Teleconnections Between the Pacific and Indian Ocean SSTs and the Tropical Cyclone Activity over the Arabian Sea
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. TC Data
2.1.2. ENSO, IOD, and IPWP Data
2.1.3. Environmental Parameters
2.2. Methods
2.2.1. Calculations
- Tropical Cyclones Energy Metrics
- 2.
- Duration:
- 3.
- Vertical wind shear
- 4.
- Anomalies
- 5.
- Correlation
2.2.2. Composite Analysis of Synoptic Condition
3. Results and Discussion
3.1. Impact of ENSO and IOD on TC Activity
3.1.1. Frequency and Intensity of TCs
3.1.2. Genesis and Tracking of TCs
3.1.3. Duration and Energy Metrics
3.2. Climate States
3.2.1. Sea Surface Temperature
3.2.2. Outgoing Longwave Radiation
3.2.3. Relative Humidity
3.2.4. Vertical Wind Shear
3.2.5. Sea Level Pressure
3.2.6. Upper Wind
3.3. The Impacts of Indo-Pacific Warming Pool
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Change 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Chu, J.-E.; Lee, S.-S.; Timmermann, A.; Wengel, C.; Stuecker, M.F.; Yamaguchi, R. “Reduced tropical cyclone densities and ocean effects due to anthropogenic greenhouse warming. Sci. Adv. 2020, 6, eabd5109. [Google Scholar] [CrossRef] [PubMed]
- Islek, F.; Yuksel, Y.; Sahin, C. Long-term variability of the mean sea level pressure field over the Black Sea. Aquat. Ecosyst. Health Manag. 2020, 23, 453–464. [Google Scholar] [CrossRef]
- Iglesias, I.; Lorenzo, M.N.; Lázaro, C.; Fernandes, M.J.; Bastos, L. Sea level anomaly in the North Atlantic and seas around Europe: Long-term variability and response to North Atlantic teleconnection patterns. Sci. Total Environ. 2017, 609, 861–874. [Google Scholar] [CrossRef]
- Mohamed, B.; Abdallah, A.M.; El-Din, K.A.; Nagy, H.; Shaltout, M. Inter-annual variability and trends of sea level and sea surface temperature in the Mediterranean Sea over the last 25 years. Pure Appl. Geophys. 2019, 176, 3787–3810. [Google Scholar]
- Gómez, B.P.; Vilibić, I.; Šepić, J.; Međugorac, I.; Ličer, M.; Testut, L.; Fraboul, C.; Marcos, M.; Abdellaoui, H.; Fanjul, E.Á.; et al. Coastal Sea level monitoring in the Mediterranean and Black seas. Ocean Sci. 2022, 18, 997–1053. [Google Scholar] [CrossRef]
- Moore, J.C.; Grinsted, A.; Jevrejeva, S. Gulf stream and ENSO increase the temperature sensitivity of Atlantic tropical cyclones. J. Clim. 2008, 21, 1523–1531. [Google Scholar] [CrossRef]
- Clarke, A.J. An Introduction to the Dynamics of El Niño and the Southern Oscillation; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Sarachik, E.S.; Cane, M.A. The El Nino-Southern Oscillation Phenomenon; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- McPhaden, M.J.; Ni No, E.; Ni Na, L. Causes and global consequences. Encycl. Glob. Environ. Change 2002, 1, 353–370. [Google Scholar]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather. Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Trenberth, K.E. The definition of el nino. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2778. [Google Scholar] [CrossRef]
- Tziperman, E.; Cane, M.A.; Zebiak, S.E.; Xue, Y.; Blumenthal, B. Locking of El Nino’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Clim. 1998, 11, 2191–2199. [Google Scholar] [CrossRef]
- Chang, P.; Yamagata, T.; Schopf, P.; Behera, S.K.; Carton, J.; Kessler, W.S.; Meyers, G.; Qu, T.; Schott, F.; Shetye, S.; et al. Climate fluctuations of tropical coupled systems—The role of ocean dynamics. J. Clim. 2006, 19, 5122–5174. [Google Scholar] [CrossRef]
- Sobel, A.H.; Camargo, S.J.; Barnston, A.G.; Tippett, M.K. Northern hemisphere tropical cyclones during the quasi-El Niño of late 2014. Nat. Hazards 2016, 83, 1717–1729. [Google Scholar] [CrossRef]
- Camargo, S.J.; Sobel, A.H.; Barnston, A.G.; Klotzbach, P.J. The influence of natural climate variability on tropical cyclones, and seasonal forecasts of tropical cyclone activity. In Global Perspectives on Tropical Cyclones: From Science to Mitigation; World Scientific: London, UK, 2010; pp. 325–360. [Google Scholar]
- Chand, S.S.; McBride, J.L.; Tory, K.J.; Wheeler, M.C.; Walsh, K.J.E. Impact of different ENSO regimes on southwest Pacific tropical cyclones. J. Clim. 2013, 26, 600–608. [Google Scholar] [CrossRef]
- Lin, I.; Camargo, S.J.; Patricola, C.M.; Boucharel, J.; Chand, S.; Klotzbach, P.; Chan, J.C.L.; Wang, B.; Chang, P.; Li, T.; et al. ENSO and tropical cyclones. In El Niño Southern Oscillation in a Changing Climate; American Geophysical Union: Washington, DC, USA, 2020; pp. 377–408. [Google Scholar]
- Ho, C.; Kim, J.; Jeong, J.; Kim, H.; Chen, D. Variation of tropical cyclone activity in the South Indian Ocean: El Niño–southern oscillation and madden-Julian oscillation effects. J. Geophys. Res. Atmos. 2006, 111, D22. [Google Scholar] [CrossRef]
- Chia, H.H.; Ropelewski, C.F. The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Clim. 2002, 15, 2934–2944. [Google Scholar] [CrossRef]
- Camargo, S.J.; Sobel, A.H. Western North Pacific tropical cyclone intensity and ENSO. J. Clim. 2005, 18, 2996–3006. [Google Scholar] [CrossRef]
- Camargo, S.J.; Robertson, A.W.; Gaffney, S.J.; Smyth, P.; Ghil, M. Cluster analysis of typhoon tracks. Part II: Large scale circulation and ENSO. J. Clim. 2007, 20, 3654. [Google Scholar] [CrossRef]
- Ghil, M. Cluster analysis of typhoon tracks. Part I: General properties. J. Clim. 2007, 20, 3635–3653. [Google Scholar] [CrossRef]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef]
- Chu, P.-S.; Wang, J. Tropical cyclone occurrences in the vicinity of Hawaii: Are the differences between El Niño and non–El Niño years significant? J. Clim. 1997, 10, 2683–2689. [Google Scholar] [CrossRef]
- CLARK, J.D.; Chu, P.-S. Interannual variation of tropical cyclone activity over the central North Pacific. J. Meteorol. Soc. Japan. Ser. II 2002, 80, 403–418. [Google Scholar] [CrossRef]
- Klotzbach, P.J. El Niño-Southern Oscillation, the Madden-Julian Oscillation and Atlantic basin tropical cyclone rapid intensification. J. Geophys. Res. Atmos. 2012, 117, D14. [Google Scholar] [CrossRef]
- Gray, W.M. Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Weather. Rev. 1984, 112, 1649–1668. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather. Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Gray, W.M. Tropical cyclone genesis. In Atmospheric Science Paper; no. 234; Colorado State University: Fort Collins, CO, USA, 1975. [Google Scholar]
- Neumann, C.J. Global Overview. In Global Guide to Tropical Cyclone Forecasting; WMO/TC-No. 560; World Meteorological Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Dube, S.K.; Rao, A.D.; Sinha, P.C.; Murty, T.S.; Bahulayan, N. Storm surge in the Bay of Bengal and Arabian Sea The problem and its prediction. Mausam 1997, 48, 283–304. [Google Scholar] [CrossRef]
- Singh, V.K.; Roxy, M.K. A review of ocean-atmosphere interactions during tropical cyclones in the north Indian Ocean. Earth Sci. Rev. 2022, 226, 103967. [Google Scholar]
- Mahala, B.K.; Nayak, B.K.; Mohanty, P.K. Impacts of ENSO and IOD on tropical cyclone activity in the Bay of Bengal. Nat. Hazards 2015, 75, 1105–1125. [Google Scholar] [CrossRef]
- Girishkumar, M.S.; Ravichandran, M. The influences of ENSO on tropical cyclone activity in the Bay of Bengal during October-December. J. Geophys. Res. Oceans 2012, 117, C2. [Google Scholar] [CrossRef]
- Girishkumar, M.S.; Suprit, K.; Vishnu, S.; Prakash, V.P.T.; Ravichandran, M. The role of ENSO and MJO on rapid intensification of tropical cyclones in the Bay of Bengal during October–December. Theor. Appl. Climatol. 2015, 120, 797–810. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Pattanaik, D.R.; Singh, O. Tropical cyclone activity over Bay of Bengal in relation to El Niño-Southern Oscillation. Int. J. Climatol. 2019, 39, 5452–5469. [Google Scholar] [CrossRef]
- Felton, C.S.; Subrahmanyam, B.; Murty, V.S.N. ENSO-modulated cyclogenesis over the Bay of Bengal. J. Clim. 2013, 26, 9806–9818. [Google Scholar] [CrossRef]
- Sumesh, K.G.; Kumar, M.R.R. Tropical cyclones over north Indian Ocean during El-nino modoki years. Nat. Hazards 2013, 68, 1057–1074. [Google Scholar] [CrossRef]
- Li, Z.; Li, T.; Yu, W.; Li, K.; Liu, Y. What controls the interannual variation of tropical cyclone genesis frequency over Bay of Bengal in the post-monsoon peak season? Atmos. Sci. Lett. 2016, 17, 148–154. [Google Scholar] [CrossRef]
- Albert, J.; Krishnan, A.; Bhaskaran, P.K.; Singh, K.S. Role and influence of key atmospheric parameters in large-scale environmental flow associated with tropical cyclogenesis and ENSO in the North Indian Ocean basin. Clim. Dyn. 2021, 58, 17–34. [Google Scholar] [CrossRef]
- Dai, Y.; Cao, X.; Wu, R.; Bi, M.; Lan, X.; Wang, Y. Contributions of various temporal components of large-scale parameters in tropical cyclone genesis over the North Indian Ocean. Remote Sens. 2023, 15, 610. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Webster, P.J.; Moore, A.M.; Loschnigg, J.P.; Leben, R.R. Coupled Ocean–atmosphere dynamics in the Indian Ocean during 1997–1998. Nature 1999, 401, 356–360. [Google Scholar] [CrossRef]
- Black, E.; Slingo, J.; Sperber, K.R. An observational study of the relationship between excessively strong short rains in coastal East Africa and Indian Ocean SST. Mon. Weather. Rev. 2003, 131, 74–94. [Google Scholar] [CrossRef]
- Terray, P.; Delécluse, P.; Labattu, S.; Terray, L. Sea surface temperature associations with the late Indian summer monsoon. Clim. Dyn. 2003, 21, 593–618. [Google Scholar] [CrossRef]
- Singh, O.P. Indian Ocean dipole mode and tropical cyclone frequency. Curr. Sci. 2008, 94, 29–31. [Google Scholar]
- Hu, S.; Hu, D.; Guan, C.; Xing, N.; Li, J.; Feng, J. Variability of the western Pacific warm pool structure associated with El Niño. Clim. Dyn. 2017, 49, 2431–2449. [Google Scholar] [CrossRef]
- Huang, R.-H.; Huangfu, J.-L.; Wu, L.; Feng, T.; Chen, G.-H. Research on the Interannual and Interdecadal Variabilities of the Monsoon Trough and Their Impacts on Tropical Cyclone Genesis over the Western North Pacific Ocean. J. Trop. Meteorol. 2018, 24, 395. [Google Scholar]
- Chen, G.; Huang, R. Influence of monsoon over the warm pool on interannual variation on tropical cyclone activity over the western North Pacific. Adv. Atmos. Sci. 2008, 25, 319–328. [Google Scholar] [CrossRef]
- Xue, Y.; Smith, T.M.; Reynolds, R.W. Interdecadal changes of 30-yr SST normals during 1871–2000. J. Clim. 2003, 16, 1601–1612. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686. [Google Scholar] [CrossRef]
- Collins, J.M.; Paxton, C.H. Tropical Cyclone Impacts. In Extreme Events and Climate Change: A Multidisciplinary Approach; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 167–181. [Google Scholar]
- Wang, C. Sensitivity of tropical cyclone damage costs to integrated wind profile. J. Ocean Eng. Sci. 2021, 6, 257–264. [Google Scholar] [CrossRef]
- Wehner, M. Simulated changes in tropical cyclone size, accumulated cyclone energy and power dissipation index in a warmer climate. Oceans 2021, 2, 688–699. [Google Scholar] [CrossRef]
- Tiwari, G.; Kumar, P.; Javed, A.; Mishra, A.K.; Routray, A. Assessing tropical cyclones characteristics over the Arabian Sea and Bay of Bengal in the recent decades. Meteorol. Atmos. Phys. 2022, 134, 44. [Google Scholar] [CrossRef]
- Deshpande, M.; Singh, V.K.; Ganadhi, M.K.; Roxy, M.K.; Emmanuel, R.; Kumar, U. Changing status of tropical cyclones over the north Indian Ocean. Clim. Dyn. 2021, 57, 3545–3567. [Google Scholar] [CrossRef]
- Singh, K.; Panda, J.; Sahoo, M.; Mohapatra, M. Variability in tropical cyclone climatology over North Indian Ocean during the period 1891 to 2015. Asia Pac. J. Atmos. Sci. 2019, 55, 269–287. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, C.; Zhi, H. Analysis of ENSO Event Intensity Changes and Time–Frequency Characteristic Since 1875. Atmosphere 2024, 15, 1428. [Google Scholar] [CrossRef]
- Nath, S.; Kotal, S.D.; Kundu, P.K. Decadal variation of ocean heat content and tropical cyclone activity over the Bay of Bengal. J. Earth Syst. Sci. 2016, 125, 65–74. [Google Scholar] [CrossRef]
- Kotal, S.D.; Kundu, P.K.; Bhowmik, S.K.R. An analysis of sea surface temperature and maximum potential intensity of tropical cyclones over the Bay of Bengal between 1981 and 2000. Meteorol. Appl. A J. Forecast. Pract. Appl. Train. Tech. Model. 2009, 16, 169–177. [Google Scholar] [CrossRef]
- Pathirana, G.; Priyadarshani, K. Tropical cyclones in the Arabian Sea and the Bay of Bengal: Comparison of environmental factors. J. Natl. Sci. Found 2022, 50, 53. [Google Scholar] [CrossRef]
- Gray, W.M. Hurricanes: Their formation, structure and likely role in the tropical circulation. In Meteorology over the Tropical Oceans; Royal Meteorological Society: Reading, UK, 1979; pp. 155–218. [Google Scholar]
- Sebastian, M.; Behera, M.R. Impact of SST on tropical cyclones in North Indian Ocean. Procedia Eng. 2015, 116, 1072–1077. [Google Scholar] [CrossRef]
- Yu, J.; Lv, H.; Tan, S.; Wang, Y. Tropical Cyclone-Induced Sea Surface Temperature Responses in the Northern Indian Ocean. J. Mar. Sci. Eng. 2023, 11, 2196. [Google Scholar] [CrossRef]
- Bhatla, R.; Raj, R.; Mall, R.K.; Shivani. Tropical cyclones over the north Indian Ocean in changing climate. In Techniques for Disaster Risk Management and Mitigation; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 63–76. [Google Scholar]
- Chan, J.C.L. Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Weather. Rev. 1985, 113, 599–606. [Google Scholar] [CrossRef]
- Zehr, R.M. Environmental vertical wind shear with Hurricane Bertha (1996). Weather Forecast. 2003, 18, 345–356. [Google Scholar] [CrossRef]
- Park, M.-S.; Elsberry, R.L.; Harr, P.A. Vertical wind shear and ocean heat content as environmental modulators of western North Pacific tropical cyclone intensification and decay. Trop. Cyclone Res. Rev. 2012, 1, 448–457. [Google Scholar]
- Finocchio, P.M.; Majumdar, S.J. A statistical perspective on wind profiles and vertical wind shear in tropical cyclone environments of the Northern Hemisphere. Mon. Weather. Rev. 2017, 145, 361–378. [Google Scholar] [CrossRef]
- Rios-Berrios, R.; Davis, C.A.; Torn, R.D. A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci. 2018, 75, 4149–4173. [Google Scholar] [CrossRef]
- Finocchio, P.M.; Majumdar, S.J.; Nolan, D.S.; Iskandarani, M. Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Weather. Rev. 2016, 144, 2155–2175. [Google Scholar] [CrossRef]
- Pal, A.; Chatterjee, S. Influence of vertical wind shear on the maximum potential intensity of tropical cyclones over the Bay of Bengal region. J. Earth Syst. Sci. 2022, 131, 255. [Google Scholar] [CrossRef]
- Li, Z.; Yu, W.; Li, K.; Liu, B.; Wang, G. Modulation of interannual variability of tropical cyclone activity over Southeast Indian Ocean by negative IOD phase. Dyn. Atmos. Ocean. 2015, 72, 62–69. [Google Scholar] [CrossRef]
- Fan, X.-T.; Li, Y.; Lyu, A.-M.; Liu, L.-S. Statistical and Comparative Analysis of Tropical Cyclone Activity over the Arabian Sea and Bay of Bengal (1977–2018). J. Trop. Meteorol. 2020, 26, 441–452. [Google Scholar] [CrossRef]
- Labban, A.H.; Hasanean, H.M.; Almahri, A.; Al-Sakkaf, A.S.; Hussein, M.A.A. Characterizing the Tropical Cyclones Activity over Arabian Sea (1982–2021). Oceans 2024, 5, 840–856. [Google Scholar] [CrossRef]
- Kim, H.-R.; Ha, K.-J.; Moon, S.; Oh, H.; Sharma, S. Impact of the Indo-Pacific warm pool on the Hadley, Walker, and monsoon circulations. Atmosphere 2020, 11, 1030. [Google Scholar] [CrossRef]
- Zhang, Q.; Hou, Y.; Qi, Q.; Bai, X. Variations in the eastern Indian Ocean warm pool and its relation to the dipole in the tropical Indian Ocean. Chin. J. Oceanol. Limnol. 2009, 27, 640–649. [Google Scholar] [CrossRef]
- Wang, B.; Luo, X.; Yang, Y.-M.; Liu, J. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl. Acad. Sci. USA 2019, 116, 22512–22517. [Google Scholar] [CrossRef]
- Conroy, J.L.; Overpeck, J.T.; Cole, J.E. El Niño/Southern Oscillation and changes in the zonal gradient of tropical Pacific Sea surface temperature over the last 1.2 ka. PAGES News 2010, 18, 32–34. [Google Scholar]
- Nadimpalli, R.; Mohanty, S.; Pathak, N.; Osuri, K.K.; Mohanty, U.C.; Chatterjee, S. Understanding the characteristics of rapid intensity changes of Tropical Cyclones over North Indian Ocean. SN Appl. Sci. 2021, 3, 68. [Google Scholar] [CrossRef]
System | Wind Speed in km/h | Wind Speed in Knots |
---|---|---|
Low-pressure area (L) | Less than 31 | Less than 17 |
Depression (D) | 31–49 | 17–27 |
Deep depression (DD) | 50–61 | 28–33 |
Cyclonic storm (CS) | 62–88 | 33–47 |
Severe cyclonic storm (SCS) | 89–118 | 48–63 |
Very severe cyclonic storm (VSCS) | 119–165 | 64–89 |
Extreme severe cyclonic storm (ESCS) | 166–220 | 90–119 |
Super cyclonic storm (Sup. CS) | 221 or more | 120 or more |
Season | ENSO | Ds | CS | SCS | VSCS | ESCS | SuCS | Total |
---|---|---|---|---|---|---|---|---|
Pre-monsoon | El Niño La Niña | 3 | 2 | 0 | 1 | 1 | 0 | 7 |
4 | 1 | 0 | 0 | 2 | 0 | 7 | ||
Post-monsoon | El Niño La Niña | 6 | 1 | 3 | 2 | 4 | 0 | 16 |
10 | 3 | 2 | 1 | 0 | 0 | 16 |
Season | IOD | DDs | CS | SCS | VSCS | ESCS | SuCS | Total |
---|---|---|---|---|---|---|---|---|
Pre-monsoon | pIOD nIOD | 0 | 0 | 1 | 1 | 0 | 0 | 2 |
2 | 0 | 2 | 0 | 0 | 0 | 4 | ||
Post-monsoon | pIOD nIOD | 6 | 1 | 2 | 3 | 3 | 1 | 16 |
3 | 2 | 2 | 0 | 0 | 0 | 7 |
Season | ENSO | CS | SCS | VSCS | ESCS | SuCS | Total |
---|---|---|---|---|---|---|---|
Pre-monsoon | El Niño La Niña | 108 | 0 | 153 | 84 | 0 | 345 |
36 | 0 | 0 | 213 | 0 | 249 | ||
Post-monsoon | El Niño La Niña | 18 | 141 | 243 | 447 | 0 | 876 |
87 | 162 | 33 | 0 | 0 | 282 |
Season | IOD | CS | SCS | VSCS | ESCS | SuCS | Total |
---|---|---|---|---|---|---|---|
Pre-monsoon | pIOD nIOD | 0 | 48 | 153 | 0 | 0 | 201 |
0 | 147 | 0 | 0 | 0 | 147 | ||
Post-monsoon | pIOD nIOD | 48 | 144 | 312 | 429 | 156 | 1089 |
78 | 114 | 0 | 0 | 0 | 192 |
Period | CS | SCS | VSCS | ESCS | SuCS | Total |
---|---|---|---|---|---|---|
1982–2001 | 7 | 4 | 2 | 4 | 0 | 17 |
2002–2021 | 9 | 6 | 5 | 6 | 0 | 26 |
Parameter | Pre-Monsoon (All Phases) | Post-Monsoon El Niño | Post-Monsoon La Niña |
---|---|---|---|
TC Frequency | No consistent pattern observed due to weak ENSO signal | Higher TC frequency | Lower TC frequency |
TC Duration (hours) | No apparent difference across phases | More TC days, longer-lasting systems | Fewer TC days, shorter duration |
ACE (×104 kt2) | No distinct variation | Higher ACE (stronger storms) | Lower ACE |
PDI (×106 kt3) | No distinct variation | Higher PDI (intense, long-lived TCs) | Lower PDI |
Notes | The ENSO signal is still developing in the early season | Favors TC development and intensity | Suppresses TC strength |
Parameter | Pre-Monsoon (pIOD) | Pre-Monsoon (nIOD) | Post-Monsoon (pIOD) | Post-Monsoon (nIOD) |
---|---|---|---|---|
TC Frequency | Higher frequency of stronger TCs | Lower frequency; mostly weaker storms | Significantly higher frequency and intensity | Fewer storms with limited intensity |
TC Duration (hours) | Longer-lasting TCs with multiple TC categories | Shorter-lived TCs of limited strength | Much longer TC lifespans across all types | Short-lived TCs with no intense categories |
ACE (×104 kt2) | Very low | Very low | Substantially higher ACE | Very low ACE |
PDI (×106 kt3) | Very low | Very low | Higher PDI (intense, long-lived TCs) | Very low PDI |
Notes | Favorable for TCs’ development and strength | Suppresses TCs intensification | Creates an optimal environment for strong TCs | Inhibits TCs’ growth and duration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almahri, A.B.; Hasanean, H.M.; Labban, A.H. Teleconnections Between the Pacific and Indian Ocean SSTs and the Tropical Cyclone Activity over the Arabian Sea. Climate 2025, 13, 193. https://doi.org/10.3390/cli13090193
Almahri AB, Hasanean HM, Labban AH. Teleconnections Between the Pacific and Indian Ocean SSTs and the Tropical Cyclone Activity over the Arabian Sea. Climate. 2025; 13(9):193. https://doi.org/10.3390/cli13090193
Chicago/Turabian StyleAlmahri, Ali B., Hosny M. Hasanean, and Abdulhaleem H. Labban. 2025. "Teleconnections Between the Pacific and Indian Ocean SSTs and the Tropical Cyclone Activity over the Arabian Sea" Climate 13, no. 9: 193. https://doi.org/10.3390/cli13090193
APA StyleAlmahri, A. B., Hasanean, H. M., & Labban, A. H. (2025). Teleconnections Between the Pacific and Indian Ocean SSTs and the Tropical Cyclone Activity over the Arabian Sea. Climate, 13(9), 193. https://doi.org/10.3390/cli13090193