Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study area
2.2. Climate Data
2.3. Statistical Analyses
3. Results
3.1. Temperature and Precipitation Variability and Trends
3.2. Rarely Cold and Warm Seasons
3.3. Extreme Daily Events
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- ACIA. Arctic Climate Impact Assessment; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- IPCC. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2003. [Google Scholar]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Pithan, F.; Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 2014, 7, 181–184. [Google Scholar] [CrossRef]
- Vihma, T. Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef]
- Przybylak, R. Temporal and spatial variation of surface air temperature over the period of instrumental observations in the Arctic. Intern. J. Clim. 2000, 20, 587–614. [Google Scholar] [CrossRef]
- Overland, J.E.; Spillane, M.C.; Percival, D.B.; Wang, M.; Mofjeld, M. Seasonal and regional variation of Pan-Arctic surface air temperature over the instrumental record. J. Clim. 2004, 17, 3263–3282. [Google Scholar] [CrossRef]
- Ding, Q.; Walalce, J.M.; Battisti, D.S.; Steig, E.J.; Gallant, A.J.E.; Kim, H.-J.; Geng, L. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 2014, 509, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling and impacts. Science 2000, 289, 2068. [Google Scholar] [CrossRef] [PubMed]
- Dankers, R.; Hiederer, R. Extreme Temperatures and Precipitation in Europe: Analysis of a High-Resolution Climate Change Scenario; EUR 23291; Office for Official Publications of the European Communities: Luxembourg, 2008. [Google Scholar]
- Rahmstorf, S.; Coumou, D. Increase of extreme weather events in a warming world. Proc. Natl. Acad. Sci. USA 2011, 108, 17905–17909. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Zwier, F.; Evans, J.; Knutson, T.; Mearns, L.; Whetton, P. Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. B. Am. Meteorol. Soc. 2000, 81, 427–436. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar]
- IPCC. Annex III: Glossary (ed. Planton, S.). In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Wen, G.; Huang, G.; Hu, K.; Qu, X.; Tao, W.; Gong, H. Changes in the characteristics of precipitation over northern Eurasia. Theor. Appl. Climatol. 2015, 119, 653–665. [Google Scholar] [CrossRef]
- Ye, H.; Fetzer, E.J.; Behrangi, A.; Wong, S.; Lambrigtsen, B.H.; Wang, C.Y.; Cohen, J.; Gamelin, B.L. Increasing daily precipitation intensity associated with warmer air temperatures over northern Eurasia. J. Clim. 2016, 29, 623–636. [Google Scholar] [CrossRef]
- Horton, D.E.; Johnson, N.C.; Singh, D.; Swain, D.L.; Rajaratnam, B.; Diffenbaugh, N.S. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 2015, 522, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Trenbeth, K.E.; Fasullo, J.T.; Shepherd, T.G. Attribution of climate extreme events. Nat. Clim. Change 2015, 5, 725–730. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence linking Arctic Amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 2012, 39, L06801. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.E.; Francis, J.A.; Hall, R.; Hanna, E.; Kim, S.-J.; Vihma, T. The melting Arctic and midlatitude weather patterns: Are they connected? J. Clim. 2015, 28, 7917–7932. [Google Scholar] [CrossRef]
- Overland, J.E. A difficult Arctic science issue: Midlatitude weather linkages. Polar Sci. 2016, 10, 210–216. [Google Scholar] [CrossRef]
- Duarte, C.M.; Lenton, T.M.; Wadhams, P.; Wassmann, P. Abrupt climate change in the Arctic. Nat. Clim. Change 2012, 2, 60–62. [Google Scholar]
- European Environment Agency EEA. Climate Change, Impacts and Vulnerability in Europe; Environment Agency EEA: København, Denmark, 2012. [Google Scholar]
- Krug, J.; Eriksson, H.; Heidecke, C.; Kellomäki, S.; Köhl, M.; Lindner, M.; Saikkonen, K. Socio-economic Impacts—Forestry and Agriculture. In Second Assessment of Climate Change for the Baltic Sea Basin; Springer Regional Climate Studies; The BACC II Author Team, Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 399–409. [Google Scholar]
- AMAP. Adaptation Actions for a Changing Arctic; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017. (in press) [Google Scholar]
- AMAP. Snow, Water, Ice and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2011; p. 538. [Google Scholar]
- Ye, H.; Cohen, J. A shorter snowfall season associated with higher air temperatures over northern Eurasia. Environ. Res. Lett. 2013, 8, 014052. [Google Scholar] [CrossRef]
- The BACC II Author Team. Second Assessment of Climate Change for the Baltic Sea Basin; Springer Regional Climate Studies; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Bjerke, J.W.; Karlsen, S.R.; Høgda, K.A.; Malnes, E.; Jepsen, J.U.; Lovibind, S.; Vikhamar-Schuler, D.; Tømmervik, H. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environ. Res. Lett. 2015, 9, 084006. [Google Scholar] [CrossRef]
- Kivinen, S. Many a little makes a mickle: Cumulative land cover changes and traditional land use in the Kyrö reindeer herding district, northern Finland. Appl. Geogr. 2015, 63, 204–211. [Google Scholar] [CrossRef]
- Turunen, M.; Reinert, E.; Kietäväinen, A. Indigenous and local economies. In Adaptation Actions for a Changing Arctic; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017. (in press) [Google Scholar]
- Kivinen, S.; Rasmus, S. Observed cold season changes in a Fennoscandian fell area over the past three decades. Ambio 2015, 44, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Rasmus, S.; Kivinen, S.; Bavay, M.; Heiskanen, J. Local and regional variability in snow conditions in northern Finland: A reindeer herding perspective. Ambio 2016, 45, 398–414. [Google Scholar] [CrossRef] [PubMed]
- Turunen, M.; Rasmus, S.; Bavay, M.; Ruosteenoja, K.; Heiskanen, J. Coping with increasingly difficult weather and snow conditions: Reindeer herders’ views on climate change impacts and coping strategies. Clim. Risk Manag. 2016, 11, 15–36. [Google Scholar] [CrossRef]
- Lee, S.E.; Press, M.C.; Lee, J.A.; Ingold, T.; Kurttila, T. Regional effects of climate change on reindeer: A case study of the Muotkatunturi region in Finnish Lapland. Polar Res. 2000, 19, 99–105. [Google Scholar] [CrossRef]
- Kumpula, J.; Colpaert, A. Effects of weather and snow conditions on reproduction and survival of semi-domesticated reindeer (R. t. tarandus). Polar Res. 2003, 22, 225–233. [Google Scholar] [CrossRef]
- Helle, T.; Kojola, I. Demographics in an alpine reindeer herd: Effects of density and winter weather. Ecography 2008, 31, 221–230. [Google Scholar] [CrossRef]
- Kietäväinen, A.; Tuulentie, S. Tourism strategies and climate change: Rhetoric at both strategic and grassroots levels about growth and sustainable development in Finland. J. Sustain. Tour. 2013, 21, 845–861. [Google Scholar] [CrossRef]
- Tietäväinen, H.; Tuomenvirta, H.; Venäläinen, A. Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. Int. J. Climatol. 2010, 30, 2247–2256. [Google Scholar] [CrossRef]
- Hanssen-Bauer, I.; Førland, E. Temperature and precipitation variations in Norway 1900–1994 and their links to atmospheric circulation. Int. J. Climatol. 2000, 20, 1693–1708. [Google Scholar] [CrossRef]
- Førland, E.J.; Hanssen-Bauer, I. Past and future climate variations in the Norwegian Arctic: Overview and novel analyses. Polar Res. 2003, 22, 113–124. [Google Scholar] [CrossRef]
- Vikhamar-Schuler, D.; Hanssen-Bauer, I.; Førland, E. Long-Term Climate Trends of Finnmarksvidda, Northern-Norway; Report no. 6/2010; Norwegian Meteorological Institute: Oslo, Norway, 2010. [Google Scholar]
- Yang, Z.; Hanna, E.; Callaghan, T.V.; Jonasson, C. How can meteorological and microclimate simulations improve understanding of 1913–2010 climate change around Abisko, Swedish Lapland? Meteorol. Appl. 2011, 19, 454–463. [Google Scholar] [CrossRef]
- Mikkonen, S.; Laine, M.; Mäkelä, H.; Gregow, H.; Tuomenvirta, H.; Lahtinen, M.; . Laaksonen, A. Trends in the average temperature in Finland, 1847–2013. Stoch. Environ. Res. Risk Assess. 2015, 29, 1521–1529. [Google Scholar] [CrossRef]
- Marshall, G.J.; Vignols, R.M.; Rees, W.G. Climate Change in the Kola Peninsula, Arctic Russia, during the Last 50 Years from Meteorological Observations. J. Clim. 2016, 29, 6823–6840. [Google Scholar] [CrossRef]
- Svyashchennikov, P.; Førland, E. Long-Term Trends in Temperature, Precipitation and Snow Conditions in Northern Russia; Report no. 9/2010; Norwegian Meteorological Institute: Oslo, Norway, 2010. [Google Scholar]
- Bulygina, O.N.; Razuvaev, V.N.; Korshunova, N.N.; Groisman, P.Y. Climate variations and changes in extreme climate events in Russia. Environ. Res. Lett. 2007, 2, 044020. [Google Scholar] [CrossRef]
- Heino, R.; Brázdil, R.; Førland, E.; Tuomenvirta, H.; Alexandersson, H.; Beniston, M.; Pfister, C.; Rebetez, M.; Rosenhagen, G.; Rösner, S.; et al. Progress in the study of climatic extremes in Northern and Central Europe. Clim. Change 1999, 42, 151–181. [Google Scholar] [CrossRef]
- Tuomenvirta, H.; Alexandersson, H.; Drebs, A.; Frich, P.; Nordli, P.O. Trends in Nordic and Arctic temperature extremes and ranges. J. Clim. 2000, 13, 977–990. [Google Scholar] [CrossRef]
- Vikhamar-Schuler, D.; Isaksen, K.; Haugen, J.E.; Tømmervik, H.; Luks, B.; Schuler, T.V.; Bjerke, J.W. Changes in winter warming events in the Nordic Arctic Region. J. Clim. 2016, 29, 6223–6244. [Google Scholar] [CrossRef]
- The Finnish Meteorological Institute’s open data. Available online: https://en.ilmatieteenlaitos.fi/open-data (accessed 10 May 2015).
- The Eklima web portal of Norwegian Meteorological Institute. Available online: www.eklima.met.no (accessed 23 September 2015).
- European Climate Assessment & Dataset. Available online: http://eca.knmi.nl (accessed 23 September 2015).
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An Overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climate Significance and Environmental Impact; Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2003; Volume 134, pp. 1–35. [Google Scholar]
- NAO Index Data. Provided by the Climate Analysis Section, NCAR, Boulder, USA, Hurrell (2003). Updated regularly. Available online: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based (accessed 1 February 2017).
- Mestre, O.; Domonkos, P.; Picard, F. HOMER: A Homogenization Software—methods and Applications. Idöjárás 2013, 117, 47–67. [Google Scholar]
- Venema, V.K.C.; Mestre, O.; Aguilar, E.; Auer, I. Benchmarking homogenization algorithms for monthly data. Clim. Past 2012, 8, 89–115. [Google Scholar] [CrossRef]
- Hawkins, D.M. Fitting Multiple Change-Point Models to Data. Comput. Stat. Data Anal. 2001, 37, 323–341. [Google Scholar] [CrossRef]
- Engström, E.; Carlund, T.; Laapas, M.; Aalto, J.; Drebs, A.; Lundstad, E.; Gjelte, H.M.; Vint, K. NORDHOM —A Nordic Collaboration to Homogenize Long-Term Climate Data. In Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015.
- Kaufman, D.S.; Schneider, D.P.; McKay, N.P.; Ammann, C.M.; Bradley, R.S.; Briffa, K.R.; Miller, G.H.; Otto-Bliesner, B.L.; Overpeck, J.T.; Vinther, B.M.; et al. Recent warming reverses long-term Arctic cooling. Science 2009, 325, 1236–1239. [Google Scholar] [CrossRef] [PubMed]
- Vincent, L.A.; Zhang, X.; Brown, R.D.; Feng, Y.; Mekis, E.; Milewska, E.J.; Wan, H.; Wang, X.L. Observed trends in Canada’s climate and influence of low-frequency variability modes. J. Clim. 2015, 28, 4545–4560. [Google Scholar] [CrossRef]
- Anisimov, O.; Kokorev, V.; Zhil’tsova, Y. Temporal and spatial patterns of modern climatic warming: Case study of Northern Eurasia. Clim. Change 2013, 118, 871–883. [Google Scholar] [CrossRef]
- Jones, P.D.; Lister, D.H.; Osborn, T.J.; Harpham, C.; Salmon, M.; Morice, C.P. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Stephenson, D.B.; Christensen, O.; Ferro, C.A.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Change 2007, 81, 71–95. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.; Gleason, B.; Haylock, M.; Tank, A.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Wang, X.L.; Feng, Y.; Vincent, L.A. Observed changes in one-in-20 year extremes of Canadian surface air temperatures. Atmos.-Ocean 2014, 52, 222–231. [Google Scholar] [CrossRef]
- Beniston, M. Ratios of record high to record low temperatures in Europe exhibit sharp increases since 2000 despite a slowdown in the rise of mean temperatures. Clim. Change 2015, 129, 225–237. [Google Scholar] [CrossRef]
- Ruosteenoja, K.; Jylhä, K.; Kämäräinen, M. Climate projections for Finland under the RCP forcing scenarios. Geophysica 2016, 51, 17–50. [Google Scholar]
- Nikulin, G.; Kjellström, E.; Hansson, U.L.; Strandberg, G.; Ullerstig, A. Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 2011, 63, 41–55. [Google Scholar] [CrossRef]
- Lehtonen, I.; Ruosteenoja, K.; Jylhä, K. Projected changes in European extreme precipitation indices on the basis of global and regional climate model ensembles. Int. J. Climatol. 2014, 34, 1208–1222. [Google Scholar] [CrossRef]
- Seitola, T.; Järvinen, H. Decadal climate variability and potential predictability in the Nordic region. Boreal Environ. Res. 2014, 19, 387–407. [Google Scholar]
- Blenckner, T.; Järvinen, M.; Weyhenmeyer, G.A. Atmospheric circulation and its impact on ice phenology in Scandinavia. Boreal Environ. Res. 2004, 9, 371–380. [Google Scholar]
- Dobricic, S.; Vignati, E.; Russo, S. Large-scale atmospheric warming in winter and the Arctic sea ice retreat. J. Clim. 2016, 29, 2869–2888. [Google Scholar] [CrossRef]
- Matishov, G.; Moiseev, D.; Lyubina, O.; Zhichkin, A.; Dzhenyuk, S.; Karamushko, O.; Frolova, E. Climate and cyclic hydrobiological changes of the Barents Sea from the twentieth to twenty-first centuries. Polar Biol. 2012, 35, 1773. [Google Scholar] [CrossRef]
- Parkinson, C.L. Spatially mapped reductions in the length of the Arctic sea ice season. Geophys. Res. Lett. 2014, 41, 4316–4322. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.D.; Möte, P.W. The response of northern hemisphere snow cover to a changing climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Johansson, M.; Brown, R.D.; Groisman, P.Y.; Labba, N.; Radionov, V.; Barry, R.G.; Bulygina, O.N.; Essery, R.L.; Frolov, D.M.; et al. The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio 2011, 40, 17–31. [Google Scholar] [CrossRef]
- Räisänen, J. Warmer climate: Less or more snow? Clim. Dynam. 2008, 30, 307–319. [Google Scholar] [CrossRef]
- Derksen, C.; Brown, R. Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett. 2012, 39, 19. [Google Scholar] [CrossRef]
- Kivinen, S.; Kaarlejärvi, E.; Jylhä, K.; Räisänen, J. Spatiotemporal distribution of threatened high-latitude snowbed and snow patch habitats in warming climate. Environ. Res. Lett. 2012, 034024. [Google Scholar] [CrossRef]
- Choi, G.; Robinson, D.A.; Kang, S. Changing Northern Hemisphere Snow Seasons. J. Clim. 2010, 23, 5305–5310. [Google Scholar] [CrossRef]
- Post, E.; Forchhammer, M.C.; Bret-Harte, M.S.; Callaghan, T.V.; Christensen, T.R.; Elberling, B.; Fox, A.D.; Gilg, O.; Hik, D.S.; Høye, T.T.; et al. Ecological dynamics across the Arctic associated with recent climate change. Science 2009, 325, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.; Isaksen, K.; Benestad, R.; Kohler, J.; Pedersen, Å.; Loe, L.E.; Coulson, S.; Larsen, J.; Varpe, Ø. Warmer and wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett. 2014, 9, 114021. [Google Scholar] [CrossRef]
- Euskirchen, E.; Turetsky, M.; O’Donnell, J.; Daanen, R.P. Snow, Permafrost, Ice Cover, and Climate Change. Glob. Environ. Chang. 2014, 199–204. [Google Scholar]
- Pauli, J.N.; Zuckerberg, B.; Whiteman, J.P.; Porter, W. The subnivium: A deteriorating seasonal refugium. Front. Ecol. Environ. 2013, 11, 260–267. [Google Scholar]
- Pearson, R.G.; Phillips, S.J.; Loranty, M.M.; Beck, P.S.; Damoulas, T.; Knight, S.J.; Goetz, S.J. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Clim. Change 2013, 3, 673–677. [Google Scholar]
- Ruosteenoja, K.; Räisänen, J.; Venäläinen, A.; Kämäräinen, M. Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. Int. J. Climatol. 2016, 36, 3039–3055. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Esther, L.; et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef]
- Sturm, M.; Holmgren, J.; McFadden, J.P.; Liston, G.E.; Chapin, F.S., III; Racine, C.H. Snow-shrub interactions in Arctic tundra: A hypothesis with climatic implications. J. Clim. 2001, 14, 336–344. [Google Scholar] [CrossRef]
- Gallinat, A.S.; Primack, R.B.; Wagner, D.L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 2015, 30, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Fu, Y.H.; Zhu, Z.; Liu, Y.; Liu, Z.; Huang, M.; Janssens, I.A.; Piao, S. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 2016, 22, 3702–3711. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.S.; Callaghan, T.V.; Reist, J.D.; Reiersen, L.O.; Dahl-Jensen, D.; Granskog, M.A.; Goodison, B.; Hovelsrud, G.K.; Johansson, M.; Kallenborn, R.; et al. The changing Arctic cryosphere and likely consequences: An overview. Ambio 2011, 40, 111–118. [Google Scholar] [CrossRef]
- Grosse, G.; Goetz, S.; McGuire, A.D.; Romanovsky, V.E.; Schuur, E.A. Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 2016, 11, 040201. [Google Scholar] [CrossRef]
- Anisimov, O.A.; Nelson, F.E. Permafrost zonation and climate change in the northern hemisphere: Results from transient general circulation models. Clim. Chang. 1997, 35, 241–258. [Google Scholar] [CrossRef]
- Nelson, F.E.; Anisimov, O.A.; Shiklomanov, N.I. Climate change and hazard zonation in the circum-Arctic permafrost regions. Nat. Hazards 2002, 26, 203–225. [Google Scholar] [CrossRef]
- Isaksen, K.; Sollid, J.L.; Holmlund, P.; Harris, C. Recent warming of mountain permafrost in Svalbard and Scandinavia. J. Geophys. Res. Earth Surface 2007, 112. [Google Scholar] [CrossRef]
- Harris, C.; Arenson, L.U.; Christiansen, H.H.; Etzelmüller, B.; Frauenfelder, R.; Gruber, S.; Isaksen, K. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci. Reviews 2009, 92, 117–171. [Google Scholar] [CrossRef] [Green Version]
- Luoto, M.; Heikkilä, R.K.; Carter, T.R. Loss of palsa mires in Europe and biological consequences. Environ. Conserv. 2004, 31, 30–37. [Google Scholar] [CrossRef]
- Jentsch, A.; Kreyling, J.; Beierkuhnlein, C. A new generation of climate change experiments: Events, not trends. Front. Ecol. Environ. 2007, 5, 315–324. [Google Scholar] [CrossRef]
- Bokhorst, S.; Phoenix, G.K.; Berg, M.P.; Callaghan, T.V.; Kirby-Lambert, C.; Bjerke, J.W. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change. Glob. Change Biol. 2015, 21, 4063–4075. [Google Scholar] [CrossRef] [PubMed]
- Vasseur, D.A.; DeLong, J.P.; Gilbert, B.; Greig, H.S.; Harley, C.D.; McCann, K.S.; Savage, V.; Tunney, T.D.; O'Connor, M.I. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. Lond. B: Biol. Sci. 2014, 281, 20132612. [Google Scholar] [CrossRef] [PubMed]
- Riseth, J.Å.; Tømmervik, H.; Helander-Renvall, E.; Labba, N.; Johansson, C.; Malnes, E.; Bjerke, J.W.; Jonsson, C.; Pohjola, V.; Sarri, L.E.; et al. Sámi traditional ecological knowledge as a guide to science: Snow, ice and reindeer pasture facing climate change. Polar Rec. 2011, 47, 202–217. [Google Scholar] [CrossRef]
- Vuojala-Magga, T.; Turunen, M.; Ryyppö, T.; Tennberg, M. Resonance strategies of Sami reindeer herding during climatically extreme years in northernmost Finland in 1970–2007. Arctic 2011, 64, 227–241. [Google Scholar]
- Horstkotte, T.; Roturier, S. Does forest stand structure impact the dynamics of snow on winter grazing grounds of reindeer (Rangifer t. tarandus)? For. Ecol. Manage 2013, 291, 162–171. [Google Scholar] [CrossRef]
- Van Oort, B.; Rautio, P.; Denisov, D. Terrestrial and freshwater ecosystems. In Adaptation Actions for a Changing Arctic; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017. (in press) [Google Scholar]
Station | Country | Altitude | Tmean | TJan | TJul | Prec | |
---|---|---|---|---|---|---|---|
(m.a.s.l.) | (°C) | (°C) | (°C) | (mm) | |||
1 | Abisko | Sweden | 388 | −0.5 | −10.7 | 11,7 | 307 |
2 | Sodankylä | Finland | 179 | −0.5 | −13.7 | 14.8 | 485 |
3 | Sihccajavri | Norway | 382 | −2.5 | −14.4 | 12.6 | 383 |
4 | Tromsø | Norway | 100 | 2.8 | −3.6 | 12.0 | 1015 |
5 | Vardø | Norway | 14 | 1.6 | −4.5 | 9.3 | 570 |
6 | Teriberka | Russia | 33 | 0.8 | −7.9 | 11.4 | 470 |
7 | Kandalaksa | Russia | 26 | 0.4 | −11.9 | 14.7 | 462 |
8 | Svyatoy Nos | Russia | 70 | 0.2 | −7.3 | 9.2 | 412 |
9 | Ostrov Sosnovez | Russia | 15 | −0.6 | −9.2 | 8.6 | 345 |
Station | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TMean (°C) | |||||||||||||
1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | |||||||
2 | 0.3 ± 0.2 | 0.1 ± 0.1 | |||||||||||
3 | 0.2 ± 0.2 | 0.2 ± 0.1 | -0.1 ± 0.1 | ||||||||||
4 | 0.2 ± 0.1 | ||||||||||||
5 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | ||||||
6 | 0.3 ± 0.2 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | |||||||||
7 | 0.2 ± 0.2 | 0.1 ± 0.1 | 0.1 ± 0.1 | ||||||||||
8 | 0.2 ± 0.2 | 0.4 ± 0.2 | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.2 | 0.2 ± 0.1 | |||||
9 | 0.3 ± 0.2 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | |||||||||
TMin (°C) | |||||||||||||
1 | 0.2 ± 0.2 | 0.3 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | |||||
2 | 0.4 ± 0.3 | 0.3 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.2 | 0.2 ± 0.1 | ||||
3 | 0.3 ± 0.2 | 0.2 ± 0.1 | |||||||||||
4 | 0.2 ± 0.1 | 0.2 ± 0.1 | |||||||||||
5 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | ||
6 | 0.3 ± 0.2 | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | ||||||
7 | 0.3 ± 0.3 | 0.1 ± 0.1 | 0.1 ± 0.1 | ||||||||||
8 | 0.2 ± 0.2 | 0.3 ± 0.2 | 0.5 ± 0.2 | 0.3 ± 0.2 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.2 | 0.3 ± 0.1 | ||
9 | 0.5 ± 0.2 | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.2 | 0.2 ± 0.1 | |||||
TMax (°C) | |||||||||||||
1 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.1 ± 0.1 | ||||||||
2 | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.2 | 0.1 ± 0.1 | |||||||||
3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
4 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 | ||||||||||
5 | 0.2 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | |||||||||
6 | 0.2 ± 0.2 | 0.2 ± 0.2 | |||||||||||
7 | 0.3 ± 0.2 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | |||||||||
8 | 0.3 ± 0.2 | 0.2 ± 0.2 | 0.1 ± 0.2 | -0.2 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.2 | |||||||
9 | 0.3 ± 0.2 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.2 ± 0.1 | |||||||
Prec (mm) | |||||||||||||
1 | 1 ± 1 | 5 ± 4 | |||||||||||
2 | |||||||||||||
3 | 3 ± 1 | 8 ± 7 | |||||||||||
4 | 4 ± 2 | 3 ± 4 | 18 ± 11 | ||||||||||
5 | 4 ± 2 | 3 ± 2 | 2 ± 2 | ||||||||||
6 | 1 ± 1 | 3 ± 2 | 2 ± 2 | 2 ± 2 | 1 ± 1 | ||||||||
7 | 4 ± 1 | 3 ± 1 | 3 ± 1 | 1 ± 1 | 3 ± 2 | 3 ± 2 | 4 ± 2 | 4 ± 1 | 4 ± 1 | 38 ± 7 | |||
8 | 2 ± 1 | ||||||||||||
9 | 2 ± 1 | 2 ± 1 | 1 ± 1 | 2 ± 2 | 2 ± 2 | 3 ± 1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kivinen, S.; Rasmus, S.; Jylhä, K.; Laapas, M. Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013). Climate 2017, 5, 16. https://doi.org/10.3390/cli5010016
Kivinen S, Rasmus S, Jylhä K, Laapas M. Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013). Climate. 2017; 5(1):16. https://doi.org/10.3390/cli5010016
Chicago/Turabian StyleKivinen, Sonja, Sirpa Rasmus, Kirsti Jylhä, and Mikko Laapas. 2017. "Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013)" Climate 5, no. 1: 16. https://doi.org/10.3390/cli5010016
APA StyleKivinen, S., Rasmus, S., Jylhä, K., & Laapas, M. (2017). Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013). Climate, 5(1), 16. https://doi.org/10.3390/cli5010016