 | 352 | 1.5 |
Autumn | 17.4 | 20.5 | 204.3 | 1.1 | 16.7 | 18.2 | 129.6 | 1.2 | 15.1 | 15.8 | 64.8 | 2.3 |
Aggregated | 22.0 | 24.5 | 516 | 1.6 | 25.2 | 29.8 | 461 | 1.5 | 16.6 | 17.5 | 320 | 1.6 |
N | Minimum | Maximum | Mean | Std. Deviation | |
---|---|---|---|---|---|
Spring | 368 | 0 | 4 | 1.59 | 0.657 |
Summer | 413 | 0 | 5 | 1.67 | 0.735 |
Autumn | 242 | 0 | 6 | 1.64 | 1.090 |
Season | Site 1 R2 | Site 2 R2 | Site 3 R2 | Total R2 |
---|---|---|---|---|
Spring | 0.44 | 0.70 | 0.37 | 0.82 |
Summer | 0.09 | 0.28 | 0.82 | 0.45 |
Autumn | 0.46 | 0.33 | 0.39 | 0.85 |
Total | 0.20 | 0.66 | 0.83 |
Measure Unit of Measurement Season | Preferred Va (m/s) | Lower Bound (m/s) | Upper Bound (m/s) |
---|---|---|---|
Spring | 2.04 | 1.76 | 2.49 |
Summer | 4.51 | >3.11 | |
Autumn | 1.2 | 0.94 | 1.4 |
Collective | 2.35 | 2.05 | 2.86 |
Variable | TSV (Spring) | TSV (Summer) | TSV (Autumn) | TSV (Pooled) |
---|---|---|---|---|
Ta | 58 ** | 58 ** | 43 ** | 71 ** |
Tg | 47 ** | 62 ** | 42 ** | 70 ** |
Va | −8 | −11 ** | −27 ** | −10 ** |
RH | −47 ** | −45 ** | −26 ** | −36 ** |
Sr | 29 ** | 37 ** | 23 ** | 48 ** |
City/Country/Province | Spring m/s | Summer m/s | Autumn m/s | Winter m/s | All Year Round m/s | |
---|---|---|---|---|---|---|
This study | Melbourne | 2.04 (1.76–2.49) | 4.51 (>3.11) | 1.25 (0.94–1.4) | NA | 2.53 (entire study period) (2.05–2.86) |
City of Montreal [56] | Montreal, Canada | NA | 6.11< | NA | 4.15< | NA |
Willemsen and Wisse [55] | Netherland | NA | NA | NA | NA | Traversing: <10 (good), 10–20 (moderate), >20 (poor) Strolling: <5 (good), 5–10 (moderate), >10 (poor) Sitting: <2.5 (good), 2.5–5 (sitting), >5 (poor) |
Szűcs [57] | Dublin | NA | NA | NA | NA | Walking: <5.4 Standing: <3.9 Sitting: <2.6 |
Shi, et al. [58] | Jiangsu, China | NA | NA | NA | NA | Walking: < 5 Standing: <3.9 Sitting: 2.5 |
GWTS [30] | Melbourne | NA | Sitting: ≤3 Standing: ≤4 Walking: ≤5 | NA | NA | NA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shooshtarian, S.; Rajagopalan, P. Perception of Wind in Open Spaces. Climate 2019, 7, 106. https://doi.org/10.3390/cli7090106
Shooshtarian S, Rajagopalan P. Perception of Wind in Open Spaces. Climate. 2019; 7(9):106. https://doi.org/10.3390/cli7090106
Chicago/Turabian StyleShooshtarian, Salman, and Priyadarsini Rajagopalan. 2019. "Perception of Wind in Open Spaces" Climate 7, no. 9: 106. https://doi.org/10.3390/cli7090106
APA StyleShooshtarian, S., & Rajagopalan, P. (2019). Perception of Wind in Open Spaces. Climate, 7(9), 106. https://doi.org/10.3390/cli7090106