Diurnal and Seasonal Variation of Surface Urban Cool and Heat Islands in the Semi-Arid City of Erbil, Iraq
Abstract
:1. Introduction
- the determination of the seasonal and diurnal variation of the patterns of LST and SUCI/SUHI in a city with semi-arid climate;
- the quantitative analysis of relationships between LST and NDVI and how they change between seasons
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Land Surface Temperature
2.2.2. NDVI
2.3. Methodology
2.3.1 Processing Data
2.3.2. LST
2.3.3. NDVI
2.3.4. Soil Moisture
2.2.5. Identification of the Surface UCI and UHI Intensity
2.2.6. Variation between Urban and Rural Areas
2.2.7. Relationship of LST with NDVI, fsm and NMDI
3. Results
3.1. Diurnal Variation of LST and SUCI/SUHI
3.2. Seasonal Variation of LST and SUCI/SUHI
3.3. Vegetation and Moisture Indices
3.3.1. NDVI
3.3.2. NMDI
3.3.3. Soil Moisture Constraint
3.4. Relationships between LST and NDVI, fsm and NMDI
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Guoyin, C.; Mingyi, D. Relationship between thermal inertia and urban heat sink in Beijing derived from satellite images. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009.
- Shigeta, Y.; Ohashi, Y.; Tsukamoto, O. Urban Cool Island in daytime-analysis by using thermal image and air temperature measurements. In Proceedings of the Seventh International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2011.
- Witherick, M.; Ross, S.R.; Small, R.J. A Modern Dictionary of Geography; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature—Vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Farina, A. Exploring the Relationship between Land Surface Temperature and Vegetation Abundance for Urban Heat Island Mitigation in Seville. Master’s Thesis, Lund University, Lund, Sweden, 2012. [Google Scholar]
- Watson, C. Analysis of Urban Heat Island Climates along the I-85/I-40 Corridor in Central North Carolina. Ph.D. Thesis, University of North Carolina, Chapel Hill, NC, USA, 2012. [Google Scholar]
- Rao, P. Remote sensing of urban heat islands from an environmental satellite. Bull. Am. Meteorol. Soc. 1972, 53, 647. [Google Scholar]
- Matson, M.; Mcclain, E.P.; McGinnis, D.F., Jr.; Pritchard, J.A. Satellite detection of urban heat islands. Mon. Weather Rev. 1978, 106, 1725–1734. [Google Scholar] [CrossRef]
- Hsu, S. Variation of an urban heat island in Phoenix. Prof. Geogr. 1984, 36, 196–200. [Google Scholar] [CrossRef]
- Brazel, S.W.; Balling, R.C., Jr. Temporal analysis of long-term atmospheric moisture levels in Phoenix, Arizona. J. Clim. Appl. Meteorol. 1986, 25, 112–117. [Google Scholar] [CrossRef]
- Tarleton, L.F.; Katz, R.W. Statistical explanation for trends in extreme summer temperatures at Phoenix, Arizona. J. Clim. 1995, 8, 1704–1708. [Google Scholar] [CrossRef]
- Stabler, L.B.; Martin, C.A.; Brazel, A.J. microclimates in a desert city were related to land use and vegetation index. Urban For. Urban Green. 2005, 3, 137–147. [Google Scholar] [CrossRef]
- Golden, J.S.; Brazel, A.; Salmond, J.; Laws, D. Energy and water sustainability: The role of urban climate change from metropolitan infrastructure. J. Eng. Sustain. Community Dev. 2006, 1, 55–70. [Google Scholar] [CrossRef]
- Georgescu, M.; Moustaoui, M.; Mahalov, A.; Dudhia, J. An alternative explanation of the semiarid urban area “oasis effect”. J. Geophys. Res. Atmos. 2011. [Google Scholar] [CrossRef]
- Nasrallah, H.A.; Brazel, A.J.; Balling, R.C. Analysis of the Kuwait city urban heat island. Int. J. Climatol. 1990, 10, 401–405. [Google Scholar] [CrossRef]
- Al-Ali, A.M.H. The Effect of Land Cover on the Air and Surface Urban Heat Island of a Desert Oasis. Ph.D. Thesis, Durham University, Durham, UK, 2015. [Google Scholar]
- Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Frey, C.M.; Rigo, G.; Parlow, E.; Marçal, A. The cooling effect of cities in a hot and dry environment. In Proceedings of the Global Developments in Environmental Earth Observation from Space, Porto, Portugal, 6–11 June 2005.
- Rasul, A.; Balzter, H.; Smith, C. Spatial variation of the daytime surface urban cool island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Clim. 2015, 14, 176–186. [Google Scholar] [CrossRef]
- Sun, D.; Kafatos, M. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett. 2007, 34, 1–4. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D. A Sub-Pixel Analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 68–83. [Google Scholar] [CrossRef]
- Schwarz, N.; Schlink, U.; Franck, U.; Großmann, K. Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecol. Ind. 2012, 18, 693–704. [Google Scholar] [CrossRef]
- Liang, S.; Shi, P. analysis of the relationship between urban heat island and vegetation cover through Landsat ETM: A case study of Shenyang. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009.
- Bajaj, D.N.; Inamdar, A.B.; Vaibhav, V. Temporal variation of urban heat island using Landsat data: A case study of Ahmedabad, India. In Proceedings of the 33rd Asian Conference on Remote Sensing 2012, Pattaya, Thailand, 26–30 November 2012.
- Zhang, Z.; Ji, M.; Shu, J.; Deng, Z.; Wu, Y. Surface urban heat island in Shanghai, China: Examining the relationship between land surface temperature and impervious surface fractions derived from landsat etm imagery. Remote Sens. Spat. Inf. Sci. 2008, 37, 601–606. [Google Scholar]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Clinton, N.; Gong, P. MODIS detected surface urban heat islands and sinks: Global locations and controls. Remote Sens. Environ. 2013, 134, 294–304. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, Y. Urbanization effect on trends of extreme temperature indices of national stations over mainland China, 1961–2008. J. Clim. 2014, 27, 2340–2360. [Google Scholar] [CrossRef]
- Li, S.; Mo, H.; Dai, Y. Spatio-temporal pattern of urban cool island intensity and its eco-environmental response in Chang-Zhu-Tan urban agglomeration. Commun. Inf. Sci. Manag. Eng. 2011, 1, 1–6. [Google Scholar]
- Kłysik, K.; Fortuniak, K. Temporal and spatial characteristics of the urban heat island of Lodz, Poland. Atmos. Environ. 1999, 33, 3885–3895. [Google Scholar] [CrossRef]
- Memon, R.A.; Leung, D.Y.; Liu, C. An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmos. Res. 2009, 94, 491–500. [Google Scholar] [CrossRef]
- Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Giridharan, R. Urban heat island intensity in London: An investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Sol. Energy 2008, 82, 986–998. [Google Scholar] [CrossRef]
- Saitoh, T.; Shimada, T.; Hoshi, H. Modeling and simulation of the Tokyo urban heat island. Atmos. Environ. 1996, 30, 3431–3442. [Google Scholar] [CrossRef]
- Roth, M.; Oke, T.; Emery, W. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. Int. J. Remote Sens. 1989, 10, 1699–1720. [Google Scholar] [CrossRef]
- Chow, W.T.; Roth, M. Temporal dynamics of the urban heat island of Singapore. Int. J. Climatol. 2006, 26, 2243–2260. [Google Scholar] [CrossRef]
- Tomlinson, C.; Prieto-Lopez, T.; Bassett, R.; Chapman, L.; Cai, X.; Thornes, J.; Baker, C. Showcasing urban heat island work in Birmingham—Measuring, monitoring, modelling and more. Weather 2013, 68, 44–49. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from Landsat ETM and Corine land cover data: An application to major cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Montávez, J.P.; Rodríguez, A.; Jiménez, J.I. A study of the urban heat island of Granada. Int. J. Climatol. 2000, 20, 899–911. [Google Scholar] [CrossRef]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S. Seasonal variations of the surface urban heat island in a semi-arid city. J. Appl. Meteorol. Climatol. 2016. [Google Scholar] [CrossRef]
- Frey, C.; Rigo, G.; Parlow, E. Urban radiation balance of two coastal cities in a hot and dry environment. Int. J. Remote Sens. 2007, 28, 2695–2712. [Google Scholar] [CrossRef]
- Sharif, A. Climate of the Erbil Region. Ph.D. Thesis, University of Salahadden, Erbil, Iraq, 1998. [Google Scholar]
- Erbil Governorate Profile. Available online: http://reliefweb.int/sites/reliefweb.int/files/resources/Erbil_governorate_profile_May_2015.pdf (accessed on 26 August 2016).
- Dizayee, R.H. Groundwater Degradation and Sustainability of the Erbil Basin, Erbil: Kurdistan Region, Iraq. Master’s Thesis, Texas Christian University, Fort Worth, TX, USA, 2014. [Google Scholar]
- Elements Climatic Data of Erbil City. Available online: http://earthexplorer.usgs.gov/ (accessed on 26 August 2016).
- Ibrahim, R.I.; Mushatat, S.A.; Abdelmonem, M.G. Erbil. Cities 2015, 49, 14–25. [Google Scholar] [CrossRef]
- Baper, S.Y.; Hassan, A.S.; Ismail, S.T. Modernization theory and house garden transformation: A case study in Erbil city. In Proceedings of the 2nd International Seminar on Tropical Eco-Settlements, Bali, Indonesia, 3–5 November 2010.
- Kahraman, L.M. Geographical analysis of the characteristics of soils and the problems of the province of Abril and scalability land productivity. Am. J. Civ. Eng. Archit. 2016. [Google Scholar] [CrossRef]
- Ghent, D.; Kaduk, J.; Remedios, J.; Ardö, J.; Balzter, H. Assimilation of land surface temperature into the land surface model JULES with an ensemble Kalman filter. J. Geophys. Res. Atmos. 2010. [Google Scholar] [CrossRef]
- Land Surface Temperature | Copernicus Global Land Service. 2016. Available online: http://land.copernicus.eu/global/products/lst (accessed on 1 March 2016).
- Land Surface Temperature: Global Maps. 2016. Available online: http://earthobservatory.nasa.gov/GlobalMaps/view.php?d1=MOD11C1_M_LSTDA (accessed on 1 March 2016).
- Near Surface Air Temperature—GES DISC-Goddard Earth Sciences Data and Information Services Center. 2016. Available online: http://disc.gsfc.nasa.gov/hydrology/data-holdings/parameters/near_surf_air_temp.shtml (accessed on 17 January 2016).
- Unger, J.; Gál, T.; Rakonczai, J.; Musci, L.; Szatman, J.; Tobak, Z. Air temperature versus surface temperature in urban environment. In Proceedings of the 7th International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009.
- Wan, Z.; Dozier, J. A Generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Yao, Y.; Liang, S.; Cheng, J.; Liu, S.; Fisher, J.B.; Zhang, X.; Jia, K.; Zhao, X.; Qin, Q.; Zhao, B. MODIS-driven estimation of terrestrial latent heat flux in china based on a modified Priestley–Taylor algorithm. Agric. Meteorol. 2013, 171, 187–202. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge: London, UK, 1987. [Google Scholar]
- Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island Basics. Available online: https://www.epa.gov/sites/production/files/2014-06/documents/basicscompendium.pdf (accessed on 29 August 2016).
- Su, Y.; Foody, G.M.; Cheng, K. Spatial non-stationarity in the relationships between land cover and surface temperature in an urban heat island and its impacts on thermally sensitive populations. Landsc. Urban Plan. 2012, 107, 172–180. [Google Scholar] [CrossRef]
- Chapman, L.; Azevedo, J.A.; Prieto-Lopez, T. Urban heat & critical infrastructure networks: A viewpoint. Urban Clim. 2013, 3, 7–12. [Google Scholar]
- Steeneveld, G.; Koopmans, S.; Heusinkveld, B.; Theeuwes, N. Refreshing the role of open water surfaces on mitigating the maximum urban heat island effect. Landsc. Urban Plan. 2014, 121, 92–96. [Google Scholar] [CrossRef]
- Cheval, S.; Dumitrescu, A.; Bell, A. The urban heat island of Bucharest during the extreme high temperatures of July 2007. Theor. Appl. Climatol. 2009, 97, 391–401. [Google Scholar] [CrossRef]
- Bornstein, R.D. Observations of the urban heat island effect in New York City. J. Appl. Meteorol. 1968, 7, 575–582. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Morris, C.; Simmonds, I. Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. Int. J. Climatol. 2000, 20, 1931–1954. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; LeMone, M.A.; Tewari, M.; Li, Q.; Wang, Y. An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteorol. Climatol. 2009, 48, 484–501. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Kainz, W. Monitoring patterns of urban heat islands of the fast-growing Shanghai metropolis, China: Using time-series of Landsat TM/ETM data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 127–138. [Google Scholar] [CrossRef]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Schultz, P.; Halpert, M. Global analysis of the relationships among a vegetation index, precipitation and land surface temperature. Remote Sens. 1995, 16, 2755–2777. [Google Scholar] [CrossRef]
- Souch, C.; Grimmond, S. Applied climatology: Urban climate. Prog. Phys. Geogr. 2006, 30, 270–279. [Google Scholar] [CrossRef]
- Fadhil, A.M. Drought mapping using geoinformation technology for some sites in the Iraqi Kurdistan region. Int. J. Digit. Earth 2011, 4, 239–257. [Google Scholar] [CrossRef]
Study Area | Climate | Reference Study | Approach | UHII/UCII °C |
---|---|---|---|---|
Łódź, Poland 2,▫ | Cfb: Marine West Coast | Klysik and Fortuniak [32] | Weather station data | 12 |
Hong Kong, China 2,▫ | Cfa: Humid Subtropical | Memon et al. [33] | Weather station data | 10.5 |
Manchester, UK 2,▫ | Cfb: Marine West Coast | Knight et al. [34] | Modeling | 10 |
London, UK 2,▫ | Cfb: Marine West Coast | Kolokotroni and Giridharan [35] | Weather station data | 8.6 |
Tokyo, Japan 1,▫ | Cfa: Humid Subtropical | Saitoh et al. [36] | Modeling | 8 |
Vancouver, Canada 1,▫ | Csb: Warm-summer Mediterranean | Roth et al. [37] | Satellite data | 7.5 |
Singapore 2,▫ | Af: Tropical Rainforest | Chow and Roth [38] | Weather station data | 7.1 |
Birmingham, UK 1,▫ | Cfb: Marine West Coast | Tomlinson et al. [39] | Satellite data | 5 |
Athens, Greece 1,▫ | Csa: Dry-summer Subtropical | Stathopoulou and Cartalis [40] | Satellite data | 3.3 |
Granada, Nicaragua 2,* | Aw: Tropical Savanna | Montavez et al. [41] | Weather station data | −2.0 |
Okayama, Japan 2,* | Cfa: Humid Subtropical | Shigeta et al. [3] | Weather station data | –2.0 |
Erbil, Iraq 1,* | BSh: Subtropical Semiarid (Hot Steppe) | Rasul et al. [20] | Satellite data | −3.9 |
Tehran, Iran 1,* | BSk: Subtropical Semiarid (Cold Steppe) | Haashemi et al. [42] | Satellite data | −4 |
Dubai, UAE 1,* | Bwh: Subtropical Desert | Frey et al. [43] | Satellite data | −5 |
Abu Dhabi 1,* | Bwh: Subtropical Desert | Lazzarini et al. [18] | Satellite data | −6 |
Dataset | Resolution (m) | Product |
---|---|---|
MOD11A2 | 1000 | LST |
MYD11A2 | 1000 | LST |
MOD13Q1 | 250 | NDVI |
MOD09GA | 1000 | Bands 1–7 |
Season | Time | Mean LST °C City | SD °C | Mean LST °C Rural | SD °C | ∆ LST °C |
---|---|---|---|---|---|---|
Autumn | 11:00 | 33.5 | 1.38 | 36.45 | 1.16 | –2.95 |
13:00 | 32.2 | 1.73 | 34.59 | 0.94 | –2.39 | |
22:00 | 12.15 | 1.18 | 9.69 | 0.69 | 2.46 | |
02:00 | 10.56 | 1.29 | 8.25 | 1 | 2.31 | |
Winter | 11:00 | 15.62 | 0.46 | 16.61 | 0.64 | –1 |
13:00 | 20.41 | 0.83 | 21.18 | 0.83 | –0.77 | |
22:00 | 5.1 | 1.11 | 2.9 | 0.48 | 2.21 | |
02:00 | 3.11 | 1.02 | 1.25 | 0.59 | 1.87 | |
Spring | 11:00 | 35.1 | 1.43 | 36.58 | 0.97 | –1.47 |
13:00 | 39.44 | 0.48 | 39.49 | 0.8 | –0.05 | |
22:00 | 18.93 | 1.37 | 16.11 | 0.72 | 2.82 | |
02:00 | 16.58 | 1.43 | 13.99 | 0.97 | 2.59 | |
Summer | 11:00 | 46.98 | 1.43 | 49.76 | 1.3 | –2.78 |
13:00 | 50.36 | 1.35 | 52.84 | 1.01 | –2.48 | |
22:00 | 28.41 | 1.27 | 25.36 | 1 | 3.05 | |
02:00 | 25.71 | 1.51 | 22.73 | 1.19 | 2.98 |
Parameter | Min (City) | Max (City) | Mean (City) | SD | Min (Rural) | Max (Rural) | Mean (Rural) | SD |
---|---|---|---|---|---|---|---|---|
NDVI | 0.1 | 0.37 | 0.16 | 0.05 | 0.11 | 0.57 | 0.22 | 0.11 |
NMDI | 0.61 | 0.76 | 0.69 | 0.03 | 0.00 | 0.72 | 0.60 | 0.12 |
fsm | 0.18 | 0.77 | 0.35 | 0.11 | 0.12 | 0.82 | 0.27 | 0.11 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasul, A.; Balzter, H.; Smith, C. Diurnal and Seasonal Variation of Surface Urban Cool and Heat Islands in the Semi-Arid City of Erbil, Iraq. Climate 2016, 4, 42. https://doi.org/10.3390/cli4030042
Rasul A, Balzter H, Smith C. Diurnal and Seasonal Variation of Surface Urban Cool and Heat Islands in the Semi-Arid City of Erbil, Iraq. Climate. 2016; 4(3):42. https://doi.org/10.3390/cli4030042
Chicago/Turabian StyleRasul, Azad, Heiko Balzter, and Claire Smith. 2016. "Diurnal and Seasonal Variation of Surface Urban Cool and Heat Islands in the Semi-Arid City of Erbil, Iraq" Climate 4, no. 3: 42. https://doi.org/10.3390/cli4030042
APA StyleRasul, A., Balzter, H., & Smith, C. (2016). Diurnal and Seasonal Variation of Surface Urban Cool and Heat Islands in the Semi-Arid City of Erbil, Iraq. Climate, 4(3), 42. https://doi.org/10.3390/cli4030042